Chapter 2: Operating-System
Structures

EREING

NE: LT X ILRE6 5226/ E
HH IS -

&

—
p=i|

1% 025-52091022

mailto:csqjxiao@seu.edu.cn
https://csqjxiao.github.io/PersonalPage

mer 2: Operating-System Structures

B Operating System Services

B User Operating System Interface

H System Calls

Bl Types of System Calls

B System Programs

Bl Operating System Design and Implementation
B Operating System Structure

M Virtual Machines

B Operating System Generation)

B System Boot \rw \8

-

]

eﬁ{a Question about OS Services

B Name (as many as you can) system services
you expect from an operating system

Operating System Concepts 2.3 Southeast University

9,4% Question about OS Services

B Name (as many as you can) system services
you expect from an operating system

Process scheduling (or job scheduling)
Inter-process communication (IPC)

Memory management
Protection, sharing, demand paging

File system for organizing external storage
Access to I/O devices, e.g., microphones, speaker

Access to the networks m.
Southeast University }‘ﬁ, ‘ Q

Operating System Concepts 2.4

d“ Common System Components
(and Types of System Calls)

- M Process Management
B Main Memory Management
M File Management
M /O System Management
B Secondary-Storage Management
B Networking
M Protection System
B Command-Interpreter System \rw

-

E—

Q‘QF’ Process Management

B A process is a program in execution.

B The operating system is responsible for the
following activities in connection with
process management.

Process creation and deletion.
Process suspension and resumption.

Provision of mechanisms for:
Process synchronization
Process communication
Deadlock handling

Operating System Concepts 2.6 Southeast University

2. Main-Memory Management

B Memory is a large array of words or
bytes, each with its own address. Itis
a repository of quickly accessible data
shared by the CPU and I/O devices.

B Main memory is a volatile storage
device. It loses its contents in the case
of system failure.

Operating System Concepts 2.7 Southeast University M, ‘ q

-

]

e,dL_Main-Memory Management (Cont.)

B The operating system is responsible for
the following activities in connections
with memory management:

Keep track of which parts of memory are
currently being used and by whom.

Decide which processes to load when
memory space becomes available.

Allocate and reclaim memory space as
needed.

Operating System Concepts 2.8 Southeast University M, ‘ q

-

]

e,d% File Management

Bl There are different types of physical media to
persistently store information. Each of them
has its own characteristics and physical
organization

B Operating System provides a uniform logical
view of information storage, i.e., file.

M A file is a collection of related information
defined by its creator. Commonly, files
represent programs (both source and object

forms) and data. : I

Operating System Concepts 2.9

e,d%. File Management (Cont.)

B The operating system is responsible for the
following activities in connections with file
management:

File creation and deletion.
Directory creation and deletion.

Support of primitives for manipulating files and
directories, for upper-layer applications.

Mapping files onto secondary storage.
File backup on stable (nonvolatile) storage

Operating System Concepts 2.10 Southeast University }h}, ‘ Q

-

]

e,_dL_Secondary-Storage Management

B Since main memory (primary storage) is
volatile and too small to accommodate all
data and programs permanently, the
computer system must provide secondary
storage to back up main memory.

B Most modern computer systems use hard
disk drives (HDD) or solid-state drives
(SSD) as the principle on-line storage
medium, for both programs and data.

Operating System Concepts 2.11 Southeast University }h}, ‘ Q

-

]

td‘{Secondary-Storage Management

B The operating system is responsible
for the following activities in
connection with disk management:

Free space management
Storage allocation
Disk scheduling

Operating System Concepts 2.12 Southeast University

e,t{., /0 System Management

Bl The I/O subsystem consists of:
A buffer-caching system
A general device-driver interface
Drivers for specific hardware devices

Operating System Concepts 2.13 Southeast University

e,diuetworking (Distributed Systems)

M A distributed system is a collection of
processors that do not share memory or a
clock. Each processor has its own local
memory.

B The processors in the system are connected
through a communication network.

B Communication takes place using a protocol.

