Chapter 11: File System
Implementation

SRR

AT SRR TR ALk 2125
. csgjxiao@seu.edu.cn

S T1: https://csgjxiao.github.io/PersonalPage

L 1h: 025-52091022

-

~1le System Structure
~1le System Implementation
-ree-Space Management

Directory Implementation

m Allocation Methods

m Efficiency and Performance
B Recovery

B | og-Structured File Systems
B NFS

Operating System Concepts 11.2

Chapter 11: File System
Implementation

Southeast University l}#.{g\?

e,_ﬁk_., File-System Structure

m [n this chapter, “file” refers to either an
ordinary file or a directory file

B File system resides on secondary storage

(either local disks or remote

B File structure information
Logical storage unit

Collection of related informati

m File control block (FCB)
— storage structure
consisting of information

s RDOUL A flleE.

disks).

on

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks

R % Layered File System
. Re |

File system is organized into layers

application programs Applications

logical file system

| _ Jl Kernel Modules
flle—nrgamzaﬂ’tmn module o File System File System SyStem
Software

basic file system

v

I/O control - - device drivers
for Device Driver

Kernel Modules

v device controller

devices —
I device (e.g., hard disk)

Operating System Concepts 11.4 Southeast University

1‘»,‘{., File System Layers
B Device drivers manage I/O devices at the I/0O
control layer

¢ Given commands “read/write disk block 5877,
outputs low-level hardware specific commands to
hardware controller, like “read drivel, cylinder 72,
track 2, sector 10, into memory location 1060”

Processes

read file f, write file f, .. @o&sses) User's (process’) view of files

| File System Calls | (operation will be offset p, n bytes) | File System Calls | | File1 | | File 2 |
Watiial File System | find file info for (f, p, n) — disk block n File System | map files to disk blocks ..
Mode e Lol 1]Jl2][3]([4][s5
Software write disk block x, .. map disk block numbar file system’s view of the disk
ead disk block x, ... ut'gu P“EZ'GH' Disk Dri
* 15K Address rver - . . . '
Disk Driver (yl# rack#, [~ disk driver will know the disk geometry
[cylinderi, track#, sector#], operation code sector, elc) and map the disk blocks to disk sectors with a

Disk Contraller quite simple mapping

Disk Controller

Hardware cylinders,
. Disk tracks, [o][1] [4] Seclors
Disk cylinders, tracks, sectors sectors @ @ E \
01

Southeast University R 4d) _)QJ

EE—

1‘@{«, File System Layers (Cont.)
B Basic file system given command like
“retrieve block 123" translates to device driver

¢ Also manages memory buffers and caches
(allocation, freeing, replacement)

v'Buffers hold data in transit user process
System ca Il
v'Caches hold frequently used data
[FProcesses] 14 = open {iename, .)
read (fd, but, ni;
Logical File | search directory; find file location > et
System on disk; access file e
Layer attributes; access check; ...
filte offsel (p) and bytes (n) to readiwrite
File file_start block on disk AV S
|
- ested file b Buff h
Organization P r;q;hk bloch; oo Mapping files to blocks S
Layer
Sasic Fi [gsmng biock T / block numbers Device drivers
asic File .
System buffering of currently| gyffer
Layer mma data; Cache (can we satisfy from cache?) /O request
cac'.hlng of disk blocks I If mot, request block
isk Dri ¥
[Disk Driver] Disk controller H
11.6 Sou

1‘»_‘4‘;« File System Layers (Cont.)
B File organization module understands
files, logical address, and physical blocks

¢ Translates logical block # to physical block #
¥ Manages free space, disk allocation

—
Processes - (/J Processes \I
fd = :
] reaaﬁnoﬂe::me : \“M--___ ______J,»f User's (process’) view of files \
Logical File | search directory; find file location ?Efgﬁfm " |_File System Caills || []
System on disk; access file e
Layer attributes; access check; ... File System map files to blocks ...
B B I B e
map requested file bytes file system'’s view of the disk
to disk blocks Disk Driver |~ ~
Block size is a multiple of sector size.
Example: Sector size can be 512 bytes;
. issuing block requests; / |
E‘g:;:r'rie huﬁr;?ing n,maﬂenw Disk Controller block size can be 1024 bytes, or 4096 bytes.
Layer accessed data; | Cache | (..., \ye satisfy from cache
e cyiners, NN ..
; ; is
[Oskorver | ol ||| |Gl
i .

