Chapter 4. Threads

H IR
: LT X 26 512267 1=

H15: 025-52091022

mailto:csqjxiao@seu.edu.cn
https://csqjxiao.github.io/PersonalPage

t*, Chapter 4: Threads

m Overview

m Multithreading Models
® Thread Libraries

B Threading Issues

m Operating System Examples \ 23

94. What is a thread?

m A thread, also known as lightweight process
(LWP), Is a basic unit of CPU execution.

m A thread has a thread ID, a program counter
(Instruction pointer), a reglster set, and a

stack. Thus, It is similar to a process has.
Threads within

user Addressspace | /A PrOCESS

stack routinel warl ()

4.3

Kﬁmgle and Multi-threaded Processes

ocess, or heavyweight process, has a
smgle thread of control after its creation.

B As more threads are created, a thread
shares with other threads in the same
process its code section, data section, and
other OS resources (e.g., files and signals).

code data files code data files

registers stack registers registers registers

stack stack stack

thread —» g 3 g 3 “4—r— thread

single-threaded multithreaded -~ & W

Operating System Concepts

.%ms shared by all threads = Items private
“ih a'process to each thread

Per process items
Address space

Per thread items
Program counter

regs.

stack

Operating S

i

Global variables Registers
Open files Stack
Child processes State
Pending alarms
Signals and signal handlers
Accounting information

\

regs. regs. regs.

shared
among
threads

stack stack stack

53 3

per-thread 9
\exec context)

Why Do We Use Threads?
Thread Usage (1)

B To simplify programs in which multiple activities go on at once.
B Performance gain, when there is substantial amounts of both

computing and 1/O.

Four score and seven
years ago, our fathers
brought forth upon this
continent a new nation:
conceived in liberty,
and dedicated to the
proposition that all
men are created equal.

Now we are engaged
in a great civil war
testing whether that

nation, or any nation
so conceived and so
dedicated, can long
endure. We are met on
a great battlefield of
that war.

We have come to
dedicate a portion of
that field as a final
resting place for those
who here gave their

lives that this nation
might live. It is
altogether fitting and
proper that we should
o this.

But, in a largersense,
we cannot dedicate, we
cannot consecrate we
cannot hallow this
gound. The bave
men, living and dead,

who stiuggled here
have consecrated it, far
above our poor power|
1o add or detract. The
world will little note,
mor long remember,
what we say here, but
it can never forget
whatthey did here.

1t is for us the living,
mther, to be dedicated

here to the unfinished
work which they who
fought here have ths
far so nobly advanced.
1t is mther for us to be
here dedicated to the
great task remaining
before s, that from
these honored dead we
take increased devotion
to that cawse for which

they gave the last full
measore of devotion,
that we here highly
resolve that these dead
shall not have died in
vain that this nation,
under God, shall have
a new birth of freedom
and that government of
the people by the
people, for the peaple

(&

~"

View

odel

Keyboard

Kernel

D

Operating System Concep

A word processor with three thread

, MVC paradigm

isk

Why Do We Use Threads?
e 4 Thread Usage (2)

B THTTPERMH M W Es AIWeb ik 5525 22 H.1d 2
2) s [A) DR ik BT) Hi 5% s 35— E oK
X3 IR 55 s BRI B X NG 3K S5 AT AT
T s TR AL S I T YR B EE N 2 (N YR B 22 A7
), YRR HX AT, RARINEREHF

Web server process
]
EFm 2EITGT get/p

3EREN IR AR

Dispatcher thread
1 FREUEREE
2};{%%* za ' Worker thread > SL;sai re

Q 3.0 A Ay
<)%/E:‘> Response | | Web page cache

http://www.baidu.com | -
-

¥
I
[

html+css+js+data Kernel

Kernel
TS BENS TS BERE—ATP By

I
i 55511 r o >
Network 1 A
HRORROE Send Data (KB) connection 7 LA

DNS3t ¥aii®iE YHGHHTTPIER BES—FH BUEE—7FDH m u Itith E@ad“@d We b

Why Do We Use Threads?

¢ Thread Usage (3)
® Rough outline of code
for previous slide s | o NS

(a) Dispatcher thread
(b) Worker thread
Note: An Event-Driven

Framework
while (TRUE) { while (TRUE) {
get_next_request{&buf); wait_for_work(&buf)
handoff_work(&buf); look _for_page_in_cache(&buf, &page),
} if (page_not_in_cache(&page)
read_page_from_disk(&buf, &page);
return_page(&page); P
} L)
. @ o) R

*‘{a Benefits

B Responsiveness

B Resource Sharing
® Economy

m Utilization of MP Architectures

a) _
e £
Operating System Concepts 4.9 Southeast University l “ s..a 9

Yo

Economy for Creation

B Compare timing of fork() and pthread create()

Timings reflect 50,000 process/thread creations,
were performed with the time utility, and units are
In seconds, no optimization flags.

