Chapter 3: Processes

B R
NE: LT X ILRE6 5226/ E

1% 025-52091022

mailto:csqjxiao@seu.edu.cn
https://csqjxiao.github.io/PersonalPage

e,t{., Chapter 3: Processes

B Process Concept

B Operations and APIs on Processes
B Process Scheduling

B Cooperating Processes

B Inter-process Communication

B Communication in Client-Server
Systems

Operating System Concepts 3.2 Southeast University

8§

s P Process Concept

H An operating system executes a variety of programs:
Batch system — jobs -
Time-shared systems — user programs or tasks

B Textbook uses the terms job and process almost
interchangeably.

B Q: Why process, not program? What 1s guprogrmeg}q‘?

B Process: running program

A program is lifeless, the OS |

makes it running (as a process). ——

A Process can be viewed as a Esxﬁ?&ajm
mareJANING program with.machine.states. € === i

Loading into Memory:
From Program To Process

Process I~
OS Loader Main

Memory Fetch Code
Progra J De CPU
P xecution

P1 P2 bina
binary binary

Regis :4|

. JVIultiple processes are loaded into

main memory
Virtualizing the Memory:

Re |

Each process has its

own address space

0

Runtime memory
image of a process

stack

e Is memory that
pushes and pops
temporal data during

max
operating system
job 1
job 2
job 3
job 4
512K 0

Operating System Concepts

l

function call

IS memory that
_, IS dynamically

heap

data

allocated during
process run time.

text

> and loaded

3.5

from executabf%file

Southeast University %’{Q

How Is a process structured In

memory?
Main Memory e
BranaaE - tloat {4=3.0; e g]obal variables
P1

main() {
char* pe”
Z malloc(); < dynamically
allocated
variables

fool() { = functions
INt Q] ;] Gr—

%/ local Variables

Process Memory Layout

int x = 100;

int main() (High address)

{ Stack
// data stored on stack a,b, ptr——»
int a=2;
float b=2.5; v
static int y; \

ptr points to

// allocate memory on heap

int *ptr = (int *) malloc(2xsizeof (int)); the memaory Heap
here

// values 5 and 6 stored on heap

ptr[0]=5; y > BSS segment

ptr(1]=6;
X = Data segment

// deallocate memory on heap

free (ptr); Text segment

(Low address)

return 1;

. The BSS segment contains all global
The data segment contains any global or yarigbles and static variables that are

static variables which have a pre-defined initialized to zero or do not have &xplici
value and can be modified. initialization in source code. ('Y
Operating System Coneet https://en.wikipedia.org/wiki/Data_segment reastUnversiy &/

&&.Quiz on Process Memory Layout

//main.cpp
inta=1;, <«— ¥ER

char *p1=8a; <«— %iEE

main()

{ intb, <«——&E&
char s[] = "abc"; «—— B
char *p2; <—— kB
char *p3 = "123456"; <— #&E
pl = (char *)malloc(10); <«—— H:E:
p2 = (char *)malloc(20); «— g

h

Operating System Concepts 3.8

Southeast University

g,i‘ Process Concept (Cont.)

B Process — a program in execution; process execution
must progress in sequential fashion.

B The running state of a process includes:

® Memory Main Process i
v" Address space: Instructions and data. | Memory

Fetch Code

Program

¥ Registers P

binary

v Program counter (PC) / instruction
pointer (IP): current instruction.

v Stack pointer, frame pointer:
management of stack for parameters,
local variables and return addresses.

o

v" Contents of the processor’s other registers

©1/0 information
v A list of the files the process cuI;rgently has open.

Operating System Concepts Southeast University

void f (int a, int b)
{

int x, y;

X = a t+ b;

y = a — b;

voilid main ()

{
£(1,2);
printf ("hello world");
}
void f(int a, int b) YL 2w1E & 18
mov 1l 12 (%ebp), %eax
mov 1l 8 (%ebp), %Sedx
addl $edx, %eax
mov 1l Seax, —8(%ebp)

Operating System Concepts

Stack
grows

main()
stack
frame

f()
stack
frame

—

-

r of the function arguments in stack

P e LR 77 A7 75 (extended base
pointer) %ebp: fFi— 8%l %Fs
4610 2GR B TR — MR SR

(High address)

Value of b: 2

Value of a: 1

Return Address ———

Points to printf()

in main()
Previous Frame Pointer
<« o)
Value of y /oebp
Value of x

; b 1s stored in
; a 1s stored in

; X 1s stored in

3.10

Southeast University

JLowaddress) % esp

Sebp + 12
Sebp + 8

Sebp —‘ _:8‘ . —3@,

E—

*~¢£ack Layout for Function Call Chain

Stack
grows

(High address)

main() —

foo() =

bar() —

\

N

S—

main()’s Frame Pointer

foo()’s Frame Pointer

<
—
Current
«— Frame
Pointer

(Low address)

Operating System Concepts

3.11

Southeast University

main()

foo()

bar()

¥ Processes
vt

The Process Model

B Virtualizing the CPU:

By running one process, then stopping it and running
another, and so forth.

B An Example: Multiprogramming of four programs

Conceptual model of four independent, sequential processes that
can be run 1n parallel, 1.e., figure (b)

Only one program active at any instant, 1.e., figures (a) and (¢)

One program counter
— Four program counters

A Process
E switch
Y B

A¢ B Y c* DY

Process

> Ww O O
I
I

@)

Oper (a) (b) ()

Q.
8

Yoy o8 Process State

» o~ .

