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File-System Structure

◼ In this chapter, “file” refers to either an 

ordinary file or a directory file

◼File system resides on secondary storage 

(either local disks or remote disks).

◼File structure information

◆Logical storage unit

◆Collection of related information

◼File control block (FCB) 

– storage structure 

consisting of information 

about a file.
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Layered File System

File system is organized into layers

Kernel Modules

for File System

Kernel Modules

for Device Driver

Applications

Hardware

System

Software
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File System Layers
◼Device drivers manage I/O devices at the I/O 

control layer

◆Given commands “read/write disk block 587”, 

outputs low-level hardware specific commands to 

hardware controller, like “read drive1, cylinder 72, 

track 2, sector 10, into memory location 1060”



Southeast University11.6

File System Layers (Cont.)
◼Basic file system given command like 

“retrieve block 123” translates to device driver

◆Also manages memory buffers and caches 

(allocation, freeing, replacement) 

✓Buffers hold data in transit

✓Caches hold frequently used data
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File System Layers (Cont.)
◼File organization module understands 

files, logical address, and physical blocks

◆Translates logical block # to physical block #

◆Manages free space, disk allocation
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File System Layers (Cont.)
◼ Logical file system manages metadata 

information

◆Translates file name into file number, file handle, 

location by maintaining file control blocks (inodes 

in Unix)

◆Directory management

◆Protection
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Logical File System
Upper layer: virtual (logical) file system

◆allows the same system call interface (the API) 

to be used for different types of file systems

Lower layer: specific file system modules

Each OS with its own supported file system format (CD-ROM 

is ISO 9660; Unix has UFS, FFS;  Windows has FAT, FAT32, 

NTFS as well as floppy, CD, DVD Blu-ray; Linux has more 

than 40 types, with extended file system ext2 and ext3 

leading; plus distributed file systems, etc)

New ones still arriving – ZFS, GoogleFS, Oracle ASM, FUSE

Local File System Remote File System
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Two kinds of Structures of File System 

◼We have file system calls at the API level, 

but how do we implement their functions?

◆In-memory and on-disk structures

Operating System Concepts

In-memory data structure On-disk data structure

FCB (inode)

Directories

read(fd, …)

write(fd, …)

fseek(fd, …)

fd
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On-disk Structures of File System 

◼Volume Control Block (Unix: "superblock")
◆One per file system

◆Detail information about the file system

◆# of blocks, block size, free-block count/pointer, etc.

Operating System Concepts
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On-disk Structures of File System 

◼File Control Block (Unix: "vnode" or "inode")
◆One per file to provide detailed information about the file

◆Permission, owner, size, data block locations, etc.

Operating System Concepts
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On-disk Structures of File System 

◼Directory Node (Linux: "dentry")
◆One per directory entry (directory or file)

◆Pointer to file control block, parent, list of entries, etc.

Operating System Concepts
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In-Memory Structures of File System

◼The following figure illustrates the necessary 

file system structures provided by the 

operating systems.

◼Figure (a)/(b) refers to opening/reading a file

Figure (a) Figure (b)
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◆Plus buffers hold data blocks from secondary storage

◆Open returns a file handle for subsequent use

◆Data from read eventually copied to specified user 

process memory address

Figure (a) Figure (b)

In-Memory Structures of File System (cont.)
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On-demand Loading of On-disk

Structures into Main Memory

Operating System Concepts

◼ Loaded to memory when needed

◆Volume control block: in memory if file system 

is mounted

◆File control block: if 

the file is accessed

◆Directory node: during 

traversal of a file path

File 

accessed
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Free-Space Management

◼How do we keep track of free blocks on a disk?

◼The techniques below are commonly used:
◆Bit Vector or Bit Map

◆Linked List: A free-list is maintained. When a new 
block is requested, we search this list to find one.

