
Chapter 10: File System Interface

肖 卿 俊

办公室：九龙湖校区计算机楼212室

电邮：csqjxiao@seu.edu.cn

主页： https://csqjxiao.github.io/PersonalPage

电话：025-52091022

Southeast University10.2Operating System Concepts

Chapter 10: File-System Interface

◼File Concept

◼Access Methods

◼Directory Structure

◼File System Mounting

◼File Sharing

◼Protection

Southeast University10.3

File System Concept

Operating System Concepts

home

csqjxiao

workspace

testproject

myprogram.cpp

/ Ubuntu root dir
◼Key Abstraction

◆File

◆Filename

◆Directory tree (folders)

Disk
File

System

Users do not access directly

the file blocks on disks

Southeast University10.4

◼Key Abstraction

◆File

◆Filename

◆Directory tree (folders)

File Path and Directory Tree

Operating System Concepts

home

csqjxiao

workspace

testproject

myprogram.cpp

/ Ubuntu root dir

Disk
File

System

usrvar

guest

downloads

SDP AOS
Users do not access directly

the file blocks on disks

Southeast University10.5

Debian GNU/Linux Directory Tree

http://www.oreilly.com/openbook/debian/book/appa_01.html

All application programs

◼ /home (private):

directories of users

◼ /dev: device files

that represent

hardware

components

◼ /etc: important files

for system

configuration

◼ /bin: programs

needed early in the

boot process

◼ /usr: all application

programs

◼ /var: log files, and

other dynamic files

◼ /lib: shared libraries

(for dynamically

linked programs)

Southeast University10.6Operating System Concepts

File Concept

◼Contiguous logical address space

◼Types:

◆Data

✓numeric

✓character

✓binary

◆Program

Southeast University10.7Operating System Concepts

File Structure

◼None - sequence of words, bytes

◼Simple record structures

◆Lines (.txt)

◆Fixed length

◆Variable length (.csv)

◼Complex structures

◆Formatted document (.docx, .tex)

◆Relocatable load file (.obj, .so)

◼Can simulate last two categories of structures

with the first method, by inserting appropriate

control characters

Southeast University10.8Operating System Concepts

File Attributes (File Control Block, inode)
◼Name – only information kept

in human-readable form.

◼Type – needed for systems

that support different types.

◼Location – pointer to file location on device.

◼Size – current file size.

◼Protection – controls who can

do reading, writing, executing.

◼Time, date, and user identification – data for

protection, security, and usage monitoring.

◼All these information of files are kept in directory

structure, which is maintained on the disk.

File Control

Block (inode)

Location

Users

Size

Protection

Time

Southeast University10.9Operating System Concepts

File Types – Name, Extension

Southeast University10.10Operating System Concepts

File Operations from Developer’s

Perspective
◼Create

◼Write

◼Read

◼Reposition within file – file seek

◼Delete

◼Truncate

Southeast University10.11Operating System Concepts

File Operations from Developer’s

Perspective (cont.)

◼ open(Fi) – search the directory structure

on disk for entry Fi, and move the content

of the entry from disk to memory.

◼ close(Fi) – persist the content of entry Fi in

memory to directory structure on disk.

◼ read(Fi) – read the file content

◼write(Fi) – write to the file

◼ fseek(Fi) – reposition the file cursor

Southeast University10.12Operating System Concepts

File Content Access Methods

◼ Sequential Access
Method (read/write)

◼ Direct Access
Method (fseek)

◼ Simulation of Sequential
Access on a Direct-Access File

Southeast University10.13Operating System Concepts

Example Code Modifying a Key-Value

Pair in Fixed-Length Record Structure
ssize_t len;

char * filename;

int key, srch_key, new_value;

filename = argv[1];

srch_key = strtol(argv[2], NULL, 10);

new_value = strtol(argv[3], NULL, 10);

int fd = open(filename, O_RDWR);

while(sizeof(int) == read(fd, &key, sizeof(int))) {

if(key != srch_key) {

lseek(fd, sizeof(int), SEEK_CUR);

} else {

write(fd, &new_value, sizeof(int));

close(fd);

return EXIT_SUCCESS;

}

}

fprintf(stderr, “key not found!”);

return EXIT_FAILURE;