B As a process executes, 1t changes state
new: The process is being created.
running: Instructions are being executed.
waiting: The process 1s waiting for some event to occur.
ready: The process 1s waiting to be assigned to a CPU.
terminated: The process has finished execution.

Diagram of
Process State

admitted interrupt exit

scheduler dispatch

I/O or event completion I/O or event wait

waiting

Operat

T~

Tracing Process State

m CPU switches from running Process, to Process;,
and then return back to Process,

Time Processg Process; Notes
1 Running Ready
2 Running Ready
3 Running Ready Processg initiates I/O
4 Blocked Running Process is blocked,
5 Blocked Running so Process; runs
6 Blocked Running
7 Ready Running I/O done
8 Ready Running Process; now done
9 Running -
10 Running - Processg now done

admitted interrupt

schedquer dispatch

I/O or event completion

exit

I/O or event wait

Process
> W O O

Timer interrupts due to
time slice expiration

et

Discussion

B Ql: Draw on the blackboard the Diagram of Process

State

mQ2: ARG A= 5] R R B U) 5 ?

BERE IR

IR+

HREAS /O R
R G R R

Dy

R

Operating System Concepts

_a

j]j:ﬁ

H 8 RO AT I H

3.15

*“d‘% Data Structure

B OS 1s a software program, so 1t has some key
data structures that track the state of each process.

Process lists for all ready / running / waiting
Processes

B An example: xv6 kernel

types of information an OS needs to track
processes

Operating System Concepts 3.16 Southeast University M, ‘ g

-

]

Operating System (

// the registers xvé6 will save and restore
// to stop and subsequently restart a process
struct context {

int eip;

int esp;

int ebx;

1Nt ecx; All registers

int edx;

int esi;

int edi;

int ebp;
bi

// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE };

// the information xv6 tracks about each process
// including its register context and state Memory:

struct proc { addreSS Space

char xmem; // Start of process memory
uint sz; // Size of process memory
char xkstack; // Bottom of kernel stack Stack
// for this process
enum proc_state state; // Process state Process state
int pid; // Process ID
struct proc xparent; // Parent process
void *chan; // 1If non-zero, sleeping on chan Process ID
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files VC)infornank)n
struct inode *cwd; // Current directory :
struct context context; // Switch here to run process
struct trapframe *tf; // Trap frame for the))

// current interrupt

i

e,dt_a Process Control Block (PCB)

B Information associated with each process.

Process state ointer | Process
Program counter state
CPU registers process number

CPU scheduling information program counter

Memory-management information .
registers

Accounting information

File usage and I/O status information| memory limits
list of open files

Operating System Concepts 3.18 Southeast oniversity I

e

B What is a process
context?

@ The context of a
process includes

the values of CPU

registers, the
process state, the

program counter,

and other
memory/file
management

s dDfOrmation.

binary

Context Switch
Main Process N
Memory
— Fetch Code
i a3 CPU

Regis :4|

s _ Context Switch (cont.)
What is a context switch?

After the CPU scheduler selects
a process (from the ready queue)

and before allocates CPU to it, CPU Switch From
the CPU SChedUIer muSt process P, ngf)egijfy:tgmprocessprocess P,
save the context Of | interrupt or system call
the currently ey o~] \
running process, e
put lt lntO a queue, reload state from PCB, 1
load the context of the [—
selected process, and - idle interrupt o systern cal lexecutmg
let it run. | ~7Y .
save state into PCB,
> idle
) reload state from PCB,, J

executing U

Operating System Concepts ey ~——., _ Rl) p

*“d‘% Context Switch (Cont.)

B When CPU switches to another process, the
system must save the state of the old process and
load the saved state for the new process.

B Context-switch time 1s overhead; the system
does no useful work while switching.

B Time dependent on hardware support.

Operating System Concepts 3.21 Southeast University M, ‘ g

-

]

eﬁ{., Chapter 3: Processes

B Process Concept

B Operations and APIs on Processes
B Process Scheduling

B Cooperating Processes

B Inter-process Communication

B Communication in Client-Server
Systems

Operating System Concepts 3.22 Southeast University

K{ Process Creation
> _‘!

B Parent process create children processes, which,
in turn create other processes, forming

' * Sched
pid = 0

pageout
pid = 2

dtlogin
pid = 251

inetd
pid = 140

Xsession

el e Processes Tree on Solaris

telnetdaemon
pid = 7776

Csh
pid = 7778

sdt_shel
pid = 340

b
T

Csh
pid = 1400

Netscape emacs 1.5
pid = 7785 pid = 8105
cat / ,
Operating System C e Res == v d g ™
all == N~

>

’

Is

el

here (formatted to fit the page):

$ ps -faxcel | head -10

UuID

1
51
52

54
55

56
61
62
63

i
(OO IV, oo NoNoNoNO]

PID PPID

0

R R R R RRRPRP

Operating System Concepts

ool ol olNoNOoMONONMONe

STIME

16Feb17
16Feb17
16Feb17

16Feb17
16Feb17

16Feb17
16Feb17
16Feb17
16Feb17

TTY
??
??
??
??
??
??
??
??
??