fork()
real
AMD 2.4 GHz Opteron 41.07
(8cpus/node)

IBM 1.9 GHz POWER5 64.24
p5-575 (8cpus/node)

IBM 1.5 GHz POWER4 104.05
(8cpus/node)

INTEL 2.4 GHz Xeon (2 54.95
cpus/node)

INTEL 1.4 GHz 54.54
ltanium2 (4
cpus/node)

Platform

Operating Systenm Coricepts

sys
60.08

30.78

48.64

1.54

1.07

4.10

9.01

27.68

47.21

20.78

22.22

pthread create()

real

0.66

1.75

2.01

1.64

2.03

user

0.19

0.69

1.00

0.67

1.26

sys

0.43

1.10

1.52

0.90

http://www.cnblogs.com/mywolrd/archive/2009/02/04/1930708.html

eﬁ{«Economy for Context

B Process (notes: Process
Control Block in OS Kernel)

B Light-weight Process
and Kernel Threads

B User Threads

Operating System Concepts 4.11

Switching

Lower
Cost In
Creation
and
Context
Switching

. o
/ &
Southeast University l “ s 3 : 9

o 4 User Threads
B Thread management done by user-level
threads library

Context switching of threads In the same
process is done in user mode

B Examples

- POSIX Pthreads (see scope parameter of pthread create:
PTHREAD SCOPE_PROCESS or PTHREAD SCOPE_SYSTEM)

- Mach C-threads
- Solaris Ul-threads

Operating Systein Conzepis VN e Southeast University ﬂ)1/ O

http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html
http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html

gd‘\.’ User Threads (Cont.)

m A user-level thread library provides all support
for thread creation, termination, joining, and

scheduling s Thread
r \\ /

= (0

=

—

Kernel
space Kernel
X

/ \

Run-time Thread Process ”
system table table N o
~Auser-level threads package M@g

4.13 Southeast Universi ty

e,ﬁEros and Cons of User Threads

m User threads are supported at the user level.
The kernel Is not aware of user threads.

Operat

ing System Concepts 4.14 Southeast University

Because there Is no kernel intervention, user
threads are usually more efficient.

Unfortunately, since the kernel only recognizes
the contammgt(process (of the threads), If one
thread Is blocked, each other threads of the
same process are also blocked since the
containing process is blocked.

Question: Can two user threads in a same
process run simultaneously on two dn‘fer
CPU cores?

Yo Kernel Threads

B Supported by the Kernel

B Examples
- Windows 95/98/NT/2000
- Solaris
- True64 UNIX
- BeOS
- Linux and POSIX Thread

e,_dk_., Kernel Threads (Cont.)

m Kernel threads are directly supported by the
kernel. The kernel does thread creation,
termination, joining, and scheduling in kernel
space.

m Kernel threads are usually slower than the user
threads.

m However, blocking one thread will not cause
other threads of the same process to block. The
kernel simply runs other threads.

schedule threads on different processors

Operatin ing System Concepts 4.16 Southeast University

® |[n a multiprocessor environment, the kernel ca
5

-

e,d@plementing Threads in the Kernel

Process Thread
Kernel
—
Process Thread
table table

A threads package managed by the kernel
(Note: POSIX Pthreads library supports

the creation of kernel threads) M%

Operating Sysiem Concepts | Seirtheast Universily [

http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html

t*, Chapter 4: Threads

m Overview

m Multithreading Models
B Threading Issues

® Windows XP Threads
B Linux Threads

m Java Threads

m Pthreads

m \Windows Threads API \ 23

eﬁ{, Multithreading Models

® Many-to-One
® One-to-One

® Many-to-Many

-) _
: - &
Operating System Concepts 4.19 Southeast University MO ,

s Many-to-One

® Many user-level threads mapped to a single
kernel thread. % g

<+ user thread

<4— kernel thread

m Used on systems that do not support k
threads. e:\ﬁj%g

Operating System Concepts 420 Southeast Universit

ed‘*a Many-to-One Model (Cont.)

A
Scheduler

Process -—"'Pmcessj ‘ Process”‘uk Process

thread thread thread thread
scheduler scheduler scheduler scheduler

threads threads threads threads
SER

Operating System Concepts 4.21 Southeast University

&
Yo One-to-One
B Each user-level thread maps to kernel thread

g ; ; ; <4+—— yser thread
@ é @4— kernel thread

B Examples

- Windows 95/98/NT/2000 \574 223
Operating Sﬁtefgﬁslz 4.22 Southeast Un iversity L g

One-to-one Model (Cont.)

FoEm

Scheduler

.-“_'5"?;:'// NN :\::\: ‘

—
e S
— it ~ S

Operating System Concepts 4.23 Southeast University

3 Many-to-Many Model
*'mbws many user level threads to be mapped

to many kernel threads.

m Allows the operating system to create a
sufficient number of kernel threads.