◆Linked List + Grouping

◆Linked List + Address + Count

Platter

TrackSector

Block
What is a block on

magnetic disk?
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Bit Vector

◼Bit vector   (n blocks)

…

0 1 2 n-1

bit[i] =


 1   block[i] free

0  block[i] occupied

CPUs have instructions to return offset within word of 

first “1” bit

The first free block number calculation:
(number of bits per word) *

(number of 0-value words) +

offset of the first 1 bit

Question: What the time cost of finding the number

of 0-value words? Why it doesn’t matter?
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Free-Space Management

◼Advantage of bit vector method: Easy to get 

contiguous files

◼Disadvantage: Bitmap requires extra space.  

◼An Example:

block size = 212 bytes

disk size = 240 bytes (1 tera bytes)

n = 240/212 = 228 bits (or 32 mega bytes)
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Linux Ext2 Disk Layout

◼Block bitmap is used by Linux Ext2 to 

manage the disk free space. 

Operating System Concepts



Southeast University11.23Operating System Concepts

Linked Free Space List on Disk

◼ Linked list (free list)

◆Cannot get 

contiguous space 

easily

◆No waste of space
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Grouping of Multiple Free Blocks

◼The first free block contains the addresses of n

other free blocks.

◼For each group, the first n-1 blocks are actually

free and the last (i.e., n-th) block contains the 

addresses of the next group.

◼ In this way, we can quickly locate free blocks.
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Address Counting of

Contiguous Free Blocks
◼We can make the list short with the following 

trick:

◆Blocks are often allocated and freed in groups

◆We can store the address of the first free block and 

the number of the following n free blocks.
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Directory Implementation

◼ Linear list of file names with pointer to the 

data blocks.

◆simple to program

◆time-consuming to execute

◼Hash Table – linear list with hash data 

structure.

◆decreases directory search time

◆collisions – situations where two file names 

hash to the same location
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File Allocation Methods

◼An allocation method refers to how disk 

blocks are allocated for files:

◼Allocation methods

◆Contiguous allocation

◆Linked allocation

◆Indexed allocation
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Contiguous Allocation of Disk Space

◼Each file occupies a set of contiguous 
blocks on the disk.

◼Advantages:

◼Simple – only starting location (block #) and 
length (number of blocks) are required.

◼Random access.
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Contiguous Allocation of Disk Space (cont.)

◼Disadvantages

◼Wasteful of space 
(recall the dynamic 
storage-allocation 
problem and
external
fragmentation).

◼Files may not be
able to grow.

External fragmentation 

happens when 

a dynamic space 

allocation method 

allocates some disk 

spaces but leaves a 

small amount of 

spaces unusable.
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Linked Allocation
◼Each file is a linked list of disk blocks: blocks may 

be scattered anywhere on the disk.

◼Advantages

◼Simple – need only starting address

◼Free-space management system – no waste of space 

◼Files can easily grow, if there are free blocks

pointerblock    =
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Linked Allocation (Cont.)

◼Disadvantages:

◼No random access

◼Each block contains a 

pointer, wasting space

◼Blocks scatter 

everywhere and a 

large number of disk 

seeks may be 

necessary

◼Reliability: what if a 

pointer is lost or 

damaged?
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Variant of Linked Allocation Method

◼ FAT (File Allocation Table) variation

◆Beginning of volume has a table, indexed by block number

◆Much like a linked list, but faster on disk and cacheable 

◆Make new block allocation simple

File-Allocation Table
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Question about FAT

Operating System Concepts

◼Given the values in the FAT, mark the block 

addresses that start a file

Busy Next

0 0 -1

1 1 6

2 1 -1

3 1 1

4 0 -1

5 1 -1

6 1 -1

7 1 2

✓

✓

✓
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Problem about FAT

Operating System Concepts

◼ Assume:

◆Disk Size = 32GB

◆Block Size = 4 kB

◼ Then,

◆Number of Blocks = 8M

◆Size of FAT table = 8B * 8M = 64MB, CAN FIT IN MEMORY

◼ However, if we assume

◆Disk Size = 4TB

◆Block Size = 4 kB

◼ Then,

◆Number of Blocks = 1Giga

◆Size of FAT table = 8B * 1G = 8GB, CANNOT FIT IN MEM
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Indexed Allocation

◼Brings all pointers together into the index block.