PID and PPID

B Every process except the root process has a parent
process ID (PPID), PID of process that spawned it

B An example ps dump for a macOS system 1s shown

O OO NOONREL, O

TIME

:46.
:01.
:18.
:56.
:08.
104,
103
:07.
117

47
35
75

90
61

08

.61

72

.60

3.24

CMD F PRI NI
launchd 4004 37 0
syslogd 4004 4 ©
UserEventAgent 4004 37 0
uninstalld 4004 20 ©
kextd 4004 37 ©
fseventsd 1004004 50 0
appleeventsd 4004 4 ©
configd 400c 37 ©
powerd 4004 37 ©

Southeast University

SZ
2537628
2517212
2547704
2506256
2546132
2520544
2542188
2545392
2540644

RSS W
13372 -
1232 -
40188 -
5256 -
13244 -
6244 -
11320 -
13288 -
8016 -

A\

£CExplanations of Useful Process Fields

B The ps command receives different options

Name Type ps options Notes

PID Integer The process ID for a process

PPID Integer -f The parent process ID of a process; i.e., the PID of the process
that spawned it

UID Integer -f The ID of the user who spawned the process

Command String The name of the process

Path String -E The path of the process’s executable

Memory Integer(s) -1 The memory used by the application

CPU Numeric -0 cpu The amount of CPU consumed

Terminal String -f The ID of the terminal the process is attached to

Start Time Date -f The time the process was invoked

Operating System Concepts 3.25 Southeast University Mi&j

edL The pstree command

% pstree -p 1 head -15
-+= 00001 root /sbin/launchd
| -—= 00057 root /usr/sbin/syslogd
| --= 00058 root /usr/libexec/UserEventAgent (System)
| --= 00061 root
/System/Library/PrivateFrameworks/Uninstall. framework/Resources/uninstalld
| --= 00062 root
/System/Library/Frameworks/CoreServices. framework/Versions/A/Frameworks/FSEve
nts.framework/Versions/A/Support/fseventsd
| --= 00063 root
/Library/Frameworks/OVPNHelper. framework/Versions/Current/usr/sbin/ovpnhelper
| --= 00064 root
/System/Library/PrivateFrameworks/MediaRemote. framework/Support/mediaremoted
| --= 00066 root /Library/Application Support/CCB_HDZB UKEY/moniter CCB HDZB
| --= 00068 root
/Library/Frameworks/OpenVPNConnect. framework/Versions/Current/usr/sbin/ovpnag
ent
| -+= 00069 root /usr/sbin/systemstats --daemon
| \--- 00883 root /usr/sbin/systemstats --logger-helper
/private/var/db/systemstats
| --= 00071 root /usr/libexec/configd
| --= 00072 root endpointsecurityd
| --= 00073 root /System/Library/CoreServices/powerd.bundle/powerd

| -—= 00076 root /usr/libexec/remoted B}#« q
Operating System Concepts 3.26 Southeast University > ’6\/

id:‘;., Process Creation (cont.)

B Parent and child may have different styles of
sharing resources (e.g. memory address space,
open file table)

Parent and children share all resources.
Children share subset of parent’s resources.

Parent and child share no resources.

B Execution

Parent and children execute concurrently.

Parent waits until children terminate. :
Operating System Concepts 3.27 Southeast University M g

-

]

*»ﬂTypical Way of Process Creation

B Parent and child have separated address spaces

stack

©® Child duplicate of parent.

!

1
B UNIX examples

data

fork system call creates new process

Child has a program loaded into 1it.

exec system call used after a fork to replace the
process’ memory space with a new program.

parent \ resumes
wait >

exit() ‘M / g

-

Operating Sy

E—

calling process.

For parent, fork() returns

the process ID of child

For child, fork() returns
Zero

B Discussion:

what 1s the output?

Operating System Concepts 3.29

The fork() System Calli

B The process that 1s created by using the fork()
system call 1s an (almost) exact copy of the

int rc = fork();

if (rec < 0) {
printf (“A") ;
exit(1l);

} else if (rc == 0) {
printf (“B") ;

} else {
printf (“C") ;

}

return O;

il

-

Southeast University

E—

The fork() System Call

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <unistd.h>

4

5 int

6 main(int argc, char =argvl([])

7 {

8 printf("hello world (pid:%d)\n", (int) getpid());

9 int rc = fork();

10 if (re < 0) { // fork failed; exit

11 fprintf (stderr, "fork failed\n");

12 exit (1);

13 } else if (rc == 0) { // child (new process)

14 printf("hello, I am child (pid:%d)\n", (int) getpid());
15 } else { // parent goes down this path (main)
16 printf("hello, I am parent of %d (pid:%d)\n",

17 rc, (int) getpid());

18 }

19 return 0;

20 }

Guess what is the output of the above program?

Operating System Concepts 3.30 Southeast University

The fork() System Call

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <unistd.h>

4

5 int

6 main(int argc, char =argvl([])

7 {

8 printf("hello world (pid:%d)\n", (int) getpid());

9 int rc = fork();

10 if (rc < 0) { // fork failed; exit

11 fprintf (stderr, "fork failed\n");

12 exit (1);

13 } else if (rc == 0) { // child (new process)

14 printf("hello, I am child (pid:%d)\n", (int) getpid());
15 } else { // parent goes down this path (main)
16 printf("hello, I am parent of %d (pid:%d)\n",

17 rc, (int) getpid());

18 }

19 return 0;

20 }

prompt> ./pl

hello world (pid:29146)

hello, I am parent of 29147 (pid:29146)

hello, I am child (pid:29147) ODD?
prompt >

Operating System Concepts 3.31 Southeast University

B Discussion: What 1s the output if we add a loop
command before the screen print command?

int

The fork() System Call

main(int argc, char *argv[])

{

Operating S}}

printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) {
/] fork failed; exit
fprintf(stderr, "fork failed\n");
exit(1));
} else if (rc == 0) {
rocess)

int sum = 0;
for (int 1 = 0; 1 < 100000000; 1 ++)
sum += i:
printf("hello, I am child (pid:%d)\n", (int) getpid());
} else {

original process)

int sum = 0;

for (int 1 = 0; 1 < 100000000; 1 ++)

sum += i;

printf("hello, I am parent of %d (pid:%d)\n",
rc, (int) getpid());

}

return 0O;

*&{q The fork() System Call

Qingjuns—-MacBook-Pro:0SC3_code_cpu-api csqjxiao$./pl-2
hello world (pid:43349)

hello, I am parent of 43350 (pid:43349)

hello, I am child (pid:43350)
Qingjuns—MacBook-Pro:0SC3_code_cpu—-api csqgjxiao$./pl-2
hello world (pid:43352)

hello, I am child (pid:43353)

hello, I am parent of 43353 (pid:43352)
Qingjuns-MacBook-Pro:0SC3_code_cpu-api csqjxiao$ ||

M Discussion: why not deterministic?