Operating System Concepts 2.14 Southeast University %‘, ‘ g

tdﬁl\letworking (Distributed Systems)

M A distributed system provides user access to
various system resources.
M Access to a shared resource allows:
Computation speed-up
Increased data availability
Enhanced reliability

Operating System Concepts 2.15 Southeast University

ed& Protection System

M Protection refers to a mechanism for
controlling access by programs, processes, or
users to both system and user resources.

B The protection mechanism must:

distinguish between authorized and unauthorized
usage.

specify the controls to be imposed and means for
enforcement.

Operating System Concepts 2.16 Southeast University M; ‘ Q

e,dt_a Command-Interpreter System

B Many commands are given to the operating
system by control statements which deal with:

process creation and management
/0O handling

secondary-storage management
main-memory management
file-system access

protection

networking

Operating System Concepts 2.17 Southeast University

e%ﬂmmand-lnterpreter System (Cont.)

B The program that reads and interprets control
statements is called variously:

command-line interpreter
shell (in UNIX)

Its function is to get and execute the next
command statement.

Operating System Concepts 2.18 Southeast University M, ‘ q

?,diﬁa Operating System Services

B Program execution — system capability to load a
program into memory and to run it.

M |/O operations — since user programs cannot
execute I/0O operations directly, the operating system
must provide some means to perform 1/O.

B File-system manipulation — program capability to
read, write, create, and delete files.

B Communications — exchange of information between
processes

B Error detection — ensure correct computing by
detecting errors in the CPU and memory hardware,
in 1/0 devices, or in user programs. ‘:

. d‘L Additional Operating System
— Functions

Additional functions exist not for helping the user,
but rather for ensuring efficient system
operations.

* Resource allocation — allocating resources to multiple
users or multiple jobs running at the same time.

* Accounting — keep track of and record which users
use how much and what kinds of computer resources
for account billing or for accumulating usage
statistics.

* Protection — ensuring that all access to system

resources is controlled. :
Southeast University “d g ‘ Q

Operating System Concepts 2.20

e,dt_«, System Calls

Bl System calls provide the interface between
a running program and the operating
system.

Generally available as assembly-language
instructions.

Languages defined to replace assembly
language for systems programming allow
system calls to be made directly (e.g., C, C++)

Operating System Concepts 2.21 Southeast University }h}, ‘ Q

-

]

https://en.wikipedia.org/wiki/System_call
http://docs.cs.up.ac.za/programming/asm/derick_tut/syscalls.html

?z,‘{. Operating System as Design

Word Processing
Compilers Web Browsers

Email
Web Servers

Databases

Application / Service

Portable OS Library ON)
User

System Portable OS Kernel

Software Platform support, Device Driver
Hardware x86 PowerPC ARM
PC |
802.11 a/b/g/n Grap F)

Ethernet (10/100/1000) SCsl IDE

e,_di_., Example of System Calls (1/2)

M cp is the command line tool in Linux, which
makes a copy of your files or directories.

For instance, let's say you have a file

named picture.jpg in your , and
you want to make a copy of it called picture-
02.jpg. You would run the command:

cp picture.jpg picture-02.jpg

B System call sequence to copy the contents of
one file to another file }?;
Southeast University “d) ' Q

Operating System Concepts 2.23

http://www.computerhope.com/jargon/c/currentd.htm

one file to another file

smExample of System Calls (2/2)
B System call sequence to copy the contents of

source file

p| destination file

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Create output file
if file exists, abort

Loop
Read from input file
Write to output file

Until read fails

Close output file

Terminate normally

-

d Example System Call Sequence i

Write completion message to screen

A

Operating System Concepts

2.24

Southeast University

Q’guestlon about HW/SW interaction

B What happen when you click the mouse?

IMouse clicks correspond to specific CPU
instructions

Mouse click starts up a specific program to read
spatial coordinates of mouse

It results in a CPU interrupt Google Earth

Addressing ——+— < Bus arbitration

| ———

Data —+> ~—— Coprocessor
S—

————————
Pr r p—
Bus control ~——1 TRE0090 > Status

Interrupts —| = Miscellaneous

Symbol »

for clock
signal Power is Svolts

Control B

{memory} jf‘?o_””-} \EWQ

Operating System Concepts

t“*"Why Execute a System Call from a
““Trap (or Software Interrupt)?

