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What is a thread?

◼A thread, also known as lightweight process
(LWP), is a basic unit of CPU execution.

◼A thread has a thread ID, a program counter 
(instruction pointer), a register set, and a 
stack. Thus, it is similar to a process has.

A process
Threads within 

a process
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Single and Multi-threaded Processes
◼A process, or heavyweight process, has a 

single thread of control after its creation.

◼As more threads are created, a thread 
shares with other threads in the same
process its code section, data section, and 
other OS resources (e.g., files and signals).
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◼ Items shared by all threads 

in a process
◼ Items private 

to each thread
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Why Do We Use Threads?

Thread Usage (1)

A word processor with three threads

Model

View

Controller

MVC paradigm

◼ To simplify programs in which multiple activities go on at once.

◼ Performance gain, when there is substantial amounts of both 

computing and I/O.
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Why Do We Use Threads?

Thread Usage (2)

multithreaded web server

◼ 基于HTTP协议的浏览器和Web服务器交互过程
1. 客户端浏览器向网站所在的服务器发送一个请求

2. 网站服务器接收到这个请求后进行解析

3. 浏览器中包含网页的源代码等内容（浏览器缓存中
），浏览器再对其进行解析，最终呈现结果给用户
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Why Do We Use Threads?

Thread Usage (3)
◼ Rough outline of code 

for previous slide

(a) Dispatcher thread

(b) Worker thread

Note: An Event-Driven 
Framework
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Benefits

◼ Responsiveness

◼ Resource Sharing

◼ Economy

◼ Utilization of MP Architectures
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Economy for Creation

◼ Compare timing of fork() and pthread_create()

◆Timings reflect 50,000 process/thread creations, 

were performed with the time utility, and units are 

in seconds, no optimization flags.

Operating System Concepts

Platform
fork() pthread_create()

real user sys real user sys

AMD 2.4 GHz Opteron 

(8cpus/node)

41.07 60.08 9.01 0.66 0.19 0.43

IBM 1.9 GHz POWER5 

p5-575 (8cpus/node)

64.24 30.78 27.68 1.75 0.69 1.10

IBM 1.5 GHz POWER4 

(8cpus/node)

104.05 48.64 47.21 2.01 1.00 1.52

INTEL 2.4 GHz Xeon (2 

cpus/node)

54.95 1.54 20.78 1.64 0.67 0.90

INTEL 1.4 GHz 

Itanium2 (4 
cpus/node)

54.54 1.07 22.22 2.03 1.26 0.67

http://www.cnblogs.com/mywolrd/archive/2009/02/04/1930708.html

http://www.cnblogs.com/mywolrd/archive/2009/02/04/1930708.html
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Economy for Context Switching

◼ Process (notes: Process 

Control Block in OS Kernel)

◼ Light-weight Process

and Kernel Threads

◼ User Threads

Operating System Concepts

Lower 

Cost in 

Creation 

and 

Context 

Switching
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User Threads

◼ Thread management done by user-level 

threads library

◆Context switching of threads in the same 

process is done in user mode

◼ Examples

- POSIX Pthreads (see scope parameter of pthread_create: 

PTHREAD_SCOPE_PROCESS or PTHREAD_SCOPE_SYSTEM)

- Mach C-threads

- Solaris UI-threads
http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThread

s.html#CREATIONTERMINATION

http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html
http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html
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User Threads (Cont.)

◼ A user-level thread library provides all support 
for thread creation, termination, joining, and 
scheduling.

A user-level threads package
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Pros and Cons of User Threads

◼ User threads are supported at the user level. 
The kernel is not aware of user threads.

◼ Because there is no kernel intervention, user 
threads are usually more efficient.

◼ Unfortunately, since the kernel only recognizes 
the containing process (of the threads), if one 
thread is blocked, each other threads of the 
same process are also blocked since the 
containing process is blocked. 

◼ Question: Can two user threads in a same 
process run simultaneously on two different 
CPU cores?
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Kernel Threads

◼Supported by the Kernel

◼Examples

- Windows 95/98/NT/2000

- Solaris

- Tru64 UNIX

- BeOS

- Linux and POSIX Thread
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Kernel Threads (Cont.)

◼Kernel threads are directly supported by the 
kernel. The kernel does thread creation, 
termination, joining, and scheduling in kernel 
space.

◼Kernel threads are usually slower than the user 
threads.