Operating System Concepts 3.33 Southeast University z > i.., ‘ ,

-

E—

e,dl_., Process Termination
B Process executes last statement and asks the
operating system to delete it (exit).
' Output data from child to parent (via wait).
Process’ resources are deallocated by OS.
B Parent may terminate execution of children
processes (abort).

Child has exceeded allocated resources.
Task assigned to child 1s no longer required.

Parent 1s exiting.

Operating system does not allow child to continue if 1ts

parent terminates. -
| Cascading termination. 2\
Operating System Concepts ‘95 !

3.34 Southeast University

-

]

The wait() System Cali

parent / : > resumes
1 #include <stdio.h> » wait
2 #include <stdlib.h> \
3 #include <unistd.h> @ 1
4 #include <sys/wait.h>
5
6 int ;
7 main(int argc, char =*argv[]) child exec() —’6@
8 {
9 printf("hello world (pid:%d)\n", (int) getpid());
10 int rc = fork();
11 if (rc < 0) { // fork failed; exit
12 fprintf (stderr, "fork failed\n");
13 exit(1l);
14 } else if (rc == 0) { // child (new process)
15 printf ("hello, I am child (pid:%d)\n", (int) getpid());
16 } else { // parent goes down this path (main)
17 int wc = wait (NULL);
18 printf ("hello, I am parent of %d (wc:%d) (pid:%d)\n",
19 rc, wc, (int) getpid());
20 }
21 return 0;
2 }

orompts . /p2 parent waits for child process to finish

hello world (pid:29266)

hello, I am child (pid:29267)

hello, I am parent of 29267 (wc:29267) (pid:29266)
prompt >

Operating System Concepts 3.35 Southeast University

*‘d‘*a The exec() System Call

B The process that 1s created by using the exec()
system call can be a different program.

B Some details in exec()

It does not create a new process; rather, 1t transforms
the currently running program into a different

running program.

Operating System Concepts 3.36 Southeast University %‘, ‘ q

The exec() System Cali

~ #lncluae <stdio.n> parent / . resumes
2 #include <stdlib.h> g UGl
3 #include <unistd.h> \\\7\
4 #include <string.h>
5 #include <sys/wait.h>
6
7 int - .
8 main(int argc, char =argv([]) child m@d) emw
9 {
10 printf ("hello world (pid:%d)\n", (int) getpid());
11 int rc = fork();
12 if (rc < 0) { // fork failed; exit
13 fprintf (stderr, "fork failed\n");
14 exit(1l);
15 } else if (rc == 0) { // child (new process)
16 printf ("hello, I am child (pid:%d)\n", (int) getpid());
17 char »myargs([3];
18 myargs [0] = strdup("wc"); // program: "wc" (word count)
19 myargs[l] = strdup("p3.c"); // argument: file to count
20 myargs [2] = NULL; // marks end of array
21 execvp (myargs([0], myargs); // runs word count
2 printf ("this shouldn’t print out");
23 } else { // parent goes down this path (main)
24 int wec = wait (NULL);
25 printf ("hello, I am parent of %d (wc:%d) (pid:%d)\n",
26 rc, wc, (int) getpid());
27 }
28 return 0;
29 }

Guess what is the output of the above program?

Operating System Concepts 3.37 Southeast University

The exec() System Cali

flnclude <stdio.n> parent / . resumes
2 #include <stdlib.h> g UGl
3 #include <unistd.h> \\\7\
4 #include <string.h>
5 #include <sys/wait.h> @
6
7 int - .
8 main(int argc, char =argv([]) child m@d) emw
9 {
10 printf ("hello world (pid:%d)\n", (int) getpid());
11 int rc = fork();
12 if (rc < 0) { // fork failed; exit
13 fprintf (stderr, "fork failed\n");
14 exit(1l);
15 } else if (rc == 0) { // child (new process)
16 printf ("hello, I am child (pid:%d)\n", (int) getpid());
17 char »myargs([3];
18 myargs [0] = strdup("wc"); // program: "wc" (word count)
19 myargs[l] = strdup("p3.c"); // argument: file to count
20 myargs [2] = NULL; // marks end of array
21 execvp (myargs([0], myargs); // runs word count
2 printf ("this shouldn’t print out");
23 } else { // parent goes down this path (main)
24 int wc = wait (NULL);
25 printf ("hello, I am parent of %d (wc:%d) (pid:%d)\n",
26 rc, wc, (int) getpid());
27 }
28 return 0;

ﬁello world (pid:29383)
hello, I am child (pid:29384)
29 107 1030 p3.c
Operating System(o110, I am parent of 29384 (wc:29384) (pid:29383)

!.}{;. Review

B Process creation APIs

O fork()
O wait()
¥ exec()

©® What are the differences?

