
Chapter 3: Processes

肖 卿 俊
办公室：江宁区无线谷6号楼226办公室

电邮：csqjxiao@seu.edu.cn
主页： https://csqjxiao.github.io/PersonalPage

电话：025-52091022

mailto:csqjxiao@seu.edu.cn
https://csqjxiao.github.io/PersonalPage

Southeast University3.2Operating System Concepts

Chapter 3: Processes

nProcess Concept
nOperations and APIs on Processes
nProcess Scheduling
nCooperating Processes
n Inter-process Communication
nCommunication in Client-Server

Systems

Southeast University3.3Operating System Concepts

Process Concept
nAn operating system executes a variety of programs:

uBatch system – jobs
uTime-shared systems – user programs or tasks

nTextbook uses the terms job and process almost
interchangeably.

nQ: Why process, not program? What is a program?
nProcess: running program

uA program is lifeless, the OS
makes it running (as a process).

uA process can be viewed as a
running program with machine states.

Southeast University3.4

Loading into Memory:
From Program To Process

Operating System Concepts

Southeast University3.5Operating System Concepts

Multiple processes are loaded into
main memory

Heap is memory that
is dynamically
allocated during
process run time.

Virtualizing the Memory:
Each process has its
own address space

Stack is memory that
pushes and pops
temporal data during
function call

Code and data loaded
from executable file

Runtime memory
image of a process

Southeast University3.6

How is a process structured in
memory?

Operating System Concepts

0

max

Southeast University3.7

Process Memory Layout

Operating System Concepts

ptr points to
the memory
here

a,b, ptr

y

x

The data segment contains any global or
static variables which have a pre-defined
value and can be modified.

The BSS segment contains all global
variables and static variables that are
initialized to zero or do not have explicit
initialization in source code.

https://en.wikipedia.org/wiki/Data_segment

Southeast University3.8

A Quiz on Process Memory Layout

Operating System Concepts

//main.cpp
int a = 1;
char *p1=&a;
main()
{ int b;

char s[] = "abc";
char *p2;
char *p3 = "123456";
p1 = (char *)malloc(10);
p2 = (char *)malloc(20);

}

数据段

栈段

栈段

栈段

栈段

堆段

堆段

数据段

Southeast University3.9Operating System Concepts

Process Concept (Cont.)
nProcess – a program in execution; process execution

must progress in sequential fashion.
nThe running state of a process includes:

uMemory
üAddress space: Instructions and data.

uRegisters
üProgram counter (PC) / instruction

pointer (IP): current instruction.
üStack pointer, frame pointer:

management of stack for parameters,
local variables and return addresses.

üContents of the processor’s other registers

uI/O information
üA list of the files the process currently has open.

Southeast University3.10

Order of the function arguments in stack

Operating System Concepts

扩展基址指针寄存器(extended base
pointer) %ebp：存放一个指针，该指
针指向系统栈最上面一个栈帧的底部

%ebp

%espValue of x

Value of y

void f(int a, int b)
{
int x, y;

 x = a + b;
 y = a – b;
}

void main()
{
f(1,2);
printf("hello world");

}

void f(int a, int b) 的汇编语言代码

Southeast University3.11

Stack Layout for Function Call Chain

Operating System Concepts

main()

foo()

bar()

Southeast University3.12Operating System Concepts

Processes
The Process Model

nVirtualizing the CPU:
uBy running one process, then stopping it and running

another, and so forth.
n An Example: Multiprogramming of four programs

uConceptual model of four independent, sequential processes that
can be run in parallel, i.e., figure (b)

uOnly one program active at any instant, i.e., figures (a) and (c)

Southeast University3.13Operating System Concepts

Process State
nAs a process executes, it changes state

unew: The process is being created.
urunning: Instructions are being executed.
uwaiting: The process is waiting for some event to occur.
uready: The process is waiting to be assigned to a CPU.
uterminated: The process has finished execution.