◼However, blocking one thread will not cause 
other threads of the same process to block. The 
kernel simply runs other threads.

◼ In a multiprocessor environment, the kernel can 
schedule threads on different processors
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Implementing Threads in the Kernel

A threads package managed by the kernel 

(Note: POSIX Pthreads library supports 

the creation of kernel threads)
http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html

http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html
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Multithreading Models

◼Many-to-One

◼One-to-One

◼Many-to-Many
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Many-to-One

◼Many user-level threads mapped to a single 

kernel thread.

◼Used on systems that do not support kernel 

threads.
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Many-to-One Model (Cont.)
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One-to-One

◼Each user-level thread maps to kernel thread

◼Examples

- Windows 95/98/NT/2000

- OS/2
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One-to-one Model (Cont.)
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Many-to-Many Model
◼Allows many user level threads to be mapped 

to many kernel threads.

◼Allows the operating system to create a 

sufficient number of kernel threads.

◼Windows NT/2000 with ThreadFiber package

◼Solaris 2 
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Many-to-Many Model (Cont.)
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Tasks, LWPs and Threads on Solaris 2

Solaris Process/Task Control Block
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Windows XP Threads

◼ Implements the one-to-one mapping.

◼Each thread has a corresponding thread 

control block in kernel, which contains

- a thread id

- register set
ETHREAD

Create and Exit Time

Process ID

Thread Start Address

Impersonation Information

LPC Message Information

EPROCESS

Access Token

KTHREAD

Timer Information

Pending I/O Requests

Total User Time

Total Kernel Time

Thread Scheduling Information

Synchronization Information

List of Pending APCs

Timer Block and Wait Blocks

List of Objects Being Waiting On

System Service Table

TEB

KTHREAD

Thread Local Storage

Kernel Stack Information

Dispatcher Header

Trap Frame

- separate user and kernel stacks

- private data storage area
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Linux Threads 

(not POSIX pthreads Library)

◼ Linux refers to them as tasks rather than 

threads.

◼Thread creation is done through clone() 

system call.

◼Clone() allows a child task to share the 

address space of the parent task (process)

◼What is the difference between fork() and 

clone()?
http://linux.die.net/man/2/clone

http://www.ibm.com/developerworks/cn/linux/kernel/l-thread/

http://linux.die.net/man/2/clone
http://www.ibm.com/developerworks/cn/linux/kernel/l-thread/
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Java Threads

◼ Java threads may be created by:

◆Extending Thread class

◆Implementing the Runnable interface

◼ Java threads are managed by the JVM.

◼ Java Thread States 
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Pthreads
◼ a POSIX standard (IEEE 1003.1c) API for 

thread creation and synchronization.

◆API specifies behavior of the thread library, 

◆Implementation is up to development of the library

◼Common in UNIX operating systems.

◼ Implemented over Linux operating system by 

Native POSIX Thread Library (NPTL)

◆NPTL is a 1×1 threads library, in that threads 

created by the user are in 1-1 correspondence 

with schedulable entities (i.e., task) in the kernel
https://en.wikipedia.org/wiki/Na

tive_POSIX_Thread_Library

POSIX 1003.1 Commands：http://www.unix.com/man-page-posix-repository.php

用这个library可以在linux部署M:N的线程模型。
https://github.com/samanbarghi/uThreads
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pthread_create

◼ pthread_t * tid

◆handle or ID of created thread

◼ const pthread_attr_t *attr
◆attributes of thread to be created

◼ void *(*function) (void*)
◆function to be mapped to thread

◼ void *arg

◆single argument to function

◼ Integer return value for error code  

int pthread_create(tid, attr, function, arg);
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pthread_create explained

spawn a thread running the function；

thread handle returned via pthread_t structure

◼ specify NULL to use default attributes

a single argument sent to function

◼ If no argument to function, specify NULL

check error codes!

EAGAIN – insufficient resources to create thread

EINVAL – invalid attribute
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Threads states
◼ pthread threads have two states

◆joinable and detached

◼ threads are joinable by default
◆Resources are kept until pthread_join.

◆When a joinable thread terminates, some of the 
thread resources are kept allocated, and 
released only when another thread performs
pthread_join on that thread.