- A

et* File System Layers (Cont.)
O Loglcal file system manages metadata

Information

¢ Translates file name into file number, file handle,
location by maintaining file control blocks (inodes
in Unix)

¢ Directory management

¢ Protection

info about a file and its location ona

[Processes] \\ fd = open (flename,) partition (volume) starts ’
- fdf, buf, n);
Logical File | search directory; find file location ;E[fe{;rm.m " !
System on disk; access file . Pointers to FCBs
Layer attributes; access check; ...
\\ Boot Volume Directory File Control Blocks
/ file_start block on ais] ~ Control Control Structure (FCBs)
File Block Block (filename to FCB mapping)
- map requested file bytes PPINg (i.e. Inodes)
Drgf:ﬁllﬂn to disk blocks Mapping files to blocks (i.e. superblock)

Basic File

block numbers
issuing block requests;
System buffering nfnurrerlﬂy Buffer
L ayer accessed data; | Cache | (.o, \ve satisfy from cache?)
mhing of disk blocks I If nat, request block (,
[Disk Driver] Southeast University

1
1
1
1
1
1
1
1
1
1
1
1
|
i
|
B |
o |
B |
1
1
1
.

==

Local File System

G o S S S S N SN BN BN BN BN BN BN SN SN SN SN SN SN SN SN SN SN SN SN SN SN SN SN SN S S S

Chapter 11: File System
Implementation

B File System Structure

m File System Implementation

B Free-Space Management

B Directory Implementation

B Allocation Methods

m Efficiency and Performance

B Recovery

B Log-Structured File Systems
B NFS

Operating System Concepts 11.10 Southeast University

o kinds of Structures of File System

- We have file system calls at the API level,
but how do we implement their functions?

¥ In-memory and on-disk structures

In-memory data structure

Process
descriptor

stdin

stdout

stderr

per-process
file ptr array

Operating System Concepts

System-wide
Open file table

System-wide
File descriptor table

r-w pos, mode

in-memory
copy of inode
ptr to on-disk
inode

File data

r-w pos, mode

ead(fd, ...
write(fd, ...
fseek(fd, ...

..... Toos—3
pos >

On-disk data structure

Directories ‘/ l

I:ot | |_boot| bin var ete media
|Tome| sbin usr |_deu | opt

FCB (ande) Data Block Addr

File
Attributes

Block Addr
R ARV R R R TN

Decoupling meta-data
from directory entries

- On-disk Structures of File System

“® Volume Control Block (Unix: "superblock")

¥ One per file system
¥ Detail information about the file system

O # of blocks, block sj ree-block count/pointer, etc.
vol
Volume C:
Hard Disk Volume

:| Partition #1 /

Volume D:

e

:| Partition #2 [

Partition #3 \\ Volume E:

file file file file

Bl Ay

| data | data | data | data | data | data | data | data | data
block | block | block | block | block | block | block | block | block

e —

ii iii £ 77N Pen
HNEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE)

Operating System Concepts

eti- On-disk Structures of File System
L g

m File Control Block (Unix: "vhode" or "inode")
¥ One per file to provide detailed information about the file
¥ Permission, owner, size, data block locations, etc.

e

vol

Volume C:
Hard Disk Volume _+

:| Partition #1 /

Partition #2 [

Partition #3 \\ Volume E: | | _ .
H L y H

file file file file

e = S W

| data | data | data | data | data | data | data | data | data
block | block | block | block | block | block | block | block | block

Volume D:

e —

ii iii £ 77N Pen
HNEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE)