Diagram of
Process State

Southeast University3.14

Tracing Process State

Operating System Concepts

nCPU switches from running Process0 to Process1,
and then return back to Process0

Timer interrupts due to
time slice expiration

Southeast University3.15

Discussion
n Q1: Draw on the blackboard the Diagram of Process

State

n Q2: 下列哪一种情况不会引起进程之间的切换？
A. 进程调用本程序中定义的函数进行计算

B. 进程处理I/O请求

C. 进程创建子进程并等待子进程结束

D. 产生中断

Operating System Concepts

Southeast University3.16

Data Structure
nOS is a software program, so it has some key

data structures that track the state of each process.
uProcess lists for all ready / running / waiting

processes

nAn example: xv6 kernel
utypes of information an OS needs to track

processes

Operating System Concepts

Southeast University3.17Operating System Concepts

All registers

Memory:
address space

Stack
Process state

Process ID

I/O information

Southeast University3.18Operating System Concepts

Process Control Block (PCB)
n Information associated with each process.

uProcess state
uProgram counter
uCPU registers
uCPU scheduling information
uMemory-management information
uAccounting information
uFile usage and I/O status information

Southeast University3.19Operating System Concepts

Context Switch
nWhat is a process

context?
uThe context of a

process includes
the values of CPU
registers, the
process state, the
program counter,
and other
memory/file
management
information.

Process
Context

Southeast University3.20Operating System Concepts

Context Switch (cont.)
nWhat is a context switch?

uAfter the CPU scheduler selects
a process (from the ready queue)
and before allocates CPU to it,
the CPU scheduler must
üsave the context of

the currently
running process,

üput it into a queue,
üload the context of the

selected process, and
ület it run.

CPU Switch From
Process to Process

Southeast University3.21Operating System Concepts

Context Switch (Cont.)

nWhen CPU switches to another process, the
system must save the state of the old process and
load the saved state for the new process.

nContext-switch time is overhead; the system
does no useful work while switching.

nTime dependent on hardware support.

Southeast University3.22Operating System Concepts

Chapter 3: Processes

nProcess Concept
nOperations and APIs on Processes
nProcess Scheduling
nCooperating Processes
n Inter-process Communication
nCommunication in Client-Server

Systems

Southeast University3.23Operating System Concepts

Process Creation
nParent process create children processes, which,

in turn create other processes, forming a tree of
processes.

Processes Tree on Solaris

Southeast University3.24

PID and PPID
nEvery process except the root process has a parent

process ID (PPID), PID of process that spawned it
nAn example ps dump for a macOS system is shown

here (formatted to fit the page):

Operating System Concepts

Southeast University3.25

Explanations of Useful Process Fields
nThe ps command receives different options

Operating System Concepts

Southeast University3.26

The pstree command

Operating System Concepts

% pstree -p 1 | head -15
-+= 00001 root /sbin/launchd
|--= 00057 root /usr/sbin/syslogd
|--= 00058 root /usr/libexec/UserEventAgent (System)
|--= 00061 root

/System/Library/PrivateFrameworks/Uninstall.framework/Resources/uninstalld
|--= 00062 root

/System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/FSEve
nts.framework/Versions/A/Support/fseventsd
|--= 00063 root

/Library/Frameworks/OVPNHelper.framework/Versions/Current/usr/sbin/ovpnhelper
|--= 00064 root

/System/Library/PrivateFrameworks/MediaRemote.framework/Support/mediaremoted
|--= 00066 root /Library/Application Support/CCB_HDZB_UKEY/moniter_CCB_HDZB
|--= 00068 root

/Library/Frameworks/OpenVPNConnect.framework/Versions/Current/usr/sbin/ovpnag
ent
|-+= 00069 root /usr/sbin/systemstats --daemon
| \--- 00883 root /usr/sbin/systemstats --logger-helper

/private/var/db/systemstats
|--= 00071 root /usr/libexec/configd
|--= 00072 root endpointsecurityd
|--= 00073 root /System/Library/CoreServices/powerd.bundle/powerd
|--= 00076 root /usr/libexec/remoted

Southeast University3.27Operating System Concepts

Process Creation (cont.)
nParent and child may have different styles of

sharing resources (e.g. memory address space,
open file table)
1. Parent and children share all resources.
2. Children share subset of parent’s resources.
3. Parent and child share no resources.

nExecution
1. Parent and children execute concurrently.
2. Parent waits until children terminate.