◆can be reset with attribute or API call

◼ detached thread can not be joined

◆resources can be reclaimed at termination

◆cannot reset to be joinable
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Waiting for a thread

◼ pthread_t *tid

◆handle of joinable thread

◼ void **val_ptr

◆exit value returned by joined thread

int pthread_join(tid, val_ptr);
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pthread_join explained

calling thread waits for the thread with handle 

tid to terminate

◼ only one thread can be joined

◼ thread must be joinable

exit value is returned from joined thread

◼Type returned is (void *)

◼ use NULL if no return value expected

ESRCH –thread not found

EINVAL – thread not joinable
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Example 1

Operating System Concepts

Q1: Guess what are the

possible outputs?

Q2: What if we remove the two 

Pthread_join() function calls?

Note: the termination of main 

thread will cause the automatic 

termination of children threads
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A Quiz about fork() and pthread_create()

◼ What are the outputs of the program? 

◼ Answer:
Operating System Concepts

#include <pthread.h>

#include <stdio.h>

int value = 0;

void *runner(void *param){

value = value + 10;

pthread_exit(0);

}

int main(int argc, char *argv[])

{   

int  pid;

pthread_t tid;

pid = fork();

if (pid == 0) { 

pthread_create (&tid, NULL, runner, NULL);

pthread_join (tid, NULL);

printf ("CHILD: value = %d\n", value);  /*Print 1*/

} else if (pid > 0) {

value = value - 10;

wait(NULL);

printf("PARENT: value = %d\n", value);  /*Print 2*/

}

}

CHILD: value = 10

PARENT: value = -10
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Example 2

Operating System Concepts

Q1: Guess what is the possible

output

volatile int counter = 0; // shared global variable

// The volatile keyword forces the 

compiler to always reads the 

current value of a volatile object 

from the memory location rather 

than keeping its value in temporary 
register at the point it is requested

main child1child2
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Discussion

◼Why not deterministic?

◼The Heart Of The Problem: Uncontrolled 

Scheduling

◼What happens when executing “counter = 

counter + 1;” ?

◼Understand the code sequence that the 

compiler generates for the update to counter.

◼Now, you may tell the reason
Operating System Concepts
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用gcc -S命令简单验证一下
◼GCC的选项-S使GCC在执行完汇编后停止
$ gcc -S t1.c -o t1.s // 汇编代码
$ gcc -c t1.s -o t1.o // 二进制代码
$ ld t1.o -o t1 // 链接后可执行代码

◼看t1.s汇编代码

Operating System Concepts

_mythread:            ## @mythread

.cfi_startproc

…

movl _counter(%rip), %eax

addl $1, %eax

movl %eax, _counter(%rip)

…

.cfi_endproc

## -- End function

_main:                 ## @main

.cfi_startproc

…

.cfi_endproc

.section

__TEXT,__cstring,cstring_literals

…

.globl _counter  ## @counter
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Uncontrolled Scheduling

Operating System Concepts

movl _counter(%rip), %eax

%rip-relative addressing for global variables
x86-64 code often refers to globals using %rip-
relative addressing: a global variable named a is 
referenced as a(%rip). This style of reference 
supports position-independent code (PIC), a 
security feature. It specifically supports position-
independent executables (PIEs), which are 
programs that work independently of where their 
code is loaded into memory.

Thread1 Thread2
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Uncontrolled Scheduling
◼ Race condition

◆Several processes (threads) access and 

manipulate the same data concurrently and the 

outcome of the execution depends on the particular 

order in which the access takes place.

◆Result indeterminate. 

◼ Critical section

◆Multiple threads executing a segment of code, 

which can result in a race condition.

◼ What we want: Mutual exclusion

◆The property guarantees that if one thread is 

executing within the critical section, the others will 

be prevented from doing so. Operating System Concepts
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Revisit the Threading Model
◼ “Data” is a public memory segment shared by 

all threads, which may incur race condition

◼Stack is a private memory segment of a thread

◼Question: What if a thread accesses the data 

variables on the stack of another thread?