N

“4— kernel thread

® Windows NT/2000 with ThreadFiber pack?ﬁ%
‘M-Selars 2 420 SouheastUnversi

?d‘a Many-to-Many Model (Cont.)

OS
Scheduler
e TR
R X =
/,v"/" /i \\\\\ “\\
Process - ~ Process ’ % % Process -a,_Process
thread thread thread thread
scheduler sche(}uler scheduler schedule}'
threads threads threads threads
USER

Operating System Concepts

Southeast University

eﬁ{, Chapter 4: Threads

m Overview

® Multithreading Models
B Threading Issues

m \Windows XP Threads
B Linux Threads

m Java Threads

m Pthreads

® \Windows Threads AP

Operating System Concepts 4.26

géfsl‘gs LWPs and Threads on Solaris 2

task 1 task 2 task 3

user-level thread

lightweight process

kernel thread

process id 1 cpu
memory map
priorty Solaris Process/Task Control Block

list of open

files
LWP, LWP, LWP4 voo : E &
Operating System Concepts ‘heast University T | \ g

Solaris process

e&% Windows XP Threads

- _
B Implements the one-to-one mapping.

m Each thread has a corresponding thread
control block in kernel, which contains

-athread id - separate user and kernel stacks
- register set - private data storage area

ETHREAD

KTHREAD

Dispatcher Header

KTHREAD

Create and Exit Time Total User Time

Total Kernel Time

Process ID _
@ > EPROCESS o ~~|Kernel Stack Information
Thread Start Address ° B System Service Table
® >@ Thread Scheduling Information
Impersonation Information Trap Frame
LPC Message Information o > | Thread Local Storage

. . Synchronization Information
Timer Information

P >! Pending I/0 Requests List of Pending APCs

Timer Block and Wait Blocks

Operating System Concepts 4.2, |Listof Objects Being\Maiing Gilersity “d

Q.
'

Q' Linux Threads
Q, c, -
7 (not POSIX pthreads Library)

B Linux refers to them as tasks rather than
threads.

B Thread creation is done through clone()
system call.

m Clone() allows a child task to share the
address space of the parent task (process)

B What is the difference between fork() and
clone()?

Operatling-Systein’ Corcepts 426 Soutreast Ui iversity

http://linux.die.net/man/2/clone
http://www.ibm.com/developerworks/cn/linux/kernel/l-thread/

T 4 Java Threads

m Java threads may be created by:
Extending Thread class
Implementing the Runnable interface

® Java threads are managed by the JVM.
m Java Thread States

suspend()
/0

blocked

eﬁ{, Chapter 4: Threads

m Overview

® Multithreading Models
B Threading Issues

® Windows XP Threads
B Linux Threads

m Java Threads

m Pthreads

m \Windows Threads API \ %

d Pthreads
S BOSIX standard (IEEE 1003.1c) AP for
thread creation and synchronization.

API specifies behavior of the thread library,
Implementation is up to development of the library

POSIX 1003.1 Commands: http://www.unix.com/man-page-posix-repository.php

B Common in UNIX operating systems.

B [mplemented over Linux operating system by
Native POSIX Thread Library (NPTL)

NPTL is a 1 X1 threads library, in that threads
created by the user are in 1-1 correspondence

with schedulable entities (i.e., task) in the kemel ;
https://en.wikipedia.org/wiki/Na Hix/Mibrary 7] PAZElnuxE M:N 1 28 FE AR
obiME BRSEXJNread Library https://github.com/samanbarghiiuThreads K243

3

s pthread_create

Int pthread_create(tid, attr, function, arg);

m pthread t * tid
handle or ID of created thread

B const pthread_attr t *attr
attributes of thread to be created

m void *(*function) (void*)
function to be mapped to thread
m void *arg
single argument to function
B Integer return value for error code ng

Operating System Concepts 4.33 Southeast University

R{’ pthread_create explained

spawn a thread running the function;
thread handle returned via pthread t structure
m specify NULL to use default attributes

a single argument sent to function
B [f no argument to function, specify NULL

check error codes!

EAGAIN — insufficient resources to create thread

EINVAL — invalid attribute :g %‘

9
e Threads states
B pthread threads have two states
joinable and detached

B threads are joinab
Resources are ke

e by default
ot until pthread_join.

When a joinable thread terminates, some of the
thread resources are kept allocated, and
released only when another thread performs
pthread_join on that thread.

can be reset with attribute or API call
m detached thread can not be joined

resources can be

reclaimed at termination

cannot reset to be joinable

Operating System Concepts

4.35 Southeast University Ma’ % !g

eﬁ{, Waiting for a thread
Int pthread_join(tid, val_ptr);

m pthread t *tid
handle of joinable thread

m void **val_ptr
exit value returned by joined thread

Operating System Concepts 4.36 Southeast University

Operating System Concepts 4.37 Southeast University

Qd‘%, pthread_join explained

calling thread waits for the thread with handle
tid to terminate

m only one thread can be joined

m thread must be joinable

exit value Is returned from joined thread
m Type returned Is (void *)

m use NULL if no return value expected

ESRCH —-thread not found
EINVAL — thread not joinable \ﬁijy 7é

-

Example 1

Q1: Guess what are the

1 finclude <stdio.h>]

2 #include <assert.h> pOSSIble OUtpUtS?

