
Chapter 4: Threads

肖 卿 俊

办公室：江宁区无线谷6号楼226办公室

电邮：csqjxiao@seu.edu.cn

主页： https://csqjxiao.github.io/PersonalPage

电话：025-52091022

mailto:csqjxiao@seu.edu.cn
https://csqjxiao.github.io/PersonalPage

Southeast University4.2Operating System Concepts

Chapter 4: Threads

◼Overview

◼Multithreading Models

◼Thread Libraries

◼Threading Issues

◼Operating System Examples

Southeast University4.3Operating System Concepts

What is a thread?

◼A thread, also known as lightweight process
(LWP), is a basic unit of CPU execution.

◼A thread has a thread ID, a program counter
(instruction pointer), a register set, and a
stack. Thus, it is similar to a process has.

A process
Threads within

a process

Southeast University4.4Operating System Concepts

Single and Multi-threaded Processes
◼A process, or heavyweight process, has a

single thread of control after its creation.

◼As more threads are created, a thread
shares with other threads in the same
process its code section, data section, and
other OS resources (e.g., files and signals).

Southeast University4.5Operating System Concepts

◼ Items shared by all threads

in a process
◼ Items private

to each thread

Southeast University4.6Operating System Concepts

Why Do We Use Threads?

Thread Usage (1)

A word processor with three threads

Model

View

Controller

MVC paradigm

◼ To simplify programs in which multiple activities go on at once.

◼ Performance gain, when there is substantial amounts of both

computing and I/O.

Southeast University4.7Operating System Concepts

Why Do We Use Threads?

Thread Usage (2)

multithreaded web server

◼ 基于HTTP协议的浏览器和Web服务器交互过程
1. 客户端浏览器向网站所在的服务器发送一个请求

2. 网站服务器接收到这个请求后进行解析

3. 浏览器中包含网页的源代码等内容（浏览器缓存中
），浏览器再对其进行解析，最终呈现结果给用户

Southeast University4.8Operating System Concepts

Why Do We Use Threads?

Thread Usage (3)
◼ Rough outline of code

for previous slide

(a) Dispatcher thread

(b) Worker thread

Note: An Event-Driven
Framework

Southeast University4.9Operating System Concepts

Benefits

◼ Responsiveness

◼ Resource Sharing

◼ Economy

◼ Utilization of MP Architectures

Southeast University4.10

Economy for Creation

◼ Compare timing of fork() and pthread_create()

◆Timings reflect 50,000 process/thread creations,

were performed with the time utility, and units are

in seconds, no optimization flags.

Operating System Concepts

Platform
fork() pthread_create()

real user sys real user sys

AMD 2.4 GHz Opteron

(8cpus/node)

41.07 60.08 9.01 0.66 0.19 0.43

IBM 1.9 GHz POWER5

p5-575 (8cpus/node)

64.24 30.78 27.68 1.75 0.69 1.10

IBM 1.5 GHz POWER4

(8cpus/node)

104.05 48.64 47.21 2.01 1.00 1.52

INTEL 2.4 GHz Xeon (2

cpus/node)

54.95 1.54 20.78 1.64 0.67 0.90

INTEL 1.4 GHz

Itanium2 (4
cpus/node)

54.54 1.07 22.22 2.03 1.26 0.67

http://www.cnblogs.com/mywolrd/archive/2009/02/04/1930708.html

http://www.cnblogs.com/mywolrd/archive/2009/02/04/1930708.html

Southeast University4.11

Economy for Context Switching

◼ Process (notes: Process

Control Block in OS Kernel)

◼ Light-weight Process

and Kernel Threads

◼ User Threads

Operating System Concepts

Lower

Cost in

Creation

and

Context

Switching

Southeast University4.12Operating System Concepts

User Threads

◼ Thread management done by user-level

threads library

◆Context switching of threads in the same

process is done in user mode

◼ Examples

- POSIX Pthreads (see scope parameter of pthread_create:

PTHREAD_SCOPE_PROCESS or PTHREAD_SCOPE_SYSTEM)

- Mach C-threads

- Solaris UI-threads
http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThread

s.html#CREATIONTERMINATION

http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html
http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html

Southeast University4.13Operating System Concepts

User Threads (Cont.)

◼ A user-level thread library provides all support
for thread creation, termination, joining, and
scheduling.

A user-level threads package

Southeast University4.14Operating System Concepts

Pros and Cons of User Threads

◼ User threads are supported at the user level.
The kernel is not aware of user threads.

◼ Because there is no kernel intervention, user
threads are usually more efficient.