M Protection is achieved via dual mode (user
mode vs. kernel mode) and system call.

A system call is executed from a trap, via a
trap-handler, and ended by a return-from-trap.

user process
user mode
user process executing — calls system call return from system call (mode bit = 1)
\ /
i} 7
, V4
el trap return
. mode bit=0 mode bit = 1
kernel mode
(mode bit = 0)

execute system call

-

3

Operating System Concep's 2,28 Southeast University

https://en.wikipedia.org/wiki/System_call
http://docs.cs.up.ac.za/programming/asm/derick_tut/syscalls.html
http://www.linux.it/~rubini/docs/ksys/ksys.html

ng System Call Implementation

B A number associated with each system call

»System-call interface maintains a table indexed
according to these numbers

B The system call interface invokes intended
system call in OS kernel and returns status of

the system call and turn values
OPen()C j

mode system call interface API _ SyStem Ca” B
kernel OS RelathnShlp
mode A

| open ()

J Implementation 3
i » of open () -
. system call
Operating System Concepts ¢ “d g ‘ g

return -

¥System Call Implementation (Cont.)

The caller needs know nothing about how the

system call is implemented
Just needs to obey APl and understand what OS will
do as a result call. Most details of OS interface hidde
from programmer by API, i.e., concept of abstraction.
Managed by run-time support library (set of functions built

into libraries included with ¢ ller)
user application
open () C j

mode . AP| — System Call —
system call interface .)
kernel OS Relationship
mode A
| open ()

J Implementation 3
i » of open () -
. system call
Operating System Concepts ¢ “d g ‘ g

return -

‘An Example of Standard C Library

S50 call invoking a System Call
B C-language program invoking printf()
~library call, which calls write() system call

#include <stdio.h>
int main ()

{

printf ("Greetings"); |«

return o;

)

user

mode Y
standard C library —
kernel
mode
write ()

write ()
system call

Operating System Concepts niversity

“{‘}Jse of A System Call to Perform I/O

* resident
case n :
monitor

trap to perform |/O
monitor

- read -

®

return
to user

user
program

system call n —

Operating System Concepts 2.30 Southeast University

3 _
2 e System Calls for the Linux 2.2 Kernel
B On the left are the numbers of the system calls. This
number will be put in register Y%eax.

H On the right are the types of values to be put into the
remaining registers before calling the trap 'int 0x80'.

Bl After each syscall, an integer is returned in %eax.

%eax Name Source %ebx

1 sys_exit int

2 sys_fork

3 sys_read unsigned int

4 sys_write unsigned int

5 Sys_open const char *

6 sys_close unsigned int -
7 sys_waitpid pid t

Operating System Concepts -

%ecX %edx %esx %edi

char * 5
const char * -

int int -

unsigned int * int -

LU IvGUL iy — w)

file:////usr/src/linux/kernel/exit.c
file:////usr/src/linux/arch/i386/kernel/process.c
file:////usr/src/linux/arch/i386/kernel/process.c
http://docs.cs.up.ac.za/programming/asm/derick_tut/syscalls.html
file:////usr/src/linux/fs/read_write.c
http://docs.cs.up.ac.za/programming/asm/derick_tut/syscalls.html
file:////usr/src/linux/fs/read_write.c
http://docs.cs.up.ac.za/programming/asm/derick_tut/syscalls.html
file:////usr/src/linux/fs/open.c
file:////usr/src/linux/fs/open.c
file:////usr/src/linux/kernel/exit.c

2. System Call Parameter Passing

Bl Often, more information is required than
simply identity of desired system call

Exact type and amount of information vary
according to OS and call

B Three general methods used to pass
parameters to the OS

Simplest: pass the parameters in registers

In some cases, may be more parameters than
registers

Operating System Concepts 2.32 Southeast University M, ‘ q

-

]

sSystem Call Parameter Passing (Cont.
e A g (Cont.)