Operating System Concepts

K{,’_ On-disk Structures of File System
2 e |

m Directory Node (Linux: "dentry")

¥ One per directory entry (directory or file)
¥ Pointer to file control block, parent, list of entries, etc.

e

vol

Volume C:
Hard Disk Volume _+

:| Partition #1 /
:| Partition #2 [

Partition #3 \\ Volume E: | _
: : y ;

file file file file

Bl Ay

| data | data | data | data | data | data | data | data | data
block | block | block | block | block | block | block | block | block

Volume D:

e —

ii iii £ 77N Pen
HNEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE)

Operating System Concepts

edo Memory Structures of File System

B The following figure illustrates the necessary
file system structures provided by the
operating systems.

m Figure (a)/(b) refers to opening/reading a file

VVECIVICW: Ji*r 3 read the directory

4z update FC. B and directory : index
., kernel memor A . disk memory kernel memory disk memory
user program user program per-process
5 ¥ : \open-ﬁle table |:| .
[1] d]

Data blocks

directory structure read (index)

directory structure

: *
*
open (filena:ne)j
3

1= create a new file T . \:l
i FCB
5: a file descriptor/file handle '

2: allocate a new FCB

Figure (a) Figure (b)

Operating System Concepts 11.15 Southeast Unive E)‘#‘Q

is returned

w’mory Structures of File System (con

Plus buffers hold data blocks from secondary storage
Open returns a file handle for subsequent use

Data from read eventually copied to specified user
process memory address

WVVCIVICV: J/=
4: update FCB and directory

3: read the directory
: index

kernel memory disk memory kernel memory disk memory
user program user program \ per-process
¥ i :l open-file table D .
— N O
I '."] Data blocks
open (filename)

directory structure read (index)

" directory structure

1: create a'l_rewﬁle T > \:l
: : FCB

5: afile de.s"'crr;r)(or/jﬂe handle

2: allocate a new FCB

Figure (a) Figure (b)

FCB
Operating System Concepts 11.16 Southeast University l}#.{g\?
S

is returned

L

IS mounted

O File control block: if

vol

the file Is accessed
¥ Directory node: during

> On-demand Loading of On-disk

= E&fm.Structures into Main Memory
B Loaded to memory when needed

¥ Volume control block: in memory if file system

. \
traversal of a file path
\ \\
N =l
Data Flow] 4 4 Y +
/' File file |||| file | | file | | file
4 accessed J X\ [\
data | data | data | data | data | data | data | data | data
block | block | block | block | block | block | block | block | block

Operating System Concepts

Qﬁi (777NN P
[T T T LTI T T I T T T T T T T T T I I T T T TTT]

Chapter 11: File System
Implementation

B File System Structure

B File System Implementation

B Free-Space Management

B Directory Implementation

B Allocation Methods

m Efficiency and Performance

B Recovery

B Log-Structured File Systems
B NFS

Operating System Concepts 11.18 Southeast University

Q,QL’ Free-Space Management

m How do we keep track of free blocks on a disk?

. Blqack
What is a block on

magnetic disk? @
\/ Platter

N"——————"

B The techniques below are commonly used:
Bit Vector or Bit Map

Linked List: A free-list is maintained. When a new
block Is requested, we search this list to find one.

Linked List + Grouping

Linked List + Address + Count \rWQ

Operating System Concepts 11.19

Bit Vector

m Bit vector (n blocks)
01 2 n-1

(1 = block[i] free
bit[i] =+ _ _
0 = block][i] occupied

\

CPUs have instructions to return offset within word of
first “1” bit
The first free block number calculation:

(number of bits per word) *
(number of 0-value words) +
offset of the first 1 bit

e,_dk_., Free-Space Management

B Advantage of bit vector method: Easy to get
contiguous files

B Disadvantage: Bitmap requires extra space.
B An Example:

block size = 212 bytes

disk size = 249 bytes (1 tera bytes)

n = 240/212 = 228 bits (or 32 mega bytes)

Operating System Concepts 11.21 Southeast University l}/#.{&?
S

eﬁ%,, Linux Ext2 Disk Layout

® Block bitmap is used by Linux Ext2 to
manage the disk free space.