Southeast University3.28Operating System Concepts

A Typical Way of Process Creation
nParent and child have separated address spaces

uChild duplicate of parent.
uChild has a program loaded into it.

nUNIX examples
ufork system call creates new process
uexec system call used after a fork to replace the

process’ memory space with a new program.

Southeast University3.29

The fork() System Call
nThe process that is created by using the fork()

system call is an (almost) exact copy of the
calling process.
nFor parent, fork() returns

the process ID of child
nFor child, fork() returns

zero

nDiscussion:

what is the output?
Operating System Concepts

int rc = fork();
if (rc < 0) {

printf(“A");
exit(1);

} else if (rc == 0) {
printf(“B");

} else {
printf(“C");

}
return 0;

Southeast University3.30

The fork() System Call

Operating System Concepts

Guess what is the output of the above program?

Southeast University3.31

The fork() System Call

Operating System Concepts

ODD？

Southeast University3.32

The fork() System Call

Operating System Concepts

nDiscussion: What is the output if we add a loop
command before the screen print command?

Southeast University3.33

The fork() System Call

nDiscussion: why not deterministic?

Operating System Concepts

Southeast University3.34Operating System Concepts

Process Termination
nProcess executes last statement and asks the

operating system to delete it (exit).
uOutput data from child to parent (via wait).
uProcess’ resources are deallocated by OS.

nParent may terminate execution of children
processes (abort).
uChild has exceeded allocated resources.
uTask assigned to child is no longer required.
uParent is exiting.

üOperating system does not allow child to continue if its
parent terminates.

üCascading termination.

Southeast University3.35

The wait() System Call

Operating System Concepts

parent waits for child process to finish

Southeast University3.36

The exec() System Call

nThe process that is created by using the exec()
system call can be a different program.

nSome details in exec()
uIt does not create a new process; rather, it transforms

the currently running program into a different
running program.

Operating System Concepts

Southeast University3.37Operating System Concepts

The exec() System Call

Guess what is the output of the above program?

Southeast University3.38Operating System Concepts

The exec() System Call

Southeast University3.39

Review

nProcess creation APIs

ufork()

uwait()

uexec()

uWhat are the differences?

Operating System Concepts

Southeast University3.40

An initial example for fork() problem
n Calculate number of times hello is printed.

nNumber of times hello printed is equal to number
of process created.

n Total Number of Processes = 𝟐𝒏 where 𝑛 is
number of fork system calls. Here 𝑛 = 3, 2" = 8.Operating System Concepts

#include <stdio.h>
#include <sys/types.h>
int main()
{

fork(); // line 1
fork(); // line 2
fork(); // line 3
printf("hello\n");
return 0;

}

There is 1 child
process created by
line 1.

There are 2 child
processes created
by line 2.

There are 4 child processes
created by line 3.

P1

P2 P3

P7P5 P6

line 1
line 2

line 3

P4
line 2 line 3 line 3

P8

line 3

Southeast University3.41

Quiz about the fork() problem
nConsider the following C program. Guess how

many lines of output will be printed.

nThere are 𝑛 = 3 forks. The `line 3` branch of P1
is trimmed. So 2" − 1 = 7 processes are created.