Rarameters stored in a block, or table, In
memory, and address of block passed as a
parameter in a register

This approach taken by Linux and Solaris

—> X

register

X: parameters
el } Parameter

use parameters code for
load address X /—> EEEEEE
system call 13 B

system PaSS|ng
call 13 via Table

user program

operating s

Parameters placed, or pushéd, onto the stack by
the program and popped off the stack by the
operating system

W Block and stack methods do not limit the '\
~timber or length of parameters.being pagset ;

LU A .
, P)
- _ N

]

%‘4‘;’ What is OS Structure?

B The way the OS software is organized with
respect to the applications that it serves and
the underlying hardware that it manages

¢ Monolithic kernel (FENZ. ZEHWNZ. BENZ)

¥ Microkernel system structure (%l N #%)
¥ Hybrid kernel, and Monolithic kernel with modules

Monolithic Kernel Microkernel "Hybrid kernel"
based Operating System based Operating System based Operating System

Application Application Application

System

Operating system

eeeeee

kernel . YU DN 00900 kernel

Operating System Concepts

edk., Goal of OS Structure Design

B Protection: within and across users + the OS itself

B Performance: time taken to perform the services
B Flexibility: Extensibility => Not one size fits all
B Scalability: performance™ if hardware resources™

Bl Agility: adapting to changes in application needs
and/or resource availability

B Responsiveness: reaching to the external even&ﬁg)
9

Operating System Concepts 2.35 Southeast Unive

sc®. DOS-like Structure

B MS-DOS — written to provide the most
functionality in the least space

Performance: Access to system services is like a
procedure call

Although MS-DOS has some structure, its
interfaces and levels of functionality are not well
separated

Bad Protection: an error of application can
corrupt the OS

Not divided into modules

Operating System Concepts 2.36 Southeast University M; ‘ Q

-

]

Q’JQ\LIS-DOS (Microsoft DOS) Execution

(Single Program)

B Single-tasking, single
memory space
N _SheII (command interpreter) | .
iInvoked when system booted
B Simple method to run
program
. command
Loads program into memory, interpreter
overwriting all but the kernel —
and small part of Cl e
NoO process created (a) At system
startup

B Program exit — the remaining
Cl reloads shell from disk

Operating System Concepts 2.37 Southeast University

free memory

process

command
interpreter

kernel

(b) running a
program

IN

-

-E.F{;. DOS-like Structure (cont.)

No protection

between the

applications

= and the OS,
which are in the

_ same address
Services and space

Device Drivers

Managed b
:> g y

Hardware the OS

Operating System Concepts 2.38 Southeast University

Ly g Monolithic Structure

Each App in its
own hardware
address space

OS in its own
> hardware
address space

Services and
Device Drivers

Managed b
:> g y

Hardware the OS

Operating System Concepts 2.39 Southeast University

» MPuolithic Architecture Example: UNIX

B UNIX — limited by hardware functionality, the
original UNIX operating system had limited
structuring.

B The UNIX OS consists of two separable parts

Systems programs

The kernel

Consists of everything below the system-call interface
and above the physical hardware

Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a
large number of functions for one level N\

}ﬁ 38

Operating System Concepts 2.40 Southeast University

UNIX System Structure

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

» signals terminal file system CPU scheduling

c handling swapping block /O page replacement

N character /O system system demand paging
terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

Operating System Concepts 2.41 Southeast University

3 Gain and Loss of
e,dk o
T— Monolithic Structure

M Fix the loss of protection in DOS-like structure
Unacceptable for a general-purpose OS
B Monolithic Structure
Reduce performance loss by consolidation
HmBut ...
Monolithic structure => no customization

B Need for customization

Applications of video game and computing prime
numbers may have different needs for CPU %
scheduling, file access or memory managemeRti g