3 #include <pthread.h>

4

5 volid smythread(volid =*xarqg) {

6 printf ("%s\n", (char =) arqg); .

7 return NULL; Q2 What if we remove the two
- Pthread_join() function calls?
0 dnt Note: the termination of main
11 main(int argc, char =xargv([]) { ;]
12 pthread_t pl, p2; thread will cause the automatic
13 int rec; . : .

o rintf("main: begin\n®) : termination of children threads
15 rc = pthread_ create(&pl, NULL, mythread, "A"); assert(rc == 0);
16 rc¢ = pthread_create(&p2, NULL, mythread, "B"); assert(rc == 0);
17 // join waits for the threads to finish

18 rc = pthread Jjoin(pl, NULL); assert(rc == 0);

19 rc¢ = pthread_Jjoin(pZ2, NULL); assert(rc == 0};

20 printf("main: end\n");

1 return 0;

22 }

Operating System Concepts 4.38 Southeast University

e,AEQg;jz about fork() and pthread create()

® \What are the outputs of the program?

#include <pthread.h> Int main(int argc, char *argv[])
#include <stdio.h> {
Int pid;
int value = 0; pthread_t tid;
pid = fork();
void *runner(void *param){ if (pid==10) {
value = value + 10: pthread create (&tid, NULL, runner, NULL);
pthread_exit(0); pthread_join (tid, NULL);
} printf ("CHILD: value = %d\n", value); /*Print 1*/

}else if (pid > 0) {

value = value - 10;

wait(NULL);

printf("PARENT: value = %d\n", value); /*Print 2*/
¥

}
B Answer. CHILD: value = 10

Operating System Concepts PARENT Val ue = -1:1].'39 Southeast University E..}#'{Q

volatile int counter = 0; // shared global variable

14
15
16
17
18
19
20
21
22
23
24

32
33
34
35
36
a7
38
a9
40
41
42
43
44
45

Operating System Concepts

void =
mythread(void =arqg)
{

printf("%s: begin\n", (char %) arqg);
int i;
for (i = 0; i < le7; i++) {
counter = counter + 1;
}
printf("%s: done\n", (char) arqg);

return NULL;

Example 2

/I The volatile keyword forces the
compiler to always reads the
current value of a volatile object
from the memory location rather
than keeping its value in temporary
register at the point it is requested

Q1: Guess what is the possible

int
main(int argc, char #argv[]) OUtpUt | code | | data | ‘ files |
{ | registers || registers H registers |
pthread_t pl, p2;
printf("main: begin (counter = %d)\n", counter); |ymk| |ﬁmk|| mmk|
Pthread_create (&pl, NULL, mythread, "A");
Pthread_create (&p2, NULL, mythread, "B");

// join waits for the threads to finish
Pthread_ Jjoin(pl, NULL);

Pthread join(p2, NULL);

printf("main: done with both (counter =
return 0;

J

4.40

S8 eT

main (child1child2

2d)\n", counter);

multithreaded

li:‘].g!"'

Southeast University

Qt{ Discussion
' b

= Why not deterministic?

B The Heart Of The Problem: Uncontrolled
Scheduling

m \What happens when executing “counter =
counter + 1;” ?

B Understand the code segquence that the
compiler generates for the update to counter.

mov 0x8049%9alc, %eax
add S0xl, %eax

mov %eax, 0x8049%alc) |
= Now, you may tell the reason M%E ‘

Operating System Concepts 4.41 Southeast University

Fgcc -StR G E R UE—T

B GCCHIEIN-SEGCCEHITSE/LR/a1=1E
S gcc -S tl.c -o tl.s // LIRS
S gcc -c tl.s -o tl.o // __iH&EIREE
$ 1d tl.o -o_tl // ®E/arI P TR

e,

mythread: ## Qmythread
) - .
] E‘tl S/I ,“ Tl .cfi startproc
vold =+
mythread (void xarg) movl _counter (%rip), %eax
{
printf("%$s: begin\n", (char =x) arg); addl $1 Oeax
int i; o
e (L — 05 1< 107 ien) movl seax, _counter(3rip)
counter = counter + 1;
} .
printf("%s: done\n"™, (char) arg); . cfl_endproc
) return NULL; ## -—- End function
» main: ## @main
— — .cfi startproc
main{int argc, char xargvl[]) o
{
pthread_t pl, p2; '
printf("main: begin (counter = %d)\n", counter); . Cfl endprOC
Pthread_create (&pl, NULL, mythread, "A"); _.
Pthread_create (&p2, NULL, mythread, "B"); .Section
// join waits for the threads to finish TEXT, CStrl]_’lg, CStrlng llterals
Pthread_join(pl, NULL); — — -
Pthread join(p2, NULL);
printf("main: done with both (counter = %d)\n", counter);
;e o .globl counter ## Qcounter