KEY VALUE

integer integer

Southeast University10.14Operating System Concepts

Index Access Method

◼ Index Access Method:

Store keys in the index file

◼Store values (or records) in the relative file

◼How to quickly locate the record of John Smith

Southeast University10.15Operating System Concepts

Index File is Organized as B+ Tree
◼ The primary value of a B+ tree is in storing data for

efficient retrieval in a block-oriented storage context

— in particular, filesystems. Unlike binary search

trees, B+ trees have very high fanout (number of

pointers to child nodes in a node, typically on the

order of 100 or more), which reduces the number of

I/O operations required to find an element in the tree.

https://en.wikipedia.org/wiki/B%2B_tree

https://en.wikipedia.org/wiki/Block_(data_storage)
https://en.wikipedia.org/wiki/Filesystems
https://en.wikipedia.org/wiki/Binary_search_tree
https://en.wikipedia.org/wiki/B%2B_tree

Southeast University10.16

File Content Direct Access

by Memory Mapped File

fd = open(“file.txt”, ….);

buffer = mmap(…, fd, …);

// manipulate the buffer

munmap(buffer, …);

close(fd);

Operating System Concepts

~~~~~~~~~~~

~~~~~~~~~~~

~~~~~~~~~~~

~~~~~~~~~~~

~~~~~~~~~~~

~~~~~~~~~~~

~~~~~~~~~~~

~~~~~~~~~~~

~~~~~~~~~~~

~~~~~~~~~~~

~~~~~~~~~~~

~~~~~~~~~~~

~~~~~~~~~~~

~~~~~~~~~~~

~~~~~~~~~~~

File.txt

Memory

◼ mmap() creates a new mapping in the 

virtual address space of the calling 

process

◼ munmap() system call deletes the 

mappings for the specified address 

range, and causes further references 

to addresses within the range to 

generate invalid memory references

http://linux.die.net/man/2/mmap

http://linux.die.net/man/2/mmap


Southeast University10.17

An Example of Memory Mapped 

File: Shuffle Blocks within a File
filename = argv[1];

card_size = strtol(argv[2], NULL, 10);

fd = open(filename, O_RDWR);

len = lseek(fd, 0, SEEK_END);

lseek(fd, 0, SEEK_SET);

buf = mmap(NULL, len, PROT_READ | PROT_WRITE,

MAP_FILE | MAP_SHARED, fd, 0);

if( buf == (void*) -1) {

fprintf(stderr, “mmap failed.\n”);

exit(EXIT_FAILURE);

}

memshuffle(buf, len, card_size);

munmap(buf, len);

close(fd);

return EXIT_SUCCESS;

Operating System Concepts



Southeast University10.18Operating System Concepts

Directory Structure

◼Disks are split into one or more partitions.

◼Each partition contains information about files 

within it

◼The information is kept in entries in a device 

directory or volume table of contents

◼A Typical 

File-system 

Organization



Southeast University10.19Operating System Concepts

Operations Performed on Directory

◼Search for a file

◼Create a file

◼Delete a file

◼ List a directory

◼Rename a file

◼Traverse the file system



Southeast University10.20Operating System Concepts

Organize the Directory (Logically) 

to Obtain

◼Efficiency – locating a file quickly.

◼Naming – convenient to users.

◆Two users can have the same name for different 

files.

◆The same file can have several different names.

◼Grouping – logical grouping of files by 

properties, (e.g., all Java programs, all 

games, …)



Southeast University10.21Operating System Concepts

Single-Level Directory

◼A single directory for all users.

◆Naming problem

◆Grouping problem



Southeast University10.22Operating System Concepts

Two-Level Directory

◼Separate directory for each user.

◆Efficient searching

◆Support path name, so can have the same 

file name for different users

◆No grouping capability



Southeast University10.23Operating System Concepts

Tree-Structured Directories

◼Efficient searching

◼Convenient naming 

◼Two users can have the same name for different files

◼Grouping capability

◼Current directory 

(working directory)

◆cd /spell/mail/prog

◆type list



Southeast University10.24Operating System Concepts

◼Absolute or relative path name

◼Can create a new file in current directory (pwd)

◼Example:  if in current directory   /mail

mkdir count

◼Delete a file

rm <file-name>