Operating System Concepts 2.42 South

-

]

e&%—, Microkernel OS Structure

Communication takes place between user o
modules using IPC-based message passing Each App in its

own hardware
------ @ > address space
Each service in
emory > its own address
lanagement . 21 space
Simple abstraction

management

»Address space

Hardware »IPC §
%)
Operating System Concepts 2.43 Southeast University “ g >

-

E—

- Advantage of Microkernel-based
' Design

............. Serv'ces Exte Nnsi b| | Ity

emory
lanagement . =1

Hardware

Operating System Concepts 2.44 Southeast University

eﬂn Example of Microkernel System

Bl Apple Mach is First Generation micro-kernel
M Builds operating system above minimal kernel

Bl Kernel provides only fundamental services,
like process management, CPU scheduling,
inter-process communication, virtual memory

Maybe Software
Emulation
Another Windows another Database
BSD Unix | 05 0s System o
Tasks and IPC Virtual Scheduling Microkernel
Threads Memory
MACH

Operating System Concepts 2.45 Southeast University QA{Q

3 Pros and Cons of

“*Microkernel System Structure
B Benefits:
»Easier to extend a microkernel

Easier to port the operating system to new
architectures

More reliable (less code is running in kernel
mode)

More secure

M Detriments:
Performance overhead of user space to kernel

space communication \
Operating System Concepts 2.46 Southeast University :3‘; 9‘.1 ‘ q

e

eﬁ{a Why Performance Loss

B Border Crossing
Change in locality, e.g., memory address space
Copy data between user and system spaces

Microkernel Monolithic

Operating System Concep—M 2.47 Southeast University

vt

Question

B Based on discussion thus far

Feature DOS-like Monolithic | Microkernel

0S OS 0S
Extensibility N \
Protection \/ \/
Performance \/ \/

Operating System Concepts

2.48 Southeast University

PN

-

E—

sc®._ Hybrid Kernel Approach

B The idea behind a hybrid kernel is to have a
kernel structure similar to that of a
microkernel, but to implement that structure In
the manner of a monolithic kernel.

M In contrast to a microkernel, all (or nearly all)
operating system services in a hybrid kernel
are still in kernel space.

Operating System Concepts 2.49 Southeast University M; ‘ Q

Hybrid Kernel Example: Windows

=L NT Client-Server Structure

POSIX 0S/2
Application@ Application

}

Work-
station sseerl;/vigtre Security| | win32 || POSIX || 0S/2
service < >

W

Integral subsystems Environment subsystems

User mode

Executive Services

Virtual
IPC |[|Memory|Process|| PnP [|Power
Manager| |Manager| IManager| [Manager| [Manager

(VMM)

I /o Security

M Reference
anager|| monitor

Object Manager

Executive

Kernel mode drivers

Hardware Abstraction Layer (HAL)

Kernel mode

POSIX
application
POSIX
application

Win32
application

0S/2
application

kernel

Windows NT, FIEARMERIERS (
Windows New Technology) HIfifi, &

1993 HEH 252 1 #AF R4
o HIEETOS/2 NTHIE A .

0

PAER: RERR (SESERORER) 10, Tk (EESRREWR) [0 Sl TrEkkR
B DU, HERR. SUHER (BESRINELRER) 10
Windows 10 P T 2015%7H29A
4EB%igE: Windows 10 loT
NT 10.0
Windows Server 2016 Essentials, Standard. Datacenter 2016%9H26H
Windows Server 2019 Essentials, Standard, Datacenter 2018%F10H2A
Windows Server 2022 Essentials, Standard, Datacenter 20218 18H
AAER: RER. TR, Tl TIFIAAR
Wind n 20211085
e B DR, B, SURER F0ReH
Southeast university | 3

https://zh.wikipedia.org/wiki/%E7%BE%8E%E5%9B%BD
https://zh.wikipedia.org/wiki/%E7%BE%8E%E5%9B%BD
https://zh.wikipedia.org/wiki/%E5%BE%AE%E8%BD%AF%E5%85%AC%E5%8F%B8
https://zh.wikipedia.org/wiki/32%E4%BD%8D
https://zh.wikipedia.org/wiki/%E5%86%85%E6%A0%B8

Hybrid Kernel Example:
Mac OS X Structure

application environments
and common services

kernel

BSD

environment

Mach

Operating System Concepts

2.51

| Quartz)l Openct. I Prinicore |

Cart Core services

Core Core foundation non-GUI API...