◼ Unfortunately, since the kernel only recognizes
the containing process (of the threads), if one
thread is blocked, each other threads of the
same process are also blocked since the
containing process is blocked.

◼ Question: Can two user threads in a same
process run simultaneously on two different
CPU cores?

Southeast University4.15Operating System Concepts

Kernel Threads

◼Supported by the Kernel

◼Examples

- Windows 95/98/NT/2000

- Solaris

- Tru64 UNIX

- BeOS

- Linux and POSIX Thread

Southeast University4.16Operating System Concepts

Kernel Threads (Cont.)

◼Kernel threads are directly supported by the
kernel. The kernel does thread creation,
termination, joining, and scheduling in kernel
space.

◼Kernel threads are usually slower than the user
threads.

◼However, blocking one thread will not cause
other threads of the same process to block. The
kernel simply runs other threads.

◼ In a multiprocessor environment, the kernel can
schedule threads on different processors

Southeast University4.17Operating System Concepts

Implementing Threads in the Kernel

A threads package managed by the kernel

(Note: POSIX Pthreads library supports

the creation of kernel threads)
http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html

http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html

Southeast University4.18Operating System Concepts

Chapter 4: Threads

◼Overview

◼Multithreading Models

◼Threading Issues

◼Windows XP Threads

◼ Linux Threads

◼ Java Threads

◼Pthreads

◼Windows Threads API

Southeast University4.19Operating System Concepts

Multithreading Models

◼Many-to-One

◼One-to-One

◼Many-to-Many

Southeast University4.20Operating System Concepts

Many-to-One

◼Many user-level threads mapped to a single

kernel thread.

◼Used on systems that do not support kernel

threads.

Southeast University4.21Operating System Concepts

Many-to-One Model (Cont.)

Southeast University4.22Operating System Concepts

One-to-One

◼Each user-level thread maps to kernel thread

◼Examples

- Windows 95/98/NT/2000

- OS/2

Southeast University4.23Operating System Concepts

One-to-one Model (Cont.)

Southeast University4.24Operating System Concepts

Many-to-Many Model
◼Allows many user level threads to be mapped

to many kernel threads.

◼Allows the operating system to create a

sufficient number of kernel threads.

◼Windows NT/2000 with ThreadFiber package

◼Solaris 2

Southeast University4.25Operating System Concepts

Many-to-Many Model (Cont.)

Southeast University4.26Operating System Concepts

Chapter 4: Threads

◼Overview

◼Multithreading Models

◼Threading Issues

◼Windows XP Threads

◼ Linux Threads

◼ Java Threads

◼Pthreads

◼Windows Threads API

Southeast University4.27Operating System Concepts

Tasks, LWPs and Threads on Solaris 2

Solaris Process/Task Control Block

Southeast University4.28Operating System Concepts

Windows XP Threads

◼ Implements the one-to-one mapping.

◼Each thread has a corresponding thread

control block in kernel, which contains

- a thread id

- register set
ETHREAD

Create and Exit Time

Process ID

Thread Start Address

Impersonation Information

LPC Message Information

EPROCESS

Access Token

KTHREAD

Timer Information

Pending I/O Requests

Total User Time

Total Kernel Time

Thread Scheduling Information

Synchronization Information

List of Pending APCs

Timer Block and Wait Blocks

List of Objects Being Waiting On

System Service Table

TEB

KTHREAD

Thread Local Storage

Kernel Stack Information

Dispatcher Header

Trap Frame

- separate user and kernel stacks

- private data storage area

Southeast University4.29Operating System Concepts

Linux Threads

(not POSIX pthreads Library)

◼ Linux refers to them as tasks rather than

threads.

◼Thread creation is done through clone()

system call.

◼Clone() allows a child task to share the

address space of the parent task (process)

◼What is the difference between fork() and

clone()?
http://linux.die.net/man/2/clone

http://www.ibm.com/developerworks/cn/linux/kernel/l-thread/

http://linux.die.net/man/2/clone
http://www.ibm.com/developerworks/cn/linux/kernel/l-thread/

Southeast University4.30Operating System Concepts

Java Threads

◼ Java threads may be created by:

◆Extending Thread class

◆Implementing the Runnable interface

◼ Java threads are managed by the JVM.

◼ Java Thread States

Southeast University4.31Operating System Concepts

Chapter 4: Threads

◼Overview

◼Multithreading Models

◼Threading Issues

◼Windows XP Threads

◼ Linux Threads

◼ Java Threads

◼Pthreads

◼Windows Threads API

Southeast University4.32Operating System Concepts

Pthreads
◼ a POSIX standard (IEEE 1003.1c) API for

thread creation and synchronization.