. Uncontrolled Scheduling

Threadl Thread2 movl _counter (%rip) , %eax

%rip-relative addressing for global variables
!' ’! x86-64 code often refers to globals using %rip-

relative addressing: a global variable named a is

referenced as a(%rip). This style of reference

counLex Yoo | supports position-independent code (PIC), a

Memory | shared variabfe in memo S€curity feature. It specifically supports position-
independent executables (PIEs), which are
programs that work independently of where their

code is loaded into memory.
(after instruction)

0Ss Thread 1 Thread 2 PC “%eax counter
before critighl section 100 0 50
mov 0x8049alc, Y%eax 105 50 50
add $0x1, %Y%eax 108 51 50
interrupt
save T1's state
restore T2's state 100 0 50
mov xB049alc, Y%eax 105 50 50
add $0x1, %eax 108 51 50
mov %eeax, Ox8049alc 113 51 51
interrupt
save T2's state
restore T'1's state 108 51 51

Operating mov Y%eeax, Ox8049alc 113 51 51

ition

q.é Uncontrolled Scheduling
eacOoNC

Several processes (threads) access and
manipulate the same data concurrently and the
outcome of the execution depends on the particular
order in which the access takes place.

Result indeterminate.

B Critical section

Memory

nter
v\

shared variable in memo

Multiple threads executing a segment of code,

which can result In a race condition.

B \What we want: Mutual exclusion

The property guarantees that if one thread is
executing within the critical section, the other%\%i)g
oreraing sefy@ridkeVented from domg so.

Southeast University

" NS

e ST
[N)
N\ i

N ¢

-

gd\. Revisit the Threading Model

m “Data” is a public memory segment shared by
all threads, which may Incur race condition

B Stack Is a private memory segment of a thread

m Question: What if a thread accesses the data
variables on the stack of another thread?

Process
Code N N N N
lobal b
Process Hea
SP
Process Resources
Open Files I_I_’ Stack
Heaps (innerMetho d)
E ||'0 nt Biock eeeeeeeeeee SS SP
I [P Sta I P [_
(outerMetho d) (outerMethod) (outerMetho d) N T/
Thread 1 Thread N ’
SP
Thread Local Storage W Thread Local Storage Return address] @ | Return addre sS Return address D—D
Stack Stack
The state of stack when
outerMethod is called innerMetho d is calle d innerMethodis completed ~~ outerMethod is completed

M are possible outputs of the program

: N
vold * helloFunc (void * ptr) {
int *data;
data = (int *) ptr;

printf (“I'm Thread %d \n”, *data);
}

int main () {
pthread t hThread[4];
for (int 1 = 0; 1 < 4; i++)
pthread create (&hThread[i], NULL, helloFunc, (void *)&i);
for (int i = 0; 1 < 4; i++)
pthread join (hThread[i], NULL);
return 0;

VA race condition, £/ T-#4FET0, T1. T2, T3REAFiAIELZ
R EBEIITE i, SLE HZE,

Operating System Concepts 4.46 Southeast University g@& :,

void * helloFunc (void * ptr) {
int *data;
data = (int *) ptr;
printf("I'm Thread %d \n", *data);

int main() {
pthread t hThread[4];
int thread name[4];
for (int i = 0; 1 < 4; 1i++) {
thread name[i] = i;
pthread create (&¢hThread[i], NULL,
helloFunc, (void *)é&thread name[i]);

}
for (int 1 = 0; 1 < 4; i++)

pthread join(hThread[i], NULL);
return O;

Operating System Concepts 4.47

‘ix.the problem by threat-local states

Process

Code

Global Variables

Process Heap

Process Resources
Open Files
Heaps

Environment Block

Thread 1

Thread Local Storage

Thread N

Stack

Thread Local Storage

Stack

Southeast University ‘BA{Q

t*, Chapter 4: Threads

m Overview

® Multithreading Models
B Threading Issues

® Windows XP Threads
B Linux Threads

m Java Threads

m Pthreads

m \Windows Thread APIs 23

e,d%. Windows Thread APIs

m CreateThread

m ExitThread

B TerminateThread

m GetExitCodeThread

m GetCurrentThreadld - returns global ID
B GetCurrentThread - returns handle

B SuspendThread/ResumeThread

B GetThreadTimes

Operating System Concepts 4.49 Southeast University

iIndows API Thread Creation

m |pstartAddr ioints to function declared as

m IpvThreadParm is 32-bit argument

m LPIDThread points to DWORD that receives thread ID
non-NULL pointer !

