
Chapter 11: File System

Implementation

肖 卿 俊

办公室：九龙湖校区计算机楼212室

电邮：csqjxiao@seu.edu.cn

主页： https://csqjxiao.github.io/PersonalPage

电话：025-52091022

Southeast University11.2Operating System Concepts

Chapter 11: File System

Implementation

◼File System Structure

◼File System Implementation

◼Free-Space Management

◼Directory Implementation

◼Allocation Methods

◼Efficiency and Performance

◼Recovery

◼ Log-Structured File Systems

◼NFS

Southeast University11.3Operating System Concepts

File-System Structure

◼ In this chapter, “file” refers to either an

ordinary file or a directory file

◼File system resides on secondary storage

(either local disks or remote disks).

◼File structure information

◆Logical storage unit

◆Collection of related information

◼File control block (FCB)

– storage structure

consisting of information

about a file.

Southeast University11.4Operating System Concepts

Layered File System

File system is organized into layers

Kernel Modules

for File System

Kernel Modules

for Device Driver

Applications

Hardware

System

Software

Southeast University11.5

File System Layers
◼Device drivers manage I/O devices at the I/O

control layer

◆Given commands “read/write disk block 587”,

outputs low-level hardware specific commands to

hardware controller, like “read drive1, cylinder 72,

track 2, sector 10, into memory location 1060”

Southeast University11.6

File System Layers (Cont.)
◼Basic file system given command like

“retrieve block 123” translates to device driver

◆Also manages memory buffers and caches

(allocation, freeing, replacement)

✓Buffers hold data in transit

✓Caches hold frequently used data

Southeast University11.7

File System Layers (Cont.)
◼File organization module understands

files, logical address, and physical blocks

◆Translates logical block # to physical block #

◆Manages free space, disk allocation

Southeast University11.8

File System Layers (Cont.)
◼ Logical file system manages metadata

information

◆Translates file name into file number, file handle,

location by maintaining file control blocks (inodes

in Unix)

◆Directory management

◆Protection

Southeast University11.9

Logical File System
Upper layer: virtual (logical) file system

◆allows the same system call interface (the API)

to be used for different types of file systems

Lower layer: specific file system modules

Each OS with its own supported file system format (CD-ROM

is ISO 9660; Unix has UFS, FFS; Windows has FAT, FAT32,

NTFS as well as floppy, CD, DVD Blu-ray; Linux has more

than 40 types, with extended file system ext2 and ext3

leading; plus distributed file systems, etc)

New ones still arriving – ZFS, GoogleFS, Oracle ASM, FUSE

Local File System Remote File System

Southeast University11.10Operating System Concepts

Chapter 11: File System

Implementation

◼File System Structure

◼File System Implementation

◼Free-Space Management

◼Directory Implementation

◼Allocation Methods

◼Efficiency and Performance

◼Recovery

◼ Log-Structured File Systems

◼NFS

Southeast University11.11

Two kinds of Structures of File System

◼We have file system calls at the API level,

but how do we implement their functions?

◆In-memory and on-disk structures

Operating System Concepts

In-memory data structure On-disk data structure

FCB (inode)

Directories

read(fd, …)

write(fd, …)

fseek(fd, …)

fd

Southeast University11.12

On-disk Structures of File System

◼Volume Control Block (Unix: "superblock")
◆One per file system

◆Detail information about the file system

◆# of blocks, block size, free-block count/pointer, etc.

Operating System Concepts

Southeast University11.13

On-disk Structures of File System

◼File Control Block (Unix: "vnode" or "inode")
◆One per file to provide detailed information about the file

◆Permission, owner, size, data block locations, etc.

Operating System Concepts

Southeast University11.14

On-disk Structures of File System

◼Directory Node (Linux: "dentry")
◆One per directory entry (directory or file)

◆Pointer to file control block, parent, list of entries, etc.

Operating System Concepts

Southeast University11.15Operating System Concepts

In-Memory Structures of File System

◼The following figure illustrates the necessary

file system structures provided by the

operating systems.

◼Figure (a)/(b) refers to opening/reading a file

Figure (a) Figure (b)

Southeast University11.16Operating System Concepts

◆Plus buffers hold data blocks from secondary storage

◆Open returns a file handle for subsequent use

◆Data from read eventually copied to specified user

process memory address

Figure (a) Figure (b)

In-Memory Structures of File System (cont.)

Southeast University11.17

On-demand Loading of On-disk

Structures into Main Memory

Operating System Concepts

◼ Loaded to memory when needed

◆Volume control block: in memory if file system

is mounted

◆File control block: if

the file is accessed

◆Directory node: during

traversal of a file path

File

accessed

Southeast University11.18Operating System Concepts

Chapter 11: File System

Implementation

◼File System Structure

◼File System Implementation

◼Free-Space Management

◼Directory Implementation

◼Allocation Methods

◼Efficiency and Performance

◼Recovery

◼ Log-Structured File Systems

◼NFS

Southeast University11.19Operating System Concepts

Free-Space Management

◼How do we keep track of free blocks on a disk?