◼Creating a new subdirectory in current directory.

mkdir <dir-name>

Tree-Structured Directories (cont.)

mail

prog copy prt exp count

Deleting “mail”  deleting the entire subtree rooted by “mail”.



Southeast University10.25Operating System Concepts

Acyclic-Graph Directories

◼Have shared subdirectories and files.

The same file can have several different paths.

shared

inode



Southeast University10.26Operating System Concepts

Acyclic-Graph Directories (cont.)

◼Two different names (aliasing)

◼ If dict deletes count  may dangling pointer.

◼Solutions:

◆Backpointers, so we can delete all pointers.

◆Entry-hold-count solution

✓Each inode holds a reference counter

◼These links we talked about are hard links in

UNIX/Linux

inode (FCB)



Southeast University10.27Operating System Concepts

In Linux, Shortcuts are known as Links
◼Soft Links (symbolic links)

◆You can make a link for either a file or a folder

◆You can create link (shortcut) on different partition

◆You got a different inode 

number from original.

◆If real copy is deleted the 

link will not work.

◼Hard Links

◆For files only, and you cannot create a hard link on 

different partition (it should be on same partition)

◆You got the same inode number as original

◆If the real copy is deleted the link will work ( 

because it act as original file )

inode inode



Southeast University10.28Operating System Concepts

General Graph Directory
◼The directory graph can have cycles

◼How do we guarantee no cycles?

◆Allow only links to file not subdirectories.

◆Garbage collection.

◆Every time a new link is added, use a cycle 

detection algorithm to determine whether it is OK.

Hard link

Hard link

inodeinode



Southeast University10.29Operating System Concepts

File System Mounting

◼A file system must be mounted before it can 

be accessed.

◼An unmounted file system (i.e. Fig. 11-11(b)) 

is mounted at a mount point.

◼ (a) Existing (b) Unmounted Partition

Mount Point



Southeast University10.30Operating System Concepts

File Sharing

◼ Sharing of files on multi-user systems is desirable.

◼ Sharing may be done through a protection scheme.

◼On distributed systems, files may be shared across 

a network.

◼ Network File System (NFS) is a common 

distributed file-sharing method.



Southeast University10.31Operating System Concepts

File Access Protection

◼File owner/creator should be able to control:

◆what can be done

◆by whom

◼Types of access

◆Read

◆Write

◆Execute

◆Append

◆Delete

◆List

Role-based Access Control



Southeast University10.32Operating System Concepts

Access Lists and Groups

◼Mode of access:  read, write/delete, execute

◼Three classes of users:RWX

a) owner access 6  1 1 0
b) group access 4  1 0 0

c) public access 0  0 0 0

◼Ask manager to create a group (unique name), 
say G, and add some users to the group.

◼For a particular file (say game) or subdirectory, 
define an appropriate access.

owner group public

chmod 761 gameAttach a group to a file

chgrp     G    game



Southeast University10.33Operating System Concepts

A Sample UNIX Directory Listing



Southeast University10.34

Question about File Access-Control

◼Which of the following will generate a 

permission error?

 cat foo.txt

 cat dir/bar.txt

 touch dir/new.txt

Operating System Concepts

$ ls –l ./

Permission user group …. Filename

drw-r--r-- me me dir

-rw-r--r-- other other foo.txt

$ sudo ls –l dir

Permission user group …. Filename

-rw-r--r-- me me bar.txt



Southeast University10.35

Another Question

◼Which of the following will generate a 

permission error?

 cat foo.txt

 cat dir/bar.txt

 touch dir/new.txt

Operating System Concepts

$ ls –l ./

Permission user group …. Filename

d--xr--r-- me me dir

-rw-r--r-- other other foo.txt

$ sudo ls –l dir

Permission user group …. Filename

-rw-r--r-- me me bar.txt



Southeast University10.36Operating System Concepts

MacOS的执行结果：目录dir在创建的开始，rwx权力都属于owner。后面不管
是644、144权力，都会touch报错Permission denied。改成344，有x和w权力
，就没问题了。 cd dir 进入dir目录的操作，一定需要dir目录的执行权。