Operating System Concepts 4.50 Southeast University

f»d‘t\Nindows API Thread Termination

VOID ExitThread(DWORD devExitCode)

® \WWhen the last thread in a process terminates, the
process itself terminates

BOOL GetExitCodeThread (
HANDLE hThread, LPDWORD IpdwEXxitCode)

B Returns exit code or STILL _ACTIVE

Operating System Concepts 4.51 Southeast University msj % !g

G,Qt., Suspending and Resuming
- Threads

B Each thread has suspend count
B Can only execute if suspend count ==
B Thread can be created in suspended state

N DWORD ResumeThread (HANDLE hThread)
O DWORD SuspendThread(HANDLE hThread)

B Both functions return suspend count or

OxFFFFFFFF on failure %

#include <stdio.h>

#include <windows.h>

DWORD WINAPI helloFunc (LPVOID arg) {
printf (“Hello Thread\n”) ;

return 0;

main () {
HANDLE hThread =
CreateThread (NULL, 0, helloFunc,
NULL, 0, NULL);

(”./'.r'
Operating System Concepts : Southeast University 8 ‘@\\“J

“
-

Yo Example Explained

® Malin thread Is process
®\When process goes, all threads go

B Need some methods of waiting for a
thread to finish

Operating System Concepts

2P Waiting for Windows* Thread

#include <stdio.h>

#include <windows.h>

BOOL thrdDone = FALSE;
DWORD WINAPI helloFunc (LPVOID arg) {
printf (“"Hello Thread\n”) ;

return 0‘

main () {

Not a good ideal

HANDLE hThrea
Create

NULL, O, NULL):

Operating System Concepts 4.55 Southeast University

e.}{';. Waiting for a Thread

Wait for one object (thread)

DWORD WaitForSingleObject (
HANDLE hHandle,
DWORD dwMilliseconds) ;

Calling thread waits (blocks) until
e Time expires
e Return code used to indicate this

e Thread exits (handle is signaled)
e Use INFINITE to wait until thread termination

Does not use CPU cycles

Operating System Concepts . Southeast University

e&{, Waiting for Many Threads

Wait for up to 64 objects (threads)

DWORD WaitForMultipleObjects (

DWORD nCount,
CONST HANDLE *1pHandles, // array

BOOL fWaitAll, // wait for one or all

DWORD dwMilliseconds)

Wait for all: fWaitAll==TRUE

Wait for any: fWaitAll==FALSE

e Return value is first array index found

Operating System Concepts . Southeast University

%d%. Notes on WalitFor* Functions

®m Handle as parameter
B Used for different types of objects

m Kernel objects have two states
Signaled
Non-signaled

m Behavior is defined by object referred to
by handle

Thread: signaled means terminated

Operating System Concepts 4.58 Southeast University Ma’ %!’

Q,Q‘{Example: Waiting for multiple threads

#include <stdio.h>
#include <windows.h>
const int numThreads = 4;

DWORD WINAPI helloFunc(LPVOID arg) {
printf (“Hello Thread\n”);
return 0; }

main () {
HANDLE hThread[numThreads];
for (int 1 = 0; 1 < numThreads; 1i++)

hThread[i] =
CreateThread (NULL, 0, helloFunc, NULL, 0, NULL);
WaitForMultipleObjects (numThreads, hThread,
TRUE, INFINITE) ;

Operating System Concepts . Southeast University

eﬁ{, Example: HelloThreads

B Modify the previous example code to print
out

appropriate “Hello Thread”"message

Unique thread number
v'use for-loop variable of CreateThread loop
B Sample output:
Hello from Thread #0
Hello from Thread #1

Hello from Thread #2

Hello from Thread #3

Operating System Concepts

T o What’s Wrong?

DWORD WINAPI threadFunc (LPVOID pArg) {
int* p = (int*)pArg;
int myNum = *p;
printf(“Thread number %d\n”, myNum) ;
}

// from main() :
for (int i = 0; i1 < numThreads; i++) {
hThread[i] =
CreateThread (NULL, 0, threadFunc, &1i, 0, NULL) ;

What is printed for myNum?

Operating System Concepts . Southeast University

!o. : ' ..

Hello Threads Timeline

main

Thread O

Thread 1

i=0

create(&i)

i++ (i == 1)

launch

create(&i)

p = pArg

i++ (i == 2)

myNum = *p

myNum = 2

launch

wait

print(2)

p = pArg

wait

Operating System Concepts

exit

myNum = *p

myNum = 2

Southeast University

e,dk_., Race Conditions

B Concurrent access of same variable by
multiple threads

Read/Write conflict
Write/Write conflict

® Most common error in concurrent programs
B May not be apparent at all times

® How to avoid data races?
Local storage
Control shared access with critical regions

Operating System Concepts 4.63 Southeast University m

-

Q,QL_HeIIo Thread: Local Storage solution

DWORD WINAPI threadFunc (LPVOID pArg)
{

int myNum = *((int*)pArqg) ;

printf (“Thread number %d\n”, myNum) ;
}

// from main() :
for (int 1 = 0; 1 < numThreads; i++) {
tNum[i] = i;
hThread[i] =
CreateThread (NULL, 0, threadFunc, &tNum[i],
0, NULL) ;

Operating System Concepts . Southeast University

e,t{., B Chapter 4: Threads

m Overview

® Multithreading Models
B Threading Issues

® \Windows XP Threads
B Linux Threads

m Java Threads

m Pthreads

m \Windows Threads API \ %

Yo Threading Issues

1.
2.
3.
4.
D.
6.

