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Chapter 10:  File-System Interface

◼File Concept

◼Access Methods

◼Directory Structure

◼File System Mounting

◼File Sharing

◼Protection
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File System Concept

Operating System Concepts
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◼Key Abstraction

◆File

◆Filename

◆Directory tree (folders)

File Path and Directory Tree

Operating System Concepts
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Debian GNU/Linux Directory Tree

http://www.oreilly.com/openbook/debian/book/appa_01.html

All application programs

◼ /home (private): 

directories of users

◼ /dev: device files 

that represent 

hardware 

components

◼ /etc: important files 

for system 

configuration

◼ /bin: programs 

needed early in the 

boot process

◼ /usr: all application 

programs

◼ /var: log files, and

other dynamic files

◼ /lib: shared libraries 

(for dynamically 

linked programs)
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File Concept

◼Contiguous logical address space

◼Types: 

◆Data

✓numeric

✓character

✓binary

◆Program
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File Structure

◼None - sequence of words, bytes

◼Simple record structures

◆Lines (.txt)

◆Fixed length

◆Variable length (.csv)

◼Complex structures

◆Formatted document (.docx, .tex)

◆Relocatable load file (.obj, .so)

◼Can simulate last two categories of structures 

with the first method, by inserting appropriate 

control characters
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File Attributes (File Control Block, inode)
◼Name – only information kept

in human-readable form.

◼Type – needed for systems 

that support different types.

◼Location – pointer to file location on device.

◼Size – current file size.

◼Protection – controls who can 

do reading, writing, executing.

◼Time, date, and user identification – data for 

protection, security, and usage monitoring.

◼All these information of files are kept in directory 

structure, which is maintained on the disk.

File Control

Block (inode)

Location 

Users

Size

Protection

Time
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File Types – Name, Extension
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File Operations from Developer’s 

Perspective 
◼Create

◼Write

◼Read

◼Reposition within file – file seek

◼Delete

◼Truncate
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File Operations from Developer’s 

Perspective (cont.)

◼ open(Fi) – search the directory structure 

on disk for entry Fi, and move the content 

of the entry from disk to memory.

◼ close(Fi) – persist the content of entry Fi in 

memory to directory structure on disk.

◼ read(Fi) – read the file content

◼write(Fi) – write to the file

◼ fseek(Fi) – reposition the file cursor
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File Content Access Methods

◼ Sequential Access
Method (read/write)

◼ Direct Access 
Method (fseek)

◼ Simulation of Sequential 
Access on a Direct-Access File
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Example Code Modifying a Key-Value 

Pair in Fixed-Length Record Structure
ssize_t len;

char * filename;

int key, srch_key, new_value;

filename = argv[1];

srch_key = strtol(argv[2], NULL, 10);

new_value = strtol(argv[3], NULL, 10);

int fd = open(filename, O_RDWR);

while(sizeof(int) == read(fd, &key, sizeof(int))) {

if(key != srch_key) {

lseek(fd, sizeof(int), SEEK_CUR);

} else {

write(fd, &new_value, sizeof(int));

close(fd);

return EXIT_SUCCESS;

}

}

fprintf(stderr, “key not found!”);

return EXIT_FAILURE;

KEY VALUE

integer integer
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Index Access Method

◼ Index Access Method: 

Store keys in the index file

◼Store values (or records) in the relative file

◼How to quickly locate the record of John Smith
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Index File is Organized as B+ Tree
◼ The primary value of a B+ tree is in storing data for 

efficient retrieval in a block-oriented storage context 

— in particular, filesystems. Unlike binary search 

trees, B+ trees have very high fanout (number of 

pointers to child nodes in a node, typically on the 

order of 100 or more), which reduces the number of 

I/O operations required to find an element in the tree.

https://en.wikipedia.org/wiki/B%2B_tree

https://en.wikipedia.org/wiki/Block_(data_storage)
https://en.wikipedia.org/wiki/Filesystems
https://en.wikipedia.org/wiki/Binary_search_tree
https://en.wikipedia.org/wiki/B%2B_tree
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File Content Direct Access 

by Memory Mapped File

fd = open(“file.txt”, ….);

buffer = mmap(…, fd, …);

// manipulate the buffer 

munmap(buffer, …);

close(fd);

Operating System Concepts
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Memory

◼ mmap() creates a new mapping in the 

virtual address space of the calling 

process

◼ munmap() system call deletes the 

mappings for the specified address 

range, and causes further references 

to addresses within the range to 

generate invalid memory references

http://linux.die.net/man/2/mmap

http://linux.die.net/man/2/mmap
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An Example of Memory Mapped 

File: Shuffle Blocks within a File
filename = argv[1];

card_size = strtol(argv[2], NULL, 10);

fd = open(filename, O_RDWR);

len = lseek(fd, 0, SEEK_END);

lseek(fd, 0, SEEK_SET);

buf = mmap(NULL, len, PROT_READ | PROT_WRITE,

MAP_FILE | MAP_SHARED, fd, 0);

if( buf == (void*) -1) {

fprintf(stderr, “mmap failed.\n”);

exit(EXIT_FAILURE);

}

memshuffle(buf, len, card_size);

munmap(buf, len);

close(fd);

return EXIT_SUCCESS;

Operating System Concepts
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Directory Structure

◼Disks are split into one or more partitions.