Core OS ("Darwin")

System utilities

Kernel ("xnu")

Southeast University

Hybrid Kernel Example:
0S/2 Layer Structure

application application application
application-programming interface API extension
subsystem subsystem subsystem
system
kernel * memory management
* task dispatching
* device management
device driver device driver device driver device driver
/e pA——— /e
— | = | = | ==

Operating Systerrmpgy/en ‘Wiki ped ia_org/wi ki/OS722 Southeast University

e

B Most modern operating systems implement

kernel

Uses object-oriented approach

Eac
Eac
Eac

~=“Dynamically Loadable Modules

Monolithic Kernel with

modules

N core component is separate
N talks to the others over known interfaces
N IS loadable as needed within the kernel

B Overa

|, similar to layers but with more flexible

B Linux A BEREEMEHENZ?

https://www.zhihu.com/question/20314255 : —~ ,

Operating System Concepts 2.53 Southeast University

;du Solaris Modular Approach

M Solaris is a Unix operating system originally
developed by Sun Microsystems.

Bl Kernel type is Monolithic with dynamically
loadable modules

scheduling
device and classes
bus drivers

core Solaris
kernel loadable
system calls

STREAMS executable
modules formats

oot gsystemrggt?eas//en .wikipedia. org/W|k|/SoL%£|s operatlngSOEXE;[teijesty

miscellaneous
modules

S d

Linux is also a
modular monolithic kernel

Linux kernel map
functions

2 human
layers k.m..,SVStem “gwrocessing i memory 5 storage m?etworkmg hcriace

7 B s memory access files & directories sockets access HI char devices
user space :;‘m-limzchmh ’my’::m':dk:v Sys_execve sys_fork sys_brk access sys_socketcall e

copy_from_user Isysfs fsfexec.c sy‘-zu"n: sys mmap2 sys_open sys_socket |
interfaces - | rocriaimaps do pathJoakop S b eya_sysog
T'--.w-v sysfs_ops lirnuox_b /2t input_fo =

sna_
cdev_map socket_file_ops video_fop)

EYE Ot consale_fo
5y5_raboot s/nit_module SYs.nanosleep SY5_sync Tb_c':s

Virtual memory rtual File System —proto:

__sock_craat

5T ‘ ' '"ﬂ.fvﬂ.;ﬂv.N
4 inade |vfs_create inet_create unix) ops

. e P - memory disk controllers network controllers user peripherals

Operating

grapk ard

e,dt_a Concept of Virtualization

M Virtualization refers to the act of creating a
virtual (rather than actual) version of
something, including

hardware platform virtualization,
memory virtualization,

CPU virtualization,

storage virtualization,

network virtualization, etc.

Operating System Concepts 2.56 Southeast University

eﬁ{q Virtual Machines

B The operating system creates the illusion of
multiple processes, each executing on its own
processor with its own (virtual) memory

B A virtual machine system provides an interface
Identical to the underlying bare hardware,
creating an |IIu3|on of multiple (virtual) machines

B User Drlves P'e“’ Ba'a

Shared Hardware Resources
Operating System Concepts 2.57 Southeast Uni

cﬁlirtual Machine Implementation 1:

e . .
S Native Hypervisor
H A hypervisor or virtual machine monitor (VMM) is a
piece of computer software, firmware or hardware that

creates and runs virtual machines

processes
processes
processes processes
/ prion?é?frgcr:r;mg kernel kernel kernel
kervnel VM1 VM2 VM3
virtual-machine

o implementation

ardware

(@)

hardware

(b)

Non-virtual Machine Virtual Machines over Native VMM

https://en.wikipedia.8fg)/wiki/Hyperviggieast Unversity : - i,_, ; s

E—

Operating System Concepts

irtual Machine Implementation 2;
eCT Hosted Hypervisor

B A hosted hypervisor takes the layered approach
to its logical conclusion. It treats underlying
hardware and the host operating system kernel
as though they were all hardware.