Operating System Concepts 3.39 Southeast University

n initial example for fork() problem

"M Calculate number of times hello is printed.

#include <stdio.h> There is 1 child
#tinclude <sys/types.h>
int main()

{
fork(); //line1l

fork(); //line 2
fork(); //line 3
printf("hello\n");
return O;

}
B Number of times hello printed is equal to number

of process created.

B Total Number of Processes = 2™ where n is ;
orams ppetAHYEr Of fork systemrcalls. Herenw-o== 3, 2B:=

e

process created by
line 1.

There are 2 child
processes created
by line 2.

There are 4 child processes
created by line 3.

9
9’

E—

c% Quiz about the fork() problem

B Consider the following C program. Guess how
many lines of output will be printed.

int main(int argc, char * argv[])

{
intidl, id2;
. . id1=0
id1 = fork(); // line 1 {4o=pP4
id2 = fork(); // line 2 line 2
if (id1==0 || id2 == 0) fork(); // line 3id1=0
printf("l am %d\n", getpid()); 'dzige 3

} id1=0

id2=0

B There are n = 3 forks. The "line 3" branch of P1
is trimmed. So 23 — 1 = 7 processes are credfee

5.

Operating System Concepts 3.41 Southeast University

gg% An Extended Quiz

B What if we use a loop with two 1terat10ns‘7
int main(int argc, char * argv[])

{

intidl, id2;

for(inti=0;i<2;i++){
id1 = fork(); // line 1,4 4120
id2 = fork(); // line 2,5 id2=0

f (id1==0 || id2 == 0) fork(); // 3, line3
} id2=P9

printf("l am %d\n", getpid()); line4
}

M There are n = 6 forks. The 'line 3" branch of P1
1s trimmed. The 'line 6" branches ot 7 processes
are trimmed. Each of P1-P7 spawns a 7-procgss4

ovans @080 (25 —1)% = 49 processes-are-created .;;

e&{., Chapter 3: Processes

B Process Concept

B Operations and APIs on Processes
B Process Scheduling

B Cooperating Processes

B Interprocess Communication

B Communication in Client-Server
Systems

Operating System Concepts 3.43 Southeast University

2. Process Scheduling Queues

B Job queue — set of all processes in the system.

B Ready queue — set of all processes residing in
main memory, ready and waiting to execute.

B Device queues — set of processes waiting for an
[/O device.

B Process migration between the various queues.

Operating System Concey -

ready
queue

mag
tape
unit O

mag
tape
unit 1

disk
unit O

terminal
unit O

Operating System Concepts

queue header

Queues

PCB,

head

Ready Queue And Various I/O Device

PCB,

tail

N

registers

head

tail

I}

head

tail

PCB,

1

PCB,,

registers

PCB,

head

tail

/

PCB

head

tail

\

3.45

Southeast University

Sl

-

E—

Representation of Process
Scheduling @ Resource

>

I/O queue

CPU

I/O request -

child

executes

interrupt

Operating System Concepts

Ooccurs

time slice <

expired

- .

fork a
child

wait for an

ot

interrupt

Southeast University

Sl

-

E—

eﬁ{a Schedulers

B [ong-term scheduler (or job scheduler) —
selects which processes should be loaded
into memory for execution.

B Short-term scheduler (or CPU scheduler) —
selects which process should be executed
next and allocates CPU.

Long-Term Scheduler Vs Short-term Scheduler

"""""""""""""""""""""""""""""""""

Job —— - ReadyQueue ;
Pool

| I :
Operating System Col Wait Queue ‘ ,

Schedulers (Cont.)

m Short-term scheduler is invoked very frequently
(milliseconds) = (must be fast).

B Long-term scheduler is invoked very infrequently
(seconds mmutes) — (may be slow)

-~ Schedule/
Created Dispatch Completlon
Ready

__ Priority/ -
Tlme quantum
Suspen d . e/ I)O | 1o]
|] esum compfetlon request
Wait or
Block
Suspended
Ready Suspended Resume]

N

Process completed Blocked .
Operati by I/0 but still in Suspended AfterAcademy
peraine suspended \J

e ——

id:‘;, Schedulers (Cont.)

O Thehlong-term scheduling performs a gatekeeping
function. It decides whether there's enough memory,
or room, to allow new programs into the system.

B The long-term scheduler controls the degree of
multiprogramming.

B Short-term scheduleris W Long-term scheduler is
affected by processes affected by processes

running; new;

ready; exited; ”' : :
Operating Syhl@)gtgﬁd; 3.49 Southeast University 4 5 ‘ g

KﬁO bound vs. CPU-bound Processes

B The period of computation between I/0O requests 1s
called the CPU burst.

cPU Vo cPU 1o cPU o CcPU o

— — CPU Burst

B Processes can be described as either:

[/O-bound process — spends more time doing 1/0 than
computations, many short CPU bursts.

cPu 1o gl w |2 vo g Vo

CPU-bound process — spends more time doing
computations; few very long CPU bursts.

CPU o CPU o : 7«
Operating System Concepts 3.50 Southeast University “d g ‘ ,

-

E—

tﬁO bound vs. CPU-bound Processes

B Discussion: If you design a CPU scheduler, which
type of processes will you give a higher priority of
granting CPU resource? CPU-bound processes (a),
or I/O-bound processes (b)?