Operating System Concepts
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What are possible outputs of the program? 
void * helloFunc ( void * ptr ) {

int *data;            

data = (int *) ptr;    

printf(“I’m Thread %d \n”, *data);    

} 

int main() {

pthread_t hThread[4];  

for (int i = 0; i < 4; i++)

    pthread_create(&hThread[i], NULL, helloFunc, (void *)&i);

for (int i = 0; i < 4; i++)

pthread_join(hThread[i], NULL);

return 0;

}

注意：race condition，多个子线程T0、T1、T2、T3同时访问主线
程栈上的局部变量 i，导致读写冲突。 

Operating System Concepts
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Fix the problem by threat-local states

Operating System Concepts

void * helloFunc ( void * ptr ) {

int *data;            

data = (int *) ptr;    

printf("I'm Thread %d \n", *data);    

} 

int main() {

pthread_t hThread[4];

int thread_name[4];

for (int i = 0; i < 4; i++) {

thread_name[i] = i;

pthread_create(&hThread[i], NULL, 

helloFunc, (void *)&thread_name[i]);

    }

for (int i = 0; i < 4; i++)

pthread_join(hThread[i], NULL);

return 0;

}
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Windows Thread APIs

◼CreateThread

◼ExitThread

◼TerminateThread

◼GetExitCodeThread

◼GetCurrentThreadId - returns global ID

◼GetCurrentThread - returns handle

◼SuspendThread/ResumeThread

◼GetThreadTimes
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Windows API Thread Creation

HANDLE CreateThread (
LPSECURITY_ATTRIBUTES lpsa,
DWORD cbStack,
LPTHREAD_START_ROUTINE lpStartAddr,
LPVOID lpvThreadParm,
DWORD fdwCreate,
LPDWORD lpIDThread)

◼ lpstartAddr points to function declared as

DWORD WINAPI ThreadFunc(LPVOID)

◼ lpvThreadParm is 32-bit argument

◼ LPIDThread points to DWORD that receives thread ID
non-NULL pointer !

cbStack == 0: thread‘s

stack size defaults to

primary thread‘s size
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Windows API Thread Termination

VOID ExitThread( DWORD devExitCode )

◼ When the last thread in a process terminates, the 

process itself terminates

BOOL GetExitCodeThread (

HANDLE hThread, LPDWORD lpdwExitCode)

◼ Returns exit code or STILL_ACTIVE
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Suspending and Resuming 

Threads

◼ Each thread has suspend count

◼ Can only execute if suspend count == 0

◼ Thread can be created in suspended state

◼ DWORD ResumeThread (HANDLE hThread)

◼ DWORD SuspendThread(HANDLE hThread)

◼ Both functions return suspend count or 

0xFFFFFFFF on failure
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Example: Thread Creation

What’s Wrong?
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Example Explained

◼Main thread is process

◼When process goes, all threads go

◼Need some methods of waiting for a 

thread to finish
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Waiting for Windows* Thread

BOOL thrdDone = FALSE;

thrdDone = TRUE;

while (!thrdDone);

Not a good idea!
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Waiting for a Thread
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Waiting for Many Threads
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Notes on WaitFor* Functions

◼Handle as parameter 

◼Used for different types of objects

◼Kernel objects have two states

◆Signaled

◆Non-signaled

◼Behavior is defined by object referred to 
by handle
◆Thread: signaled means terminated
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Example: Waiting for multiple threads
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Example: HelloThreads

◼Modify the previous example code to print 

out

◆appropriate “Hello Thread”message

◆Unique thread number

✓use for-loop variable of CreateThread loop

◼Sample output:
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What’s Wrong?

What is printed for myNum?
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Hello Threads Timeline
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Race Conditions

◼Concurrent access of same variable by 
multiple threads

◆Read/Write conflict

◆Write/Write conflict

◼Most common error in concurrent programs

◼May not be apparent at all times

◼How to avoid data races?
◆Local storage

◆Control shared access with critical regions
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Hello Thread: Local Storage solution
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Threading Issues

1. Semantics of fork() and exec() system calls.

2. Thread cancellation.

3. Signal handling

4. Thread pools

5. Thread specific data

6. Scheduler Activations
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Semantics of fork() and exec()

◼Does fork() duplicate only the calling thread 

or all threads?

◼ In a Pthreads-compliant implementation, the 

fork() call always creates a new child 

process with a single thread, regardless of 

how many threads its parent may have had 

at the time of the call. 

◼Furthermore, the child's thread is a replica of 

the thread in the parent that called fork
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Thread Cancellation

◼Terminating a thread before it has finished

◼Two general approaches:

◆Asynchronous cancellation terminates the 

target thread  immediately

◆Deferred cancellation allows the target thread 

to periodically check if it should be cancelled

✓The point a thread can terminate itself is a

cancellation point.
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Thread Cancellation (Cont.)