◼Each partition contains information about files 

within it

◼The information is kept in entries in a device 

directory or volume table of contents

◼A Typical 

File-system 

Organization
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Operations Performed on Directory

◼Search for a file

◼Create a file

◼Delete a file

◼ List a directory

◼Rename a file

◼Traverse the file system
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Organize the Directory (Logically) 

to Obtain

◼Efficiency – locating a file quickly.

◼Naming – convenient to users.

◆Two users can have the same name for different 

files.

◆The same file can have several different names.

◼Grouping – logical grouping of files by 

properties, (e.g., all Java programs, all 

games, …)
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Single-Level Directory

◼A single directory for all users.

◆Naming problem

◆Grouping problem
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Two-Level Directory

◼Separate directory for each user.

◆Efficient searching

◆Support path name, so can have the same 

file name for different users

◆No grouping capability
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Tree-Structured Directories

◼Efficient searching

◼Convenient naming 

◼Two users can have the same name for different files

◼Grouping capability

◼Current directory 

(working directory)

◆cd /spell/mail/prog

◆type list
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◼Absolute or relative path name

◼Can create a new file in current directory (pwd)

◼Example:  if in current directory   /mail

mkdir count

◼Delete a file

rm <file-name>

◼Creating a new subdirectory in current directory.

mkdir <dir-name>

Tree-Structured Directories (cont.)

mail

prog copy prt exp count

Deleting “mail”  deleting the entire subtree rooted by “mail”.



Southeast University10.25Operating System Concepts

Acyclic-Graph Directories

◼Have shared subdirectories and files.

The same file can have several different paths.

shared

inode
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Acyclic-Graph Directories (cont.)

◼Two different names (aliasing)

◼ If dict deletes count  may dangling pointer.

◼Solutions:

◆Backpointers, so we can delete all pointers.

◆Entry-hold-count solution

✓Each inode holds a reference counter

◼These links we talked about are hard links in

UNIX/Linux

inode (FCB)



Southeast University10.27Operating System Concepts

In Linux, Shortcuts are known as Links
◼Soft Links (symbolic links)

◆You can make a link for either a file or a folder

◆You can create link (shortcut) on different partition

◆You got a different inode 

number from original.

◆If real copy is deleted the 

link will not work.

◼Hard Links

◆For files only, and you cannot create a hard link on 

different partition (it should be on same partition)

◆You got the same inode number as original

◆If the real copy is deleted the link will work ( 

because it act as original file )

inode inode
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General Graph Directory
◼The directory graph can have cycles

◼How do we guarantee no cycles?

◆Allow only links to file not subdirectories.

◆Garbage collection.

◆Every time a new link is added, use a cycle 

detection algorithm to determine whether it is OK.

Hard link

Hard link

inodeinode
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File System Mounting

◼A file system must be mounted before it can 

be accessed.

◼An unmounted file system (i.e. Fig. 11-11(b)) 

is mounted at a mount point.

◼ (a) Existing (b) Unmounted Partition

Mount Point
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File Sharing

◼ Sharing of files on multi-user systems is desirable.

◼ Sharing may be done through a protection scheme.

◼On distributed systems, files may be shared across 

a network.

◼ Network File System (NFS) is a common 

distributed file-sharing method.
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File Access Protection

◼File owner/creator should be able to control:

◆what can be done

◆by whom

◼Types of access

◆Read

◆Write

◆Execute

◆Append

◆Delete

◆List

Role-based Access Control



Southeast University10.32Operating System Concepts

Access Lists and Groups

◼Mode of access:  read, write/delete, execute

◼Three classes of users:RWX

a) owner access 6  1 1 0
b) group access 4  1 0 0

c) public access 0  0 0 0

◼Ask manager to create a group (unique name), 
say G, and add some users to the group.

◼For a particular file (say game) or subdirectory, 
define an appropriate access.

owner group public

chmod 761 gameAttach a group to a file

chgrp     G    game



Southeast University10.33Operating System Concepts

A Sample UNIX Directory Listing
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Question about File Access-Control

◼Which of the following will generate a 

permission error?

 cat foo.txt

 cat dir/bar.txt

 touch dir/new.txt

Operating System Concepts

$ ls –l ./

Permission user group …. Filename

drw-r--r-- me me dir

-rw-r--r-- other other foo.txt

$ sudo ls –l dir

Permission user group …. Filename

-rw-r--r-- me me bar.txt
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Another Question

◼Which of the following will generate a 

permission error?

 cat foo.txt

 cat dir/bar.txt

 touch dir/new.txt

Operating System Concepts

$ ls –l ./

Permission user group …. Filename

d--xr--r-- me me dir

-rw-r--r-- other other foo.txt

$ sudo ls –l dir

Permission user group …. Filename

-rw-r--r-- me me bar.txt



Southeast University10.36Operating System Concepts

MacOS的执行结果：目录dir在创建的开始，rwx权力都属于owner。后面不管
是644、144权力，都会touch报错Permission denied。改成344，有x和w权力
，就没问题了。 cd dir 进入dir目录的操作，一定需要dir目录的执行权。