Boot Block Block Windows Block
sector group 1 group 2 XP group n
S
Super Describtor Block Inode Inode Data
block P Bitmap Bitmap Table Blocks

T

Operating System Concepts 11.22 Southeast University lw.{&?
S

g,diﬂ_Linked Free Space List on Disk

m Linked list (free list Se—
(free list) —
Cannot get free-space list head —_
. 0 1 2 3
con_tlguous space P
easily 4[] e[e[7
No waste of space s[] o[J 1o 11]]

12| |13 |14 |15

16| |17 |18 |19

20| |21 |22) |23

24| 125 |26 _|27| R

28| |29 |30[|31

— &

4
Operating System Concepts 11.23 Southeast University l’ r.l&/

EE—

eﬁk Grouping of Multiple Free Blocks

Hm The first free block contains the addresses of n
other free blocks.

B For each group, the first n-1 blocks are actually
free and the last (i.e., n-th) block contains the
addresses of the next group.

m |n this way, we can quickly locate free blocks.

3| 8 5!0 3 6

(3 & 8 are free) I I I

e]

(6 & 12 are fl'ee)l 6 12] 20 I

Operating System Concepts 11.24 Southeast University lmf&?
S

—ﬁ

. & Address Counting of

Contiguous Free Blocks
® \We can make the list short with the following
trick:
Blocks are often allocated and freed in groups

We can store the address of the first free block and
the number of the following n free blocks.

free block list

| [

-EIEE

disk

S
Operating System Concepts 11.25 Southeast University # 4&
S

Chapter 11: File System
Implementation

B File System Structure

B File System Implementation

B Free-Space Management

m Directory Implementation

B Allocation Methods

m Efficiency and Performance

B Recovery

B Log-Structured File Systems
B NFS

Operating System Concepts 11.26 Southeast University

g,dt_’ Directory Implementation

m Linear list of file names with pointer to the
data blocks.

simple to program
time-consuming to execute

m Hash Table — linear list with hash data
structure.

decreases directory search time

collisions — situations where two file names
hash to the same location

Operating System Concepts 11.27 Southeast University l}/#.{g\?
S

Bytes 2 14
File name
Unix directory entry | |

l-node : ‘ , find /usr/ast/mbox
Block 132 [-node 26 Block 406
[-node 6 IS JUsr is for is /usr/ast
Root directory is for fusr directory /usr/asl directory

6| o el 26 | »
Mode / Mode
size / .o size 6| +-

times times

19 | dick
30

17 | src
I-node 6 I-node 26
Looking up says that lusr/ast says that ‘usr/ast/mbox
usr yields Jusris in 1S i-node /usr/astis in is i-node
i-node 6 block 132 26 block 406 60

Operating System Concepts 11.28 Southeast University

Chapter 11: File System
Implementation

B File System Structure

B File System Implementation

B Free-Space Management

B Directory Implementation

m Allocation Methods

m Efficiency and Performance

B Recovery

B Log-Structured File Systems
B NFS

Operating System Concepts 11.29 Southeast University

e,ﬂa File Allocation Methods

® An allocation method refers to how disk
blocks are allocated for files:

m Allocation methods
Contiguous allocation

Linked allocation

Indexed allocation

Operating System Concepts 11.30 Southeast University l}#.{g\?
S

%tlguous Allocation of Disk Space

m Each file occupies a set of contiguous
blocks on the disk.

ENRENEEEEEE DA N A
.

B Advantages:

Simple — only starting location (block #) and
length (number of blocks) are required.

Random access.

Operating System Concepts 11.31 Southeast University l@_{&?
S

g;gtiiguous Allocation of Disk Space (con

B Disadvantages

Wasteful of space
(recall the dynamic
storage-allocation
problem and
external
fragmentation).

Files may not be
able to grow.