◼With asynchronous cancellation, if the target 
thread owns some system-wide resources, the 
system may not be able to reclaim all recourses

◼With deferred cancellation, the target thread 
determines the time to terminate itself. 
Reclaiming resources is not a problem.

◼Most systems implement asynchronous 
cancellation for processes (e.g., use the kill
system call) and threads.

◼Pthread supports deferred cancellation.
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An example of deferred cancellation

Operating System Concepts

#include <stdio.h>

#include <pthread.h>

#include <sys/time.h>

#include <unistd.h>

void* thread_func(void* arg)

{

//pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, 

NULL);

int count = 0;

while(1) {

//pthread_testcancel();

printf("count = %d\n", ++count);

fflush(stdout);

sleep(1);

pthread_testcancel();

}

printf("this is a thread cancel test 111\n");

pthread_testcancel();
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printf("test 222\n");

printf("Thread cancellation requested. 

Exiting...\n");

pthread_exit(NULL);

return NULL;

}

int main()

{

pthread_t thread;

pthread_create(&thread, NULL, thread_func, NULL);

sleep(5);

pthread_cancel(thread);

printf("call pthread_cancel.\n");

pthread_join(thread, NULL);

printf("Thread canceled successfully.\n");

printf("end\n");

return 0;

}

An example of deferred cancellation
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Output of deferred cancellation example

Operating System Concepts

$ gcc -o deferred_cancellation deferred_cancellation.c -

lpthread

$ ./deferred_cancellation

count = 1                                                                                                                

count = 2                                                                                                                

count = 3

count = 4

count = 5

call pthread_cancel.

Thread canceled successfully.

end
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Signal Handling

◼Signals are used in UNIX systems to notify 
a process that a particular event has 
occurred

◼All signals follow the same pattern:

1.Signal is generated by particular event

2.Signal is delivered to a process

3.Signal is handled

◼A signal handler is used to process 
signals
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C program to illustrate User-

defined Signal Handler
#define SIGHUP  1   /* Hang up the process */ 

#define SIGINT  2   /* Interrupt the process */ 

#define SIGQUIT 3   /* Quit the process */ 

#define SIGILL  4   /* Illegal instruction. */ 

#define SIGTRAP 5   /* Trace trap. */ 

#define SIGABRT 6   /* Abort. */

#include <stdio.h>

#include <signal.h>

// Handler for SIGINT, triggered by

// Ctrl-C at the keyboard

void handle_sigint(int sig)  {

printf("Caught signal %d\n", sig);

}

int main()  {

signal(SIGINT, handle_sigint);

Operating System Concepts

for (int i=0; 1; i++) {

printf("hello world 

%d\n", i);

sleep(1);

}

return 0;

}

Try Press Ctrl+C
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Signal Handling (Cont.)

◼How to handle a signal when its target 
process has multiple threads?

◼Options:

1. Deliver the signal to the thread to which the 

signal applies

2. Deliver the signal to every thread in the 

process

3. Deliver the signal to certain threads in the 

process

4. Assign a specific thread to receive all signals 

for the process
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Thread Pools

◼Create a number of threads in a pool where 
they await work

◼Advantages:

◆Usually slightly faster to service a request with 

an existing thread than create a new thread

◆Allows the number of threads in the 

application(s) to be bound to the size of the pool
https://en.wikipedia.org/wiki/Thread_pool
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Thread Specific Data
◼Allows each thread to have its own copy of data

◼Useful when you do not have control over the 
thread creation process (i.e., when using a 
thread pool)

◼Pthreads library supports thread specific data

◼ pthread_key_create and

pthread_key_delete are used 

respectively to create and 

delete a key for thread-specific

data.

Operating System Concepts

https://en.wikipedia.org/wiki/Thread-local_storages

https://en.wikipedia.org/wiki/Thread-

local_storage#Pthreads_implementation
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Thread Scheduler Activations
◼Background: Server-version operating systems 

often use many-to-many and two-level thread 
models

◆The thread library needs to maintain the appropriate 

number of kernel threads allocated to the process

◆Requires kernel-user space communication to do it

Operating System Concepts
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Thread Scheduler Activations

◆Scheduler activations provide upcalls: a communication 

mechanism from the kernel to the user-mode thread lib

◆When the kernel knows a thread has blocked/resumed, 

it notifies the process’ run-time system about this event

◆This communication allows an application to maintain 

the correct number of available kernel threads

Operating System Concepts
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