Operating System Concepts

int main(int argc, char * argv[])
{

int id1, id2;
 id1 = fork(); // line 1

id2 = fork(); // line 2
if (id1 == 0 || id2 == 0) fork(); // line 3

 printf("I am %d\n", getpid());
}

P1

P2 P3

P6P4 P5

P7

id1=P2
id2=P3

id1=0
id2=P4

id1=P2
id2=0

id1=0
id2=0

id1=0
id2=0

id1=P2
id2=0

id1=0
id2=P4

line 1

line 2

line 3

line 2

line 3 line 3

line 3

Southeast University3.42

An Extended Quiz
nWhat if we use a loop with two iterations?

nThere are 𝑛 = 6 forks. The `line 3` branch of P1
is trimmed. The `line 6` branches of 7 processes
are trimmed. Each of P1-P7 spawns a 7-process
tree. So (2"−1)# = 49 processes are created.Operating System Concepts

int main(int argc, char * argv[])
{

int id1, id2;
for (int i = 0; i < 2; i++) {

id1 = fork(); // line 1,4
id2 = fork(); // line 2,5
if (id1 == 0 || id2 == 0) fork(); // 3,6

}
printf("I am %d\n", getpid());

}

P1

P2 P3

P6P4 P5

P7

id1=P2
id2=P3

id1=0
id2=P4

id1=P2
id2=0

id1=0
id2=0

id1=P8
id2=P9

id1=P2
id2=0

id1=0
id2=P4

line 1

line 2

line 3

line 2

line 3 line 3

line 3

P8
line 4

P9
line 5

line 6

Southeast University3.43Operating System Concepts

Chapter 3: Processes

nProcess Concept
nOperations and APIs on Processes
nProcess Scheduling
nCooperating Processes
n Interprocess Communication
nCommunication in Client-Server

Systems

Southeast University3.44Operating System Concepts

Process Scheduling Queues
n Job queue – set of all processes in the system.
nReady queue – set of all processes residing in

main memory, ready and waiting to execute.
nDevice queues – set of processes waiting for an

I/O device.
nProcess migration between the various queues.

Southeast University3.45Operating System Concepts

Ready Queue And Various I/O Device
Queues

Southeast University3.46Operating System Concepts

Representation of Process
Scheduling Resource

Southeast University3.47Operating System Concepts

Schedulers
nLong-term scheduler (or job scheduler) –

selects which processes should be loaded
into memory for execution.

nShort-term scheduler (or CPU scheduler) –
selects which process should be executed
next and allocates CPU.

Southeast University3.48Operating System Concepts

Schedulers (Cont.)
nShort-term scheduler is invoked very frequently

(milliseconds) Þ (must be fast).
nLong-term scheduler is invoked very infrequently

(seconds, minutes) Þ (may be slow).

Southeast University3.49Operating System Concepts

Schedulers (Cont.)
nThe long-term scheduling performs a gatekeeping

function. It decides whether there's enough memory,
or room, to allow new programs into the system.

nThe long-term scheduler controls the degree of
multiprogramming.

nShort-term scheduler is
affected by ____ processes
urunning;
uready;
ublocked;

nLong-term scheduler is
affected by __ processes
unew;
uexited;

Southeast University3.50Operating System Concepts

I/O-bound vs. CPU-bound Processes
nThe period of computation between I/O requests is

called the CPU burst.

nProcesses can be described as either:
uI/O-bound process – spends more time doing I/O than

computations, many short CPU bursts.

uCPU-bound process – spends more time doing
computations; few very long CPU bursts.

Southeast University3.51

nDiscussion: If you design a CPU scheduler, which
type of processes will you give a higher priority of
granting CPU resource? CPU-bound processes (a),
or I/O-bound processes (b)?

nWhich process should have preferred access to CPU
nWhy?Operating System Concepts

I/O-bound vs. CPU-bound Processes

Southeast University3.52Operating System Concepts

Addition of Medium-Term Scheduling

http://en.wikipedia.org/wiki/Scheduling_(computing)#Medium-term_scheduling

nThe resource needs of a process may vary during its
runtime. When the system resources become
insufficient, some processes may need to swap out

removes processes from
main memory and places
them in secondary memory

Southeast University3.53Operating System Concepts

Chapter 3: Processes

nProcess Concept
nOperations and APIs on Processes
nProcess Scheduling
n Inter-process Communication
nCommunication in Client-Server