Operating System Concepts

ST ——
m_//
o] [=[] s[]
4[] s[] 6I:If7I:I
8] o[]1o[]11[]
12[|13|:|14|:|t1rs|:|
16| 17[]18[]he[]
mail

20[J21[]J22[]23[]
24 25 J26[J27[] |

 —

st

28]]29[]30[]31[]
_/

directory
file start length
count 0 2
tr 14 3
mail 19 6
list 28 4
f 6 2

External fragmentation
happens when

a dynamic space
allocation method
allocates some disk
spaces but leaves a
small amount of
spaces unusable.

11.32 Southeast University EA.{Q
= S

gc% Linked Allocation
m Each file Is a linked list of disk blocks: blocks ma
be scattered anywhere on the disk.

block = pointer

EENEEERNENE RN A E
— =
B Advantages
Simple — need only starting address

Free-space management system — no waste o
wIbes-gan easily grow, ifthere are-free-.blocks

Bt

s Linked Allocation (Cont.)

B Disadvantages:

No random access J— drectory

file start end

Each block contains a | o i 20 30 jop 9 25
pointer, wasting space | .o 57 X7
Blocks scatter 807 gl 1088 1]
everywhere and a 121807 14{ 115
large number of disk 161 177 18] 19
seeks may be 20 21 [22 28]
necessary 24[] 25[=1] 26]27[]
Reliability: what if a 28[]29[J30[]31[]
pointer is lost or ~—

Operating System Concepts 11.34 Southeast University l}/#.{&?

L{@rlant of Linked Allocation Method

m FAT (File Allocation Table) variation
Beginning of volume has a table, indexed by block number
Much like a linked list, but faster on disk and cacheable
Make new block allocation simple

directory entry

[test T --- T 217 1 Fjle-Allocation Table

name start block

0

—p 217 618

339 | end-of-file (4—

618 339 [g— |

no. of disk blocks —1 3)# ‘) g
Operating System Concepts FAT sity > ..1&

‘,"{a Question about FAT

B Given the values in the FAT, mark the block
addresses that start a file

0 0 -1
1 1 6
2 1 il
3 1 1 v
4 0 il
S 1 -1 v
6 1 -1
7 1 2

Operating System Concepts 11.36 Southeast University l@_{&?
S

?x‘{a Problem about FAT

B Assume:
Disk Size = 32GB
Block Size = 4 kB
H Then,

Number of Blocks = 8M
Size of FAT table = 8B * 8M = 64MB, CAN FIT IN MEMORY

® However, If we assume
Disk Size =4TB
Block Size = 4 kB

H Then,

Number of Blocks = 1Giga
Size of FAT table =8B * 1G = 8GB, CANNOT FIT IN}%\@ ’

Operating System Concepts 11.37 Southeast University

-

EE—

g,c% Indexed Allocation
| N

® Brings all pointers together into the index block.

m A file’s directory entry contains a pointer to its
iIndex block.

B Hence, the index block of an indexed allocation
plays the same role as the page table.

m Logical view. index table

0000

>[]
BNENEERNRNENE R NEE

Q‘dg‘aExample of Indexed Allocation

T —

directory

file
jeep

index block
19

Operating System Concepts

11.39

Southeast University

& Indexed Allocation (cont.
et (cont.

o Subport the random access

B The indexed allocation suffers from wasted
space. The index block may not be fully used
(I.e., Internal fragmentation).

B The number of entries of an index table
determines the upper bound for the size of a
file. But the file size may exceed the bound.

B To overcome this problem, we must extend
the Indexed allocation method.

Operating System Concepts 11.40 Southeast University lwl/&?
S

e% Indexed Allocation (cont.)

® Improve index allocation method for large files
'multiple index blocks, chain them into a linked-list

BNENEENNENEEE R A
AL IV

multiple index blocks, but make them a tree just
like the multiple-level indexed access method

BREREEN=REErr A E
AN AN

a combination of both *:
Operating System Concepts 11.41 Southeast University _‘ {Q

%_4:. Indexed Allocation (cont.)