(a) | — — —]

Long CPU burst \

Waiting for I/O

Short CPU burst \
I In

b) [3—11 n n mn_n | | n m
(b) J U U 1 U LI U LS U U

Time
—_—

B Which process should have preterred access

tt
B \Why?... S— EP‘WQ

Rﬁgdition of Medium-Term Scheduling

B The resource needs of a process may vary during its
runtime. When the system resources become
insufficient, some processes may need to swap out

swap in

partially executed

swapped-out processes

swap out

removes proces

main memory ar
them. in second3

ses from
d places
ry memory

g ready queue

I

» end

CPU |}

/O waiting
\ queues

i

ohtipsSerwikipedia.org/wiki/Scheduling_@emputing)#Meditkaa-iersxy scheduli

P

E—

eﬁ{., Chapter 3: Processes

B Process Concept

B Operations and APIs on Processes
B Process Scheduling

B Inter-process Communication

B Communication in Client-Server
Systems

Operating System Concepts 3.53 Southeast University

e,_d‘f., Cooperating Processes

B /ndependent process cannot affect or be affected
by the execution of another process.

B Cooperating process can affect or be affected by

the execution of another process

B Advantages of process cooperation

Information sharing
Computation speed-up
Modularity
Convenience

Operating System Concepts 3.54

Process A

M

Process B

M

Kernel

Southeast University

e,th Common Cooperating Pattern:
" Producer-Consumer Problem

B Paradigm for cooperating processes, producer
process produces information that is consumed by
a consumer process.

‘l///r .-\\ }/ \-\\\
I'\ prOducer \ { consumer)
e / A /

— ’ ——

B A buffer 1s used to hold not-yet-consumed

products (for example, §€ kafka for unbounded
buffer, g redis for bounded buffer)

unbounded-buffer places no practical limit on the size
of the buffer, e.g., a buffer on disk with large space

bounded-buffer assumes that there is a fixed buffey
a6 SHZ€0,€- €., @ buffer in majn memory with limited spRGEAS ’

E—

e*nded-Buffer — Share-memory Solution
> Yoy

#define BUF _LEN 10
Typedef struct {

} item;
item buffer[BUF LEN];
int in = 0, out =0;

Producer Process
item nextProduced;
while (1) {

while (((in+1)%BUF_LEN) == out)

; /* do nothing */
buffer[in] = nextProduced;
in=(in + 1) % BUF_LEN;

kperating System Concepts

Shared Data l

Circular queue

L]

in out

Consumer Process
item nextConsumed;
while (1) {
while (in == out)
; /* do nothing */
nextConsumed = buffer[ou

out = (out+1) % BUE_
)
Southeast University “ g

-

3.56 }

Kﬁmplementation of Communication
T Link by Shared Memory

Producer
Frame
[buffer } @Consumer

Constimer Shared
System Bus

/0O Bus

i

I I I
[Contr.} [Corﬂr.} [CoAntr.} [Comntr.}
£ >

Operating System Concepts 3.57

?ﬁ{aterprocess Communication (IPC)

B Mechanism for processes to communicate and to
synchronize their actions.

B Message-passing system — processes communicate
with each other without resorting to shared
variables.

Operating System Concepts 3.58 Southeast University M, : q

-

E—

e,_d{n.terprocess Communication (Cont.)

B [PC facility provides two operations:
send(message) — message size fixed or variable
receive(message)

W If P and O wish to communicate, they need to:
establish a communication link between them
exchange messages via send/receive

B Implementation of communication link

physical (e.g., shared memory, hardware bus)
logical (e.g., logical properties)

Operating System Concepts 3.59 Southeast University M, ‘ g

-

]

e,_d‘f., Implementation Questions

o How are links established?

B Can a link be associated with more than two
processes?

B How many links can there be between every pair
of communicating processes?

B What 1s the capacity of a link?

M [s the size of a message that the link can
accommodate fixed or variable?

M s a link unidirectional or bi-directional? *:)
Operating System Concepts 3.60 Southeast University g

-

]

&
2c®.. Direct Communication
M Processes must name each other explicitly:

send (P, message) — send a message to process P

receive((Q, message) — receive a message from process Q

B Properties of communication link
Links are established automatically.

A link 1s associated with exactly one pair of
communicating processes.

Between each pair there exists exactly one link.
The link may be unidirectional, but 1s usually bi- .

directional. \h} 8
Operating System Concepts 3.61 Southeast University “d g O

-

]

2c®.. Indirect Communication

B Messages are directed and received from mailboxes
(also referred to as ports).

Each mailbox has a unique 1d.

Two proc can communicate only if they share a mailbox.

B Properties of communication link

Link established only if processes share a common
mailbox

A link may be associated with many processes.

Each pair of processes may share several communication

links.
Link may be unidirectional or bi-directional. b%} 4
Operating System Concepts 3.62 Southeast University “d '

-

]

2c®.. Indirect Communication

B Operations
create a new mailbox
send and receive messages through mailbox

destroy a mailbox

B Primitives are defined as:
send(A4, message) — send a message to mailbox A

receive(4, message) — receive a message from
mailbox A

Operating System Concepts 3.63 Southeast University %‘, ‘ q

2c®.. Indirect Communication

B Mailbox sharing
P,, P, and P; share mailbox A.
P;, sends; P, and P; receive.

Who gets the message?

M Solutions
Allow a link to be associated with at most two processes.

Allow only one process at a time to execute a receive
operation.

Allow the system to select arbitrarily the receivers,
Sender 1s notified who the receiver was. i%} 8

Operating System Concepts 3.64 Southeast University

-

E—

T Synchronization

B Message passing may be either blocking or non-
blocking.

B Blocking 1s considered synchronous
B Non-blocking 1s considered asynchronous

B send and receive primitives may be either
blocking or non-blocking.