Systems

Southeast University3.54Operating System Concepts

Cooperating Processes
n Independent process cannot affect or be affected

by the execution of another process.

nCooperating process can affect or be affected by
the execution of another process

nAdvantages of process cooperation
uInformation sharing
uComputation speed-up
uModularity
uConvenience

Southeast University3.55Operating System Concepts

A Common Cooperating Pattern:
Producer-Consumer Problem

nParadigm for cooperating processes, producer
process produces information that is consumed by
a consumer process.

nA buffer is used to hold not-yet-consumed
products (for example, for unbounded
buffer, for bounded buffer)
uunbounded-buffer places no practical limit on the size

of the buffer, e.g., a buffer on disk with large space
ubounded-buffer assumes that there is a fixed buffer

size, e.g., a buffer in main memory with limited space

Southeast University3.56Operating System Concepts

Bounded-Buffer – Share-memory Solution

item nextProduced;
while (1) {
 while (((in+1)%BUF_LEN) == out)
 ; /* do nothing */
 buffer[in] = nextProduced;
 in = (in + 1) % BUF_LEN;
}

item nextConsumed;
while (1) {
 while (in == out)

; /* do nothing */
 nextConsumed = buffer[out];

 out = (out + 1) % BUF_LEN;
}

#define BUF_LEN 10
Typedef struct {

. . .
} item;
item buffer[BUF_LEN];
int in = 0, out = 0;

Shared Data

Producer Process Consumer Process

in out

Circular queue

Southeast University3.57

Implementation of Communication
Link by Shared Memory

Operating System Concepts

CPU1 memory

Contr. Contr. Contr.

Storage

Contr.

Network

System Bus
I/O Bus

Bridge

Frame
buffer CPU2

Producer

Consumer
SharedProducer Consumer

Southeast University3.58Operating System Concepts

Interprocess Communication (IPC)
nMechanism for processes to communicate and to

synchronize their actions.

nMessage-passing system – processes communicate
with each other without resorting to shared
variables.

Southeast University3.59Operating System Concepts

Interprocess Communication (Cont.)

n IPC facility provides two operations:
usend(message) – message size fixed or variable
ureceive(message)

n If P and Q wish to communicate, they need to:
uestablish a communication link between them
uexchange messages via send/receive

n Implementation of communication link
uphysical (e.g., shared memory, hardware bus)
ulogical (e.g., logical properties)

Southeast University3.60Operating System Concepts

Implementation Questions

nHow are links established?
nCan a link be associated with more than two

processes?
nHow many links can there be between every pair

of communicating processes?
nWhat is the capacity of a link?
n Is the size of a message that the link can

accommodate fixed or variable?
n Is a link unidirectional or bi-directional?

Southeast University3.61Operating System Concepts

Direct Communication
nProcesses must name each other explicitly:

usend (P, message) – send a message to process P
ureceive(Q, message) – receive a message from process Q

nProperties of communication link
uLinks are established automatically.
uA link is associated with exactly one pair of

communicating processes.
uBetween each pair there exists exactly one link.
uThe link may be unidirectional, but is usually bi-

directional.

Southeast University3.62Operating System Concepts

Indirect Communication
nMessages are directed and received from mailboxes

(also referred to as ports).
uEach mailbox has a unique id.
uTwo proc can communicate only if they share a mailbox.

nProperties of communication link
uLink established only if processes share a common

mailbox
uA link may be associated with many processes.
uEach pair of processes may share several communication

links.
uLink may be unidirectional or bi-directional.