B I
/ \
\ \\
™ Y
\\
\\
outer-index
index table file

Operating System Concepts 11.42 Southeast University

-

mode

owners (2)

timestamps (3)

size block

count

direct blocks

single indirect —

double indirect

—»| data

» data

— data

—| data

- — data

~+—| data

triple indirect

Combined Scheme: UNIX Inode
(4K Bytes per Block)

data

>

data

>

data

>

data

Operating System Concepts

11.43

Southeast University

"Another lllustration of Multi-level
Indexed Allocation in UNIX

QQL Performance

B Best method depends on file access type

Contiguous allocation method is great for both the
sequential access and the random access

m Linked allocation method is good for sequential
access, but not for random access

B Indexed allocation method is more complex
Good for both sequential access and random access

But single block access could require 2 index block
reads and then data block read

B |f the access type can declared at file creation
time, then select either contlguous or ImkeémQ

11.45 Southeast Uni

Chapter 11: File System
Implementation

B File System Structure

B File System Implementation

B Free-Space Management

B Directory Implementation

B Allocation Methods

m Efficiency and Performance

B Recovery

B Log-Structured File Systems
B NFS

Operating System Concepts 11.46 Southeast University

L?:f Efficiency and Performance
= ficiency dependent on:

types of data kept in file’s directory entry
disk allocation and directory algorithms

In systems that implement i-nodes, reading a
file requires two disk accesses: one for the I-
node and a second one to access the blocks.

B Performance optimization methods

free-behind and read-ahead — techniques to
optimize sequential access

Improve PC performance by dedicating section
of memory as virtual disk, or RAM disk

disk cache — separate section of mam meméW’Q

Operating Systed Southeast Uni

‘Or treadlien 1ISe0 DlOCK

?d‘w Free-behind and Read-ahead

B Free-behind: removes a block from the
buffer as soon as the next block iIs
requested

The previous blocks are not likely to be used
again and waste buffer space

E.g., In video files
B Read-ahead: a requested block and several
subsequent blocks are read and cached

Operating System Concepts 11.48 Southeast University l}#.{g\?
S

2P Virtual Disk or RAM Disk

m Performance is improved by having a
section of memory set aside and treated as
a virtual disk or RAM disk

average lifetime of a file on Unix is about 2
seconds

most files are temporary; created by programs
and discarded

Unix has elaborate caching schemes & usually
these temporary files are never written to disk

Operating System Concepts 11.49 Southeast University l}/#l/&?
S

Page Cache
Qdk J
B A page cache caches pages rather than

disk blocks using virtual memory technigues

m Memory-mapped I/O uses a page cache
mmap()

®m Routine I/O through

the file system uses
the buffer(disk) cache

Buffer cache —
separate section of
main memory for
frequently used blocks

Operating System Concepts 11.5¢0

fopen()

memory-mapped /O

I/O using

read() and write()

I

page cache

\

buffer cache

|

file system <

Op

?»Q‘LLO Without a Unified Buffer Cache

There are three main reasons to use fopen instead of open.

B fopen() provides you with buffering 10 that may turn out to be a lot faster
than what you're doing with open().

B fopen() does line ending translation if the file is not opened in binary mode,
which can be helpful if your program is ported to a non-Unix environment.

B AFILE * gives you the ability to use fscanf() and other stdio functions.

mm ap () nfshiel el pe e read(v)oaﬂiii rza*x(\?rite() fo p en ()

I

page cache

\ open()

buffer cache

http://stackoverflow.com/guestions/ I
16584 76/c-fopen-vsiopen

file system « 1}4(g
Operating System Concepts versity “ 45)

ed‘m Unified Buffer Cache

m A unified buffer cache uses the same page
cache to cache both memory-mapped pages
and ordinary file system 1/O

/O using
read() and write()

N/

buffer cache

|

file system

Operating System Concepts 11.52 Southeast University l}#.{g\?
S

memory-mapped I/O