>
~KVM
KVM converts /ﬁ?ﬁ\
Linux into a type- VISOR
1 (bare-metal)
hypervisor. KVM HARD
is part of Linux. If WARE

you’ve got Linux

2.6.20 or newer, TYP_E 1 TYPE 2
you’ve got KVM. m:rzt::;al) hosted
Bare-metal hypervisor Hosted hypervisor

Operating System Concepts 2.59 Southeast University

: *‘f\lirtual Machine Implementation 2:
— Hosted Hypervisor

B This is how it works:

Your main OS runs like usual (Windows in LiLi's
case). This OS is called "Host OS*.

A virtualization software (e.g., VirtualBox or
VMWare) will launch a second OS on top of the
first one.

The virtualization software will trick the second
OS and give him some virtual hardware.

B Each OS, no matter virtual or host, is not
aware of the other's existence. \Pw

Operating System Concepts 2.60 Southeast University

sVirtual Machine Implementation 2:
eCT Hosted Hypervisor

B The resources of the physical computer are
shared to create the virtual machines

CPU scheduling can create the appearance that
users have their own processor

Spooling and a file system can provide virtual
disk, virtual card readers, and virtual line printers

A normal user time-sharing terminal serves as
the virtual machine operator’s console

Operating System Concepts 2.61 Southeast University %‘, ‘ g

VMware Architecture

Operating System Concepts

application application application application
guest operating guest operating guest operating
system system system
(free BSD) (Windows NT) (Windows XP)
virtual CPU virtual CPU virtual CPU
virtual memory virtual memory virtual memory
virtual devices virtual devices virtual devices
virtualization layer
Y Y
host operating system
(Linux)
hardware
CPU memory I/O devices
2.62 Southeast University

e‘d'\L_’Vlrtual Machines Advantages

B The virtual-machine concept provides complete
protection of system resources since each
virtual machine is isolated from all other virtual
machines. This isolation, however, permits no
direct sharing of resources.

M A virtual-machine system is a perfect vehicle for
operating-systems research and development.
System development is done on the virtual
machine, instead of on a physical machine and
so does not disrupt normal system operation.

Operating System Concepts 2.63 Southeast University

-

1,‘d‘;ﬂ\!lrtual Machines Disadvantage

B The virtual machine concept is difficult to
implement due to the effort required to provide
an exact duplicate to the underlying machine

H Other lightweight virtualization mechanisms
are available

https://en.wikipedia.org/wiki/Virtualization

Operating System Concepts 2.64 Southeast University M, ‘ q

-

E—

sc®._ Java Virtual Machine

B Compiled Java programs are platform-neutral
bytecodes executed by a Java Virtual
Machine (JVM).

B JVM consists of
- class loader
- class verifier
- runtime interpreter
M Just-In-Time (JIT) compilers increase

performance t *
Operating System Concepts 2.65 Southeast University “ g ‘ q

-

]

gﬁgﬁ\;auiwmtlmocker Engine E R =2

java .class files

¢

class loader

'

verifier

'

java interpreter

L

host system

tem Concepts

5 t\ttgs //stackoverflow com/questions/31506618/linux- contalner vs -jvms
perating

A java program running on top
of the JVM will be a single Linux
process.

The JVM runs inside the
process, and interprets (or
compiles) the Java byte code in
your classes.

A docker container is more
heavyweight. There's the docker
daemon, the docker container,
which is actually a virtualized
Linux instance, and then your
JVM running under that. M

2.66 Southeast Uni

-

!.t{- Java Virtual Machine (Cont.)

AT (Just
n Time) w4y —
’ ﬁﬁﬁjava $% ? Java Application byte
G e A
e i
bytecodeH [1 4 | |
ZHAT IR ST
b, FHE
hotspotZ 13 i JIT Cornpiler
A AR AT “code
o A UJavaﬁE --------------

1)i' %] 1] HT{I% osr2 | Mo R Fam | omaon ! | ozsnf Mo 64
i1 £ o o i]

o
1A-32 POWER/PowerPC S/390

Operati ﬁy /JQJB U Hj‘ %EP 2.67 Southeast University