◼The techniques below are commonly used:
◆Bit Vector or Bit Map

◆Linked List: A free-list is maintained. When a new
block is requested, we search this list to find one.

◆Linked List + Grouping

◆Linked List + Address + Count

Platter

TrackSector

Block
What is a block on

magnetic disk?

Southeast University11.20Operating System Concepts

Bit Vector

◼Bit vector (n blocks)

…

0 1 2 n-1

bit[i] =


 1  block[i] free

0  block[i] occupied

CPUs have instructions to return offset within word of

first “1” bit

The first free block number calculation:
(number of bits per word) *

(number of 0-value words) +

offset of the first 1 bit

Question: What the time cost of finding the number

of 0-value words? Why it doesn’t matter?

Southeast University11.21Operating System Concepts

Free-Space Management

◼Advantage of bit vector method: Easy to get

contiguous files

◼Disadvantage: Bitmap requires extra space.

◼An Example:

block size = 212 bytes

disk size = 240 bytes (1 tera bytes)

n = 240/212 = 228 bits (or 32 mega bytes)

Southeast University11.22

Linux Ext2 Disk Layout

◼Block bitmap is used by Linux Ext2 to

manage the disk free space.

Operating System Concepts

Southeast University11.23Operating System Concepts

Linked Free Space List on Disk

◼ Linked list (free list)

◆Cannot get

contiguous space

easily

◆No waste of space

Southeast University11.24Operating System Concepts

Grouping of Multiple Free Blocks

◼The first free block contains the addresses of n

other free blocks.

◼For each group, the first n-1 blocks are actually

free and the last (i.e., n-th) block contains the

addresses of the next group.

◼ In this way, we can quickly locate free blocks.

Southeast University11.25Operating System Concepts

Address Counting of

Contiguous Free Blocks
◼We can make the list short with the following

trick:

◆Blocks are often allocated and freed in groups

◆We can store the address of the first free block and

the number of the following n free blocks.

Southeast University11.26Operating System Concepts

Chapter 11: File System

Implementation

◼File System Structure

◼File System Implementation

◼Free-Space Management

◼Directory Implementation

◼Allocation Methods

◼Efficiency and Performance

◼Recovery

◼ Log-Structured File Systems

◼NFS

Southeast University11.27Operating System Concepts

Directory Implementation

◼ Linear list of file names with pointer to the

data blocks.

◆simple to program

◆time-consuming to execute

◼Hash Table – linear list with hash data

structure.

◆decreases directory search time

◆collisions – situations where two file names

hash to the same location

Southeast University11.28Operating System Concepts

Southeast University11.29Operating System Concepts

Chapter 11: File System

Implementation

◼File System Structure

◼File System Implementation

◼Free-Space Management

◼Directory Implementation

◼Allocation Methods

◼Efficiency and Performance

◼Recovery

◼ Log-Structured File Systems

◼NFS

Southeast University11.30Operating System Concepts

File Allocation Methods

◼An allocation method refers to how disk

blocks are allocated for files:

◼Allocation methods

◆Contiguous allocation

◆Linked allocation

◆Indexed allocation

Southeast University11.31Operating System Concepts

Contiguous Allocation of Disk Space

◼Each file occupies a set of contiguous
blocks on the disk.

◼Advantages:

◼Simple – only starting location (block #) and
length (number of blocks) are required.

◼Random access.

Southeast University11.32Operating System Concepts

Contiguous Allocation of Disk Space (cont.)

◼Disadvantages

◼Wasteful of space
(recall the dynamic
storage-allocation
problem and
external
fragmentation).

◼Files may not be
able to grow.

External fragmentation

happens when

a dynamic space

allocation method

allocates some disk

spaces but leaves a

small amount of

spaces unusable.

Southeast University11.33Operating System Concepts

Linked Allocation
◼Each file is a linked list of disk blocks: blocks may

be scattered anywhere on the disk.

◼Advantages

◼Simple – need only starting address

◼Free-space management system – no waste of space

◼Files can easily grow, if there are free blocks

pointerblock =

Southeast University11.34Operating System Concepts

Linked Allocation (Cont.)

◼Disadvantages:

◼No random access

◼Each block contains a

pointer, wasting space

◼Blocks scatter

everywhere and a

large number of disk

seeks may be

necessary

◼Reliability: what if a

pointer is lost or

damaged?