◼A file’s directory entry contains a pointer to its 

index block. 

◼Hence, the index block of an indexed allocation 

plays the same role as the page table.

◼ Logical view. index table
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Example of Indexed Allocation
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Indexed Allocation (cont.)

◼Support the random access

◼The indexed allocation suffers from wasted 

space. The index block may not be fully used 

(i.e., internal fragmentation).

◼The number of entries of an index table 

determines the upper bound for the size of a 

file. But the file size may exceed the bound.

◼To overcome this problem, we must extend 

the indexed allocation method.
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Indexed Allocation (cont.)

◼ Improve index allocation method for large files

◆multiple index blocks, chain them into a linked-list

◆multiple index blocks, but make them a tree just 

like the multiple-level indexed access method

◆a combination of both
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Indexed Allocation (cont.)



outer-index

index table file
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Combined Scheme:  UNIX inode

(4K Bytes per Block)
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Another Illustration of Multi-level 

Indexed Allocation in UNIX

Operating System Concepts
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Performance

◼Best method depends on file access type

◆Contiguous allocation method is great for both the 

sequential access and the random access

◼ Linked allocation method is good for sequential 

access, but not for random access

◼ Indexed allocation method is more complex

◆Good for both sequential access and random access

◆But single block access could require 2 index block 

reads and then data block read

◼ If the access type can declared at file creation 

time, then select either contiguous or linked
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Efficiency and Performance
◼Efficiency dependent on:

◆types of data kept in file’s directory entry

◆disk allocation and directory algorithms

◆In systems that implement i-nodes, reading a 

file requires two disk accesses: one for the i-

node and a second one to access the blocks.

◼Performance optimization methods

◆free-behind and read-ahead – techniques to 

optimize sequential access

◆improve PC performance by dedicating section 

of memory as virtual disk, or RAM disk

◆disk cache – separate section of main memory 

for frequently used blocks
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Free-behind and Read-ahead

◼Free-behind: removes a block from the 

buffer as soon as the next block is 

requested

◼The previous blocks are not likely to be used 

again and waste buffer space

◼E.g., in video files

◼Read-ahead: a requested block and several 

subsequent blocks are read and cached

Operating System Concepts
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Virtual Disk or RAM Disk

◼Performance is improved by having a 

section of memory set aside and treated as 

a virtual disk or RAM disk

◼average lifetime of a file on Unix is about 2 

seconds

◼most files are temporary; created by programs 

and discarded

◼Unix has elaborate caching schemes & usually 

these temporary files are never written to disk

Operating System Concepts
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Page Cache

◼A page cache caches pages rather than 

disk blocks using virtual memory techniques

◼Memory-mapped I/O uses a page cache

◼Routine I/O through

the file system uses 

the buffer(disk) cache

◆Buffer cache –

separate section of 

main memory for 

frequently used blocks

fopen()

open()

mmap()
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I/O Without a Unified Buffer Cache

There are three main reasons to use fopen instead of open.

◼ fopen() provides you with buffering IO that may turn out to be a lot faster

than what you're doing with open().

◼ fopen() does line ending translation if the file is not opened in binary mode,

which can be helpful if your program is ported to a non-Unix environment.

◼ A FILE * gives you the ability to use fscanf() and other stdio functions.

http://stackoverflow.com/questions/

1658476/c-fopen-vs-open

fopen()

open()

mmap()
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Unified Buffer Cache

◼A unified buffer cache uses the same page 

cache to cache both memory-mapped pages 

and ordinary file system I/O