Operating System Concepts 3.65 Southeast University M, ‘ g

-

]

1o o Buffering

B Queue of messages attached to the link;
implemented 1n one of three ways.

Zero capacity — 0 messages
Sender must wait for receiver (rendezvous).

Bounded capacity — finite length of » messages
Sender must wait if link full.

Unbounded capacity — infinite length
Sender never blocks.

Operating System Concepts 3.66 Southeast University M, ‘ g

-

]

cet Pipes in Unix

B UNIX pipes are implemented in a similar way,
but with the pipe() system call.

The output of one process 1s connected to an in-
kernel pipe.

The input of another process 1s connected to
that same pipe.

E.g.,

Operating System Concepts 3.67 Southeast University M, ‘ q

-

E—

parent child
fd(0) fd(1) fd(0) fd(1)

S . ——
- .

if (pid = 0) { /* parent process */
/* close the unused end of the pipe */

/* Used to store two ends of

the pipe */ close (£fd[READ_END]) ;
int f£d[2];
/* write to the pipe */
/% create the pipe */ write (fd[WRITE_END], writemsg, strlen(writemsg)+1)
if (pipe(fd)==-1) {

. " " /* close the write end of the pipe */
fprintf (stderr, error") ; close (fd [WRITE_END]) ; pip

return 1; }
} else { /* child process */
/* close the unused end of the pipe */
pld = fork(); close(fd[VRITE_END]),

/* read from the pipe */
read (fd [READ_END] , read.msg, BUFFER.SIZE);
printf("read Ys",readmsg);

/* close the write end of the pipe */
close (fd [READ_END]) ;
Operating System Concepts

3.68 Southeast University

?ﬁ{a Discussion

M What 1f the parent wants to write something to
child, while child also wants to write something

to parent?

parent child

HOW?
B Hints, ordinary pipes are unidirectional

Operating System Concepts 3.69 Southeast University

e&{., Chapter 3: Processes

B Process Concept

B Operations and APIs on Processes
B Process Scheduling

B Cooperating Processes

B Inter-process Communication

B Communication in Client-Server
Systems

Operating System Concepts 3.70 Southeast University

eﬁ{q Client-Server Communication

B Sockets
B Remote Procedure Calls
B Remote Method Invocation (Java)

Operating System Concepts 3.71 Southeast University

Q’qi’ Sockets

B A socket 1s defined as an endpoint for communication

B Concatenation of IP address and port, e.g., socket
161.25.19.8:1625 1s port 1625 on host 161.25.19.8

B Communication consists between a pair of sockets.

B In the TCP/IP protocol host X \

(146.86.5.20)

suite, there are two

transport-layer
protocols: TCP
(Transport Control

Protocol) and UDP
(User Datagram Protocol).

socket
(146.86.5.2/1625)

Operating System Concepts

web server

(161.25.19.8)

socket
(161.25.19.8/80)

TCP vs. UDP Sockets (1)

B TCP sits on top of the IP layer, and provides a
reliable and ordered communication channel
between applications running on networked
computers

Sender Receiver
Sender Receiver

3 &

Operating -

g,g{.‘_ TCP vs. UDP Sockets (2)

B Conceptually, we can imagine a TCP connection as
two pipes between two communicating applications,
one for each direction: data put into a pipe from one
end will be delivered to the other end.

Receiver

Receiver

Operating -

TCP vs. UDP Sockets (3)

B UDP does not provide reliability or ordered
communication, but it 1s lightweight with lower
overhead, and is thus good for applications that do
not reauire reliabilitv or order

Receiver
Receiver

Operating -

e,dé;a Transmission: Under the Hood

B TCP 1s duplex: Once a connection 1s established,
OS allocates two buffers for each end, one for
sending data (send buffer), and other for receiving
data (receive buffer)

JE i socket] JE ssocket]
,,, receive buffer sendbuffer
Source Host — Local IP Socket on source host Remote IP
Local Port for outgoing network flow Remote Port
optionally (if local socket info available)
13- 1 2.
"""""""""""""""""""""""""""" [0 |

- Source IP ' Source Port = Network tuple Destination Port = Destination IP *

——— b e S
EY T2 :
optionally (if remote socket info available)
Remote IP Socket on destination host Local IP
. . Process
Remote Port for incoming network flow Local Port Destination Host
""""""""""""""""""""""""""""""""""" ﬁ‘iﬂ”ﬁsocketﬁﬁﬁ‘iﬂ%socketﬁﬁaﬁ{\i
Operating System Concepts - gandl buffer 376 receivesbuffet o

"POSIX APIs for TCP connections

s*for TCP connections provide developers with
interfaces to establish, manage, and terminate TCP
communication between networked applications.

Wsocket() — Create a socket. Waccept() — Accept incoming connections
mbind() — Bind a socket to an IP addr. and port. mconnect() — Initiate a connection.

Hlisten() — Listen for incoming connections. msend() / recv() — Send and receive data.
Hmclose() — Close the socket.