Southeast University3.63Operating System Concepts

Indirect Communication
nOperations

ucreate a new mailbox
usend and receive messages through mailbox
udestroy a mailbox

nPrimitives are defined as:
send(A, message) – send a message to mailbox A
receive(A, message) – receive a message from
mailbox A

Southeast University3.64Operating System Concepts

Indirect Communication
nMailbox sharing

uP1, P2, and P3 share mailbox A.
uP1, sends; P2 and P3 receive.
uWho gets the message?

nSolutions
uAllow a link to be associated with at most two processes.
uAllow only one process at a time to execute a receive

operation.
uAllow the system to select arbitrarily the receiver.

Sender is notified who the receiver was.

Southeast University3.65Operating System Concepts

Synchronization

nMessage passing may be either blocking or non-
blocking.

nBlocking is considered synchronous
nNon-blocking is considered asynchronous
n send and receive primitives may be either

blocking or non-blocking.

Southeast University3.66Operating System Concepts

Buffering

nQueue of messages attached to the link;
implemented in one of three ways.
1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous).
2. Bounded capacity – finite length of n messages

Sender must wait if link full.
3. Unbounded capacity – infinite length

Sender never blocks.

Southeast University3.67

Pipes in Unix

nUNIX pipes are implemented in a similar way,
but with the pipe() system call.
uThe output of one process is connected to an in-

kernel pipe.

uThe input of another process is connected to
that same pipe.

uE.g.,

üls | wc

Operating System Concepts

Southeast University3.68

Pipes in Unix

Operating System Concepts

/* Used to store two ends of
the pipe */
int fd[2];

/* create the pipe */
if (pipe(fd)==-1) {
 fprintf(stderr, ”error");

return 1;
}

pid = fork();

Southeast University3.69

Discussion
nWhat if the parent wants to write something to

child, while child also wants to write something
to parent?

nHints, ordinary pipes are unidirectional
Operating System Concepts

HOW?

Southeast University3.70Operating System Concepts

Chapter 3: Processes

nProcess Concept
nOperations and APIs on Processes
nProcess Scheduling
nCooperating Processes
n Inter-process Communication
nCommunication in Client-Server

Systems

Southeast University3.71Operating System Concepts

Client-Server Communication

nSockets
nRemote Procedure Calls
nRemote Method Invocation (Java)

Southeast University3.72Operating System Concepts

Sockets
nA socket is defined as an endpoint for communication
nConcatenation of IP address and port, e.g., socket

161.25.19.8:1625 is port 1625 on host 161.25.19.8
nCommunication consists between a pair of sockets.
n In the TCP/IP protocol

suite, there are two
transport-layer
protocols: TCP
(Transport Control
Protocol) and UDP
(User Datagram Protocol).

Southeast University3.73Operating System Concepts

TCP vs. UDP Sockets (1)
nTCP sits on top of the IP layer, and provides a

reliable and ordered communication channel
between applications running on networked
computers

Southeast University3.74Operating System Concepts

TCP vs. UDP Sockets (2)
nConceptually, we can imagine a TCP connection as

two pipes between two communicating applications,
one for each direction: data put into a pipe from one
end will be delivered to the other end.

Southeast University3.75Operating System Concepts

TCP vs. UDP Sockets (3)
nUDP does not provide reliability or ordered

communication, but it is lightweight with lower
overhead, and is thus good for applications that do
not require reliability or order

Southeast University3.76

Data Transmission: Under the Hood

Operating System Concepts

nTCP is duplex: Once a connection is established,
OS allocates two buffers for each end, one for
sending data (send buffer), and other for receiving
data (receive buffer)

源端socket的
receive buffer

源端socket的
send buffer

宿端socket的
send buffer

宿端socket的
receive buffer

Southeast University3.77

POSIX APIs for TCP connections
n APIs for TCP connections provide developers with

interfaces to establish, manage, and terminate TCP
communication between networked applications.

Operating System Concepts

naccept() – Accept incoming connections.
nconnect() – Initiate a connection.
nsend() / recv() – Send and receive data.
nclose() – Close the socket.

nsocket() – Create a socket.
nbind() – Bind a socket to an IP addr. and port.
nlisten() – Listen for incoming connections.