Southeast University11.35Operating System Concepts

Variant of Linked Allocation Method

◼ FAT (File Allocation Table) variation

◆Beginning of volume has a table, indexed by block number

◆Much like a linked list, but faster on disk and cacheable

◆Make new block allocation simple

File-Allocation Table

Southeast University11.36

Question about FAT

Operating System Concepts

◼Given the values in the FAT, mark the block

addresses that start a file

Busy Next

0 0 -1

1 1 6

2 1 -1

3 1 1

4 0 -1

5 1 -1

6 1 -1

7 1 2

✓

✓

✓

Southeast University11.37

Problem about FAT

Operating System Concepts

◼ Assume:

◆Disk Size = 32GB

◆Block Size = 4 kB

◼ Then,

◆Number of Blocks = 8M

◆Size of FAT table = 8B * 8M = 64MB, CAN FIT IN MEMORY

◼ However, if we assume

◆Disk Size = 4TB

◆Block Size = 4 kB

◼ Then,

◆Number of Blocks = 1Giga

◆Size of FAT table = 8B * 1G = 8GB, CANNOT FIT IN MEM

Southeast University11.38Operating System Concepts

Indexed Allocation

◼Brings all pointers together into the index block.

◼A file’s directory entry contains a pointer to its

index block.

◼Hence, the index block of an indexed allocation

plays the same role as the page table.

◼ Logical view. index table

Southeast University11.39Operating System Concepts

Example of Indexed Allocation

Southeast University11.40Operating System Concepts

Indexed Allocation (cont.)

◼Support the random access

◼The indexed allocation suffers from wasted

space. The index block may not be fully used

(i.e., internal fragmentation).

◼The number of entries of an index table

determines the upper bound for the size of a

file. But the file size may exceed the bound.

◼To overcome this problem, we must extend

the indexed allocation method.

Southeast University11.41Operating System Concepts

Indexed Allocation (cont.)

◼ Improve index allocation method for large files

◆multiple index blocks, chain them into a linked-list

◆multiple index blocks, but make them a tree just

like the multiple-level indexed access method

◆a combination of both

Southeast University11.42Operating System Concepts

Indexed Allocation (cont.)



outer-index

index table file

Southeast University11.43Operating System Concepts

Combined Scheme: UNIX inode

(4K Bytes per Block)

Southeast University11.44

Another Illustration of Multi-level

Indexed Allocation in UNIX

Operating System Concepts

Southeast University11.45

Performance

◼Best method depends on file access type

◆Contiguous allocation method is great for both the

sequential access and the random access

◼ Linked allocation method is good for sequential

access, but not for random access

◼ Indexed allocation method is more complex

◆Good for both sequential access and random access

◆But single block access could require 2 index block

reads and then data block read

◼ If the access type can declared at file creation

time, then select either contiguous or linked

Southeast University11.46Operating System Concepts

Chapter 11: File System

Implementation

◼File System Structure

◼File System Implementation

◼Free-Space Management

◼Directory Implementation

◼Allocation Methods

◼Efficiency and Performance

◼Recovery

◼ Log-Structured File Systems

◼NFS

Southeast University11.47Operating System Concepts

Efficiency and Performance
◼Efficiency dependent on:

◆types of data kept in file’s directory entry

◆disk allocation and directory algorithms

◆In systems that implement i-nodes, reading a

file requires two disk accesses: one for the i-

node and a second one to access the blocks.

◼Performance optimization methods

◆free-behind and read-ahead – techniques to

optimize sequential access

◆improve PC performance by dedicating section

of memory as virtual disk, or RAM disk

◆disk cache – separate section of main memory

for frequently used blocks

Southeast University11.48

Free-behind and Read-ahead

◼Free-behind: removes a block from the

buffer as soon as the next block is

requested

◼The previous blocks are not likely to be used

again and waste buffer space

◼E.g., in video files

◼Read-ahead: a requested block and several

subsequent blocks are read and cached

Operating System Concepts

Southeast University11.49

Virtual Disk or RAM Disk

◼Performance is improved by having a

section of memory set aside and treated as

a virtual disk or RAM disk

◼average lifetime of a file on Unix is about 2

seconds

◼most files are temporary; created by programs

and discarded

◼Unix has elaborate caching schemes & usually

these temporary files are never written to disk

Operating System Concepts

Southeast University11.50Operating System Concepts

Page Cache

◼A page cache caches pages rather than

disk blocks using virtual memory techniques

◼Memory-mapped I/O uses a page cache

◼Routine I/O through

the file system uses

the buffer(disk) cache

◆Buffer cache –

separate section of

main memory for

frequently used blocks

fopen()

open()

mmap()

Southeast University11.51Operating System Concepts

I/O Without a Unified Buffer Cache

There are three main reasons to use fopen instead of open.

◼ fopen() provides you with buffering IO that may turn out to be a lot faster

than what you're doing with open().

◼ fopen() does line ending translation if the file is not opened in binary mode,

which can be helpful if your program is ported to a non-Unix environment.

◼ A FILE * gives you the ability to use fscanf() and other stdio functions.

http://stackoverflow.com/questions/

1658476/c-fopen-vs-open

fopen()

open()

mmap()

Southeast University11.52Operating System Concepts

Unified Buffer Cache

◼A unified buffer cache uses the same page

cache to cache both memory-mapped pages

and ordinary file system I/O