Semantics of fork() and exec() system calls.
Thread cancellation.

Signal handling

Thread pools

Thread specific data

Scheduler Activations

Operating System Concepts 4.66 Southeast University Ma’ %!’

Q,QL_., Semantics of fork() and exec()

m Does fork() duplicate only the calling thread
or all threads?

B In a Pthreads-compliant implementation, the
fork() call always creates a new child
process with a single thread, regardless of
how many threads its parent may have had
at the time of the call.

m Furthermore, the child's thread is a replica of
the thread in the parent that called fork \PE;J

-

Operating System Concepts 4.67 Southeast University

e,dk_, Thread Cancellation

B Terminating a thread before it has finished

B Two general approaches:

Asynchronous cancellation terminates the
target thread immediately

Deferred cancellation allows the target thread
to periodically check if it should be cancelled

The point a thread can terminate itself is a

cancellation point. 23

f»dtﬁ. Thread Cancellation (Cont.)

®m With asynchronous cancellation, If the target
thread owns some system-wide resources, the
system may not be able to reclaim all recourses

®m With deferred cancellation, the target thread
determines the time to terminate itself.
Reclaiming resources Is not a problem.

B Most systems implement asynchronous
cancellation for processes (e.g., use the Kkill
system call) and threads.

B Pthread supports deferred cancellation. mzz

Operatin ing System Concepts 4.69 Southeast University

#include
#include
#include
#include

example of deferred cancellation

<stdio.h>
<pthread.h>
<sys/time.h>
<unistd.h>

void* thread func(void* arg)

{

NULL) ;

//pthread setcancelstate (PTHREAD CANCEL DISABLE,

int count = 0;
while (1) {
//pthread testcancel();
printf ("count = %d\n", ++count);
fflush (stdout) ;
sleep(1l);

pthread testcancel ();

| i
$

printf ("this is a thread cancel test 111\n");
pthread testcancel ()

”.&1 example of deferred cancellation

printf ("test 222\n");

printf ("Thread cancellation requested.
Exiting...\n");

pthread exit (NULL) ;

return NULL;

int main ()
{
pthread t thread;
pthread create (&thread, NULL, thread func, NULL);
sleep (9);
pthread cancel (thread);
printf ("call pthread cancel.\n");
pthread join(thread, NULL);
printf ("Thread canceled successfully.\n");
printf ("end\n") ;
return 0;

lpthread
$./deferred cancellation
count = 1

count = 2
count = 3
count = 4
count = 5

call pthread cancel.

Thread canceled successfully.

end

Operating System Concepts

4.72

t of deferred cancellation example

$ gcc -o deferred cancellation deferred cancellation.c -

Southeast University

Yo

Signal Handling

m Signals are used in UNIX systems to notify
a process that a particular event has

occurred

m All signals follow the same pattern:

Signha
Signa
Signa

IS generated by particular event
IS delivered to a process
Is handled

m A signhal handler is used to process

signals

Operating System Concepts

4.73 Southeast University msj % !g

#define SIGHUP
#define SIGINT
#define SIGQUIT
#define SIGILL
#define SIGTRAP
#define SIGABRT

#include <stdio.

C program to illustrate User-

defined Signal Handler

/* Hang up the process */

/* Interrupt the process */

/* Illegal instruction. */

1
2
3 /* Quit the process */
4
5 /* Trace trap. */

6

/* Abort. */

h>

#include <signal.h>

for (int i=0; 1; i++) {

// Handler for SIGINT, triggered by printf ("hello world
// Ctrl-C at the keyboard sd\n", 1);
void handle sigint(int sig) { sleep (1) ;

printf ("Caught signal %d\n", sigqg);

int main () {

signal (SIGINT, handle sigint); Tl‘y Press Ctrl+C E}(ﬂ(&’

Operating System Concepts

}

return 0O;

4.74 Southeast University

e,dt_a Signal Handling (Cont.)