Southeast University3.78

An Example: TCP Client Program
#include <unistd.h>
#include <stdio.h>

#include <string.h>

#include <sys/socket.h>

#include <netinet/ip.h>

#include <arpa/inet.h>
int main() {

// Step 1: Create a socket
int sockfd = socket(AF_INET, SOCK_STREAM, 0);

// Step 2: Set the destination information
struct sockaddr_in dest;
memset(&dest, 0, sizeof(struct sockaddr_in));

dest.sin_family = AF_INET; // IPv4

dest.sin_addr.s_addr = inet_addr("10.0.2.69");

dest.sin_port = htons(9090);
Operating System Concepts

Southeast University3.79

An Example: TCP Client Program
// Step 3: Connect to the server
connect(sockfd, (struct sockaddr *)&dest,

sizeof(struct sockaddr_in));

// Step 4: Send data to the server
char *buffer1 = "Hello Server!\n";
char *buffer2 = "Hello Again!\n";

write(sockfd, buffer1, strlen(buffer1));

write(sockfd, buffer2, strlen(buffer2));

// Step 5: Close the connection
close(sockfd);

return 0;

}

Operating System Concepts

Southeast University3.80

An Example: TCP Server Program
#include <unistd.h>
#include <stdio.h>

#include <string.h>

#include <sys/socket.h>

#include <netinet/ip.h>

#include <arpa/inet.h>
int main()

{

int sockfd, newsockfd;

struct sockaddr_in my_addr, client_addr;

char buffer[100];
// Step 1: Create a socket
sockfd = socket(AF_INET, SOCK_STREAM, 0);

// Step 2: Bind to a port number
memset(&my_addr, 0, sizeof(struct sockaddr_in));

Operating System Concepts

Southeast University3.81

An Example: TCP Server Program
my_addr.sin_family = AF_INET;
my_addr.sin_port = htons(9090);

bind(sockfd, (struct sockaddr *)&my_addr,
sizeof(struct sockaddr_in));

// Step 3: Listen for connections
listen(sockfd, 5);

 // Step 4: Accept a connection request
 int client_len = sizeof(client_addr);

while (1) {

newsockfd = accept(sockfd, (struct sockaddr
*)&client_addr, &client_len);

if (fork() == 0) { // The child process
close (sockfd);
// Read data.

memset(buffer, 0, sizeof(buffer));

int len = read(newsockfd, buffer, 100);Operating System Concepts

Southeast University3.82

An Example: TCP Server Program
printf("Received %d bytes.\n%s\n", len,

buffer);
close (newsockfd);

return 0;

} else { // The parent process
close (newsockfd);

}
}

// Step 5: Read data from the connection
memset(buffer, 0, sizeof(buffer));

int len = read(newsockfd, buffer, 100);

printf("Received %d bytes: %s", len, buffer);
// Step 6: Close the connection
close(newsockfd); close(sockfd);

}

Operating System Concepts

Southeast University3.83Operating System Concepts

Remote Procedure Calls
nRemote procedure call (RPC) abstracts procedure

calls between processes on networked systems.

Southeast University3.84

The RPC is invoked by the client. BUT…

Operating System Concepts

nA client-side proxy, called stub, is used to
represent the actual procedure on the server.

nThe client-side stub locates the server and
marshalls the parameters.

Southeast University3.85

The RPC is invoked by the client. BUT…

Operating System Concepts

nThe server-side stub receives this message,
unpacks the marshalled parameters, and
performs the procedure on the server.

Southeast University3.86Operating System Concepts

Execution Steps of RPC

Southeast University3.87Operating System Concepts

Remote Method Invocation
nRemote Method Invocation (RMI) is a Java

mechanism similar to RPCs.

nRMI allows a Java program
on one machine to invoke a
method on a remote object.

nMarshalling Parameters