TCP Client Application TCP Server Application
ﬂwrite(), send(), etc. read(), recv(), etc. ﬂ
Send Buffer | Receive Buffer
I |
L 2 2 |-
11 2 1 3 Tl
i —> T
P P
3 || 2 |[1] [3] [2] [2

— >
Packet Sending order Packet Arriving order ’}#Q
PEIAN

Operating S

n Example: TCP Client Program

#include <unistd.h>

#include <stdio.h>

#include <string.h>

#include <sys/socket.h>

#include <netinet/ip.h>

#include <arpa/inet.h>

int main () {
// Step 1l: Create a socket
int sockfd = socket (AF INET, SOCK STREAM, O0);
// Step 2: Set the destination information
struct sockaddr in dest;
memset (&dest, 0, sizeof (struct sockaddr in));
dest.sin family = AF INET; // IPv4
dest.sin addr.s addr = inet addr("10.0.2.69")
dest.sin port = htons(9090);

Operating System Concepts 3.78 Southeast University

n Example: TCP Client Program

// Step 3: Connect to the server
connect (sockfd, (struct sockaddr *) &dest,

sizeof (struct sockaddr in));

// Step 4: Send data to the server

char *bufferl = "Hello Server!\n";

char *buffer2 = "Hello Again!\n";

write (sockfd, bufferl, strlen (bufferl)):;
write (sockfd, buffer?2, strlen (buffer?)):;

// Step 5: Close the connection
close (sockfd) ;

return 0O;

Operating System Concepts 3.79 Southeast University

n Example: TCP Server Program

#include <unistd.h>

#include <stdio.h>

#include <string.h>

#include <sys/socket.h>

#include <netinet/ip.h>

#include <arpa/inet.h>

int main ()

{
int sockfd, newsockfd;
struct sockaddr in my addr, client addr;
char buffer[100];
// Step 1l: Create a socket
sockfd = socket (AF INET, SOCK STREAM, 0);
// Step 2: Bind to a port number

memset (&my addr, 0, sizeof (struct sockaddr 1in))¥

Operating System Concepts 3.80 Southeast University

n Example: TCP Server Program

my addr.sin family = AF INET;
my addr.sin port = htons(9090);

bind(sockfd, (struct sockaddr *)é&my addr,
sizeof (struct sockaddr in));

// Step 3: Listen for connections
listen(sockfd, 5);
// Step 4: Accept a connection request

int client len = sizeof (client addr);
while (1) {
newsockfd = accept(sockfd, (struct sockaddr
*)&cllent addr, &client len);
if (fork() == 0) { // The child process

close (sockfd);
// Read data.

memset (buffer, 0, sizeof (buffer));

Operating System Concepts l nt l en = rea dsgﬂn SWSOC k fdgouthgglﬁmﬁeregt; f 1 O O)14@{&?

n Example: TCP Server Program

printf ("Received %d bytes.\n%s\n", len,

close (newsockfd);
return O;
} else { // The parent process

close (newsockfd);

}
// Step 5: Read data from the connection

memset (buffer, 0, sizeof (buffer)):;
int len = read(newsockfd, buffer, 100);

printf ("Received %d bytes: $s", len, buffer);

// Step 6: Close the connection

close (newsockfd); close(sockfd);

Operating System Concepts 3.82 Southeast University M{Q

g,c{q Remote Procedure Calls

B Remote procedure call (RPC) abstracts procedure
calls between processes on networked systems.

Client Machine Server Machine
IS s T e e e e e s R S e O B | L e e e A A e e e e e A e R A e R e R A
Client @ I ! Server
Return Call | : Call_Execute , Return
A : 1 A
Client Stub @ | ! Server Stub @ |
\ 4 ! I \ 4
Unpack pack - : Unpack pack
A ! : "y
RPC Runtime @ : : RPC Runtime
Y ! : , \ 4
@ Recieve « WA gsend | ! Recieve Send .
; | A A !
Call Packet @ XJ . ,
Operating System Conc Result Packet h) N

: ;% RPC is invoked by the client. BUT...

WA Client-side proxy, called stub, is used to
represent the actual procedure on the server.

B The client-side stub locates the server and
marshalls the parameters.

Client Machine

Operating System Conc

Return

A

Unpack

A

1
1
I
@ Recieve
1

Client

Client Stub

Y
pack

RPC Runtime

. Y
Wait Se

Call Packet

Server Machine

Unpack

A

Recieve

Result Packet

Server

Execute

Server Stub

RPC Runtime

» Return

pack

o

Y

,&igf RPC is invoked by the client. BUT...
o N

unpacks the marshalled parameters, and
performs the procedure on the server.

Operating System Conc

Client Machine

Return

A

Unpack

A

1
1
I
@ Recieve
1

Client

Client Stub

Y
pack

RPC Runtime

. Y
Wait Se

Call Packet

Server Machine

Unpack

A

Recieve

Result Packet

Server

Execute

Server Stub

RPC Runtime

» Return

pack

B The server-side stub receives this message,

o

Y

Operating System Concepts

Execution Steps of RPC

client

user calls kernel
to send RPC

message to
procedure X

kernel sends F

message to
matchmaker to
find port number

message

F
kernel sends

RPC

<

kernel receives
reply, passes
it to user

To: server
Port: matchmaker
Re: address

From: server

To: server
Port: port P

From: RPC
Port: P To:

Port: kernel

messages

rom: client

for RPC X

kernel places S

port Pin user To: client

RPC Port: kernel
Re: RPC X

Port: P

rom: client

contents>

client

<output>

server

matchmaker
receives
message, looks
up answer

matchmaker
replies to client
with port P

daemon
listening to
port P receives
message

daemon
processes
request and
processes send
output

?‘dta Remote Method Invocation

B Remote Method Invocation (RMI) 1s a Java
mechanism similar to RPCs.

JVM
] o JVM
program ‘eMmote Methog ,'nvocation
\. remote
object
. RMI allows a Java program val = server.someMethod(A,B) bc;olean someMethod (Object x, Object y)
implementation of someMethod
on one machine to invoke a 4|7 }
method on a remote object. K
. | A, B, someMethod |
B Marshalling Parameters :

| boolean return value|

Operating System Concepts 3.87 Southeast University l’* 71-1\\§3