®m How to handle a signal when its target
process has multiple threads?

m Options:
Deliver the signal to the thread to which the
signal applies

Deliver the signal to every thread in the
DFOCESS

Deliver the signal to certain threads in the
Drocess

Assign a specific thread to receive all signals

for the process g
Operating System Concepts 4.75 Southeast University _‘ 3 \ g

g,c{,, Thread Pools
B Create a number of threads in a pool where

they await work

Thread Pool
Y -
waaeee | B
N
e ot s § o
m Advantages:

¥ Usually slightly faster to service a request with
an existing thread than create a new thread

© Allows the number of threads in the

application(s) to be bound to the size of the pr g4
Operating System Concepts https://en.wikipedia.org/wiki/Thread_pool 3 ,

Southeast University

t‘d“ Thread Specific Data
m Allows each thread to have its own copy of data

m Useful when you do not have control over the
thread creation process (I.e., when using a
threaC pOO') https://en.wikipedia.org/wiki/Thread-local_storages

B Pthreads library supports thread specific data

B pthread key create and e
pthread key delete are used
respectively to create and S
delete a key for thread-specific
data. — =

https://en.wikipedia.org/wiki/Thread- Stack stack

local _storage#Pthreads_implementation

Operating Syste

m Concepts 4.77 Southeast University = = 93 _BQJ

gd\. Thread Scheduler Activations

m Background: Server-version operating systems
often use many-to-many and two-level thread
models

The thread library needs to maintain the appropriate
number of kernel threads allocated to the process

Requires kernel-user space communication to do it

Operating System Concepts

;Q‘L‘, Thread Scheduler Activations

Scheduler activations provide upcalls: a communicatior
mechanism from the kernel to the user-mode thread lib

When the kernel knows a thread has blocked/resumed,
It notifies the process’ run-time system about this event

This communication allows an application to maintain
the correct number of available kernel threads

.........

.......

5

CPU

CPU

CPU

Operating System Concepts

CPU

sity

	Slide 1: Chapter 4: Threads
	Slide 2: Chapter 4: Threads
	Slide 3: What is a thread?
	Slide 4: Single and Multi-threaded Processes
	Slide 5
	Slide 6: Why Do We Use Threads? Thread Usage (1)
	Slide 7: Why Do We Use Threads? Thread Usage (2)
	Slide 8: Why Do We Use Threads? Thread Usage (3)
	Slide 9: Benefits
	Slide 10: Economy for Creation
	Slide 11: Economy for Context Switching
	Slide 12: User Threads
	Slide 13: User Threads (Cont.)
	Slide 14: Pros and Cons of User Threads
	Slide 15: Kernel Threads
	Slide 16: Kernel Threads (Cont.)
	Slide 17: Implementing Threads in the Kernel
	Slide 18: Chapter 4: Threads
	Slide 19: Multithreading Models
	Slide 20: Many-to-One
	Slide 21: Many-to-One Model (Cont.)
	Slide 22: One-to-One
	Slide 23: One-to-one Model (Cont.)
	Slide 24: Many-to-Many Model
	Slide 25: Many-to-Many Model (Cont.)
	Slide 26: Chapter 4: Threads
	Slide 27: Tasks, LWPs and Threads on Solaris 2
	Slide 28: Windows XP Threads
	Slide 29: Linux Threads (not POSIX pthreads Library)
	Slide 30: Java Threads
	Slide 31: Chapter 4: Threads
	Slide 32: Pthreads
	Slide 33: pthread_create
	Slide 34: pthread_create explained
	Slide 35: Threads states
	Slide 36: Waiting for a thread
	Slide 37: pthread_join explained
	Slide 38: Example 1
	Slide 39: A Quiz about fork() and pthread_create()
	Slide 40: Example 2
	Slide 41: Discussion
	Slide 42: 用gcc -S命令简单验证一下
	Slide 43: Uncontrolled Scheduling
	Slide 44: Uncontrolled Scheduling
	Slide 45: Revisit the Threading Model
	Slide 46: What are possible outputs of the program?
	Slide 47: Fix the problem by threat-local states
	Slide 48: Chapter 4: Threads
	Slide 49: Windows Thread APIs
	Slide 50: Windows API Thread Creation
	Slide 51: Windows API Thread Termination
	Slide 52: Suspending and Resuming Threads
	Slide 53: Example: Thread Creation
	Slide 54: Example Explained
	Slide 55: Waiting for Windows* Thread
	Slide 56: Waiting for a Thread
	Slide 57: Waiting for Many Threads
	Slide 58: Notes on WaitFor* Functions
	Slide 59: Example: Waiting for multiple threads
	Slide 60: Example: HelloThreads
	Slide 61: What’s Wrong?
	Slide 62: Hello Threads Timeline
	Slide 63: Race Conditions
	Slide 64: Hello Thread: Local Storage solution
	Slide 65: Chapter 4: Threads
	Slide 66: Threading Issues
	Slide 67: Semantics of fork() and exec()
	Slide 68: Thread Cancellation
	Slide 69: Thread Cancellation (Cont.)
	Slide 70: An example of deferred cancellation
	Slide 71: An example of deferred cancellation
	Slide 72: Output of deferred cancellation example
	Slide 73: Signal Handling
	Slide 74: C program to illustrate User-defined Signal Handler
	Slide 75: Signal Handling (Cont.)
	Slide 76: Thread Pools
	Slide 77: Thread Specific Data
	Slide 78: Thread Scheduler Activations
	Slide 79: Thread Scheduler Activations