◆API specifies behavior of the thread library,

◆Implementation is up to development of the library

◼Common in UNIX operating systems.

◼ Implemented over Linux operating system by

Native POSIX Thread Library (NPTL)

◆NPTL is a 1×1 threads library, in that threads

created by the user are in 1-1 correspondence

with schedulable entities (i.e., task) in the kernel
https://en.wikipedia.org/wiki/Na

tive_POSIX_Thread_Library

POSIX 1003.1 Commands：http://www.unix.com/man-page-posix-repository.php

用这个library可以在linux部署M:N的线程模型。
https://github.com/samanbarghi/uThreads

Southeast University4.33Operating System Concepts

pthread_create

◼ pthread_t * tid

◆handle or ID of created thread

◼ const pthread_attr_t *attr
◆attributes of thread to be created

◼ void *(*function) (void*)
◆function to be mapped to thread

◼ void *arg

◆single argument to function

◼ Integer return value for error code

int pthread_create(tid, attr, function, arg);

Southeast University4.34Operating System Concepts

pthread_create explained

spawn a thread running the function；

thread handle returned via pthread_t structure

◼ specify NULL to use default attributes

a single argument sent to function

◼ If no argument to function, specify NULL

check error codes!

EAGAIN – insufficient resources to create thread

EINVAL – invalid attribute

Southeast University4.35Operating System Concepts

Threads states
◼ pthread threads have two states

◆joinable and detached

◼ threads are joinable by default
◆Resources are kept until pthread_join.

◆When a joinable thread terminates, some of the
thread resources are kept allocated, and
released only when another thread performs
pthread_join on that thread.

◆can be reset with attribute or API call

◼ detached thread can not be joined

◆resources can be reclaimed at termination

◆cannot reset to be joinable

Southeast University4.36Operating System Concepts

Waiting for a thread

◼ pthread_t *tid

◆handle of joinable thread

◼ void **val_ptr

◆exit value returned by joined thread

int pthread_join(tid, val_ptr);

Southeast University4.37Operating System Concepts

pthread_join explained

calling thread waits for the thread with handle

tid to terminate

◼ only one thread can be joined

◼ thread must be joinable

exit value is returned from joined thread

◼Type returned is (void *)

◼ use NULL if no return value expected

ESRCH –thread not found

EINVAL – thread not joinable

Southeast University4.38

Example 1

Operating System Concepts

Q1: Guess what are the

possible outputs?

Q2: What if we remove the two

Pthread_join() function calls?

Note: the termination of main

thread will cause the automatic

termination of children threads

Southeast University4.39

A Quiz about fork() and pthread_create()

◼ What are the outputs of the program?

◼ Answer:
Operating System Concepts

#include <pthread.h>

#include <stdio.h>

int value = 0;

void *runner(void *param){

value = value + 10;

pthread_exit(0);

}

int main(int argc, char *argv[])

{

int pid;

pthread_t tid;

pid = fork();

if (pid == 0) {

pthread_create (&tid, NULL, runner, NULL);

pthread_join (tid, NULL);

printf ("CHILD: value = %d\n", value); /*Print 1*/

} else if (pid > 0) {

value = value - 10;

wait(NULL);

printf("PARENT: value = %d\n", value); /*Print 2*/

}

}

CHILD: value = 10

PARENT: value = -10

Southeast University4.40

Example 2

Operating System Concepts

Q1: Guess what is the possible

output

volatile int counter = 0; // shared global variable

// The volatile keyword forces the

compiler to always reads the

current value of a volatile object

from the memory location rather

than keeping its value in temporary
register at the point it is requested

main child1child2

Southeast University4.41

Discussion

◼Why not deterministic?

◼The Heart Of The Problem: Uncontrolled

Scheduling

◼What happens when executing “counter =

counter + 1;” ?

◼Understand the code sequence that the

compiler generates for the update to counter.

◼Now, you may tell the reason
Operating System Concepts

Southeast University4.42

用gcc -S命令简单验证一下
◼GCC的选项-S使GCC在执行完汇编后停止
$ gcc -S t1.c -o t1.s // 汇编代码
$ gcc -c t1.s -o t1.o // 二进制代码
$ ld t1.o -o t1 // 链接后可执行代码

◼看t1.s汇编代码

Operating System Concepts

_mythread: ## @mythread

.cfi_startproc

…

movl _counter(%rip), %eax

addl $1, %eax

movl %eax, _counter(%rip)

…

.cfi_endproc

-- End function

_main: ## @main

.cfi_startproc

…

.cfi_endproc

.section

__TEXT,__cstring,cstring_literals

…

.globl _counter ## @counter

Southeast University4.43

Uncontrolled Scheduling

Operating System Concepts

movl _counter(%rip), %eax

%rip-relative addressing for global variables
x86-64 code often refers to globals using %rip-
relative addressing: a global variable named a is
referenced as a(%rip). This style of reference
supports position-independent code (PIC), a
security feature. It specifically supports position-
independent executables (PIEs), which are
programs that work independently of where their
code is loaded into memory.

Thread1 Thread2

Southeast University4.44

Uncontrolled Scheduling
◼ Race condition

◆Several processes (threads) access and

manipulate the same data concurrently and the

outcome of the execution depends on the particular

order in which the access takes place.

◆Result indeterminate.

◼ Critical section

◆Multiple threads executing a segment of code,

which can result in a race condition.

◼ What we want: Mutual exclusion

◆The property guarantees that if one thread is

executing within the critical section, the others will

be prevented from doing so. Operating System Concepts

Southeast University4.45

Revisit the Threading Model
◼ “Data” is a public memory segment shared by

all threads, which may incur race condition

◼Stack is a private memory segment of a thread

◼Question: What if a thread accesses the data

variables on the stack of another thread?

Operating System Concepts

Southeast University4.46

What are possible outputs of the program?
void * helloFunc (void * ptr) {

int *data;

data = (int *) ptr;

printf(“I’m Thread %d \n”, *data);

}

int main() {

pthread_t hThread[4];

for (int i = 0; i < 4; i++)

 pthread_create(&hThread[i], NULL, helloFunc, (void *)&i);

for (int i = 0; i < 4; i++)

pthread_join(hThread[i], NULL);

return 0;

}

注意：race condition，多个子线程T0、T1、T2、T3同时访问主线
程栈上的局部变量 i，导致读写冲突。

Operating System Concepts

Southeast University4.47

Fix the problem by threat-local states

Operating System Concepts

void * helloFunc (void * ptr) {

int *data;

data = (int *) ptr;

printf("I'm Thread %d \n", *data);

}

int main() {

pthread_t hThread[4];

int thread_name[4];

for (int i = 0; i < 4; i++) {

thread_name[i] = i;

pthread_create(&hThread[i], NULL,

helloFunc, (void *)&thread_name[i]);

 }

for (int i = 0; i < 4; i++)

pthread_join(hThread[i], NULL);

return 0;

}

Southeast University4.48Operating System Concepts

Chapter 4: Threads

◼Overview

◼Multithreading Models

◼Threading Issues

◼Windows XP Threads

◼ Linux Threads

◼ Java Threads

◼Pthreads

◼Windows Thread APIs

Southeast University4.49Operating System Concepts

Windows Thread APIs

◼CreateThread

◼ExitThread

◼TerminateThread

◼GetExitCodeThread

◼GetCurrentThreadId - returns global ID

◼GetCurrentThread - returns handle

◼SuspendThread/ResumeThread

◼GetThreadTimes

Southeast University4.50Operating System Concepts

Windows API Thread Creation

HANDLE CreateThread (
LPSECURITY_ATTRIBUTES lpsa,
DWORD cbStack,
LPTHREAD_START_ROUTINE lpStartAddr,
LPVOID lpvThreadParm,
DWORD fdwCreate,
LPDWORD lpIDThread)

◼ lpstartAddr points to function declared as

DWORD WINAPI ThreadFunc(LPVOID)

◼ lpvThreadParm is 32-bit argument

◼ LPIDThread points to DWORD that receives thread ID
non-NULL pointer !

cbStack == 0: thread‘s

stack size defaults to

primary thread‘s size

Southeast University4.51Operating System Concepts

Windows API Thread Termination

VOID ExitThread(DWORD devExitCode)

◼ When the last thread in a process terminates, the

process itself terminates

BOOL GetExitCodeThread (

HANDLE hThread, LPDWORD lpdwExitCode)

◼ Returns exit code or STILL_ACTIVE

Southeast University4.52Operating System Concepts

Suspending and Resuming

Threads

◼ Each thread has suspend count

◼ Can only execute if suspend count == 0

◼ Thread can be created in suspended state

◼ DWORD ResumeThread (HANDLE hThread)

◼ DWORD SuspendThread(HANDLE hThread)

◼ Both functions return suspend count or

0xFFFFFFFF on failure

Southeast University4.53Operating System Concepts

Example: Thread Creation

What’s Wrong?

Southeast University4.54Operating System Concepts

Example Explained

◼Main thread is process

◼When process goes, all threads go

◼Need some methods of waiting for a

thread to finish

Southeast University4.55Operating System Concepts

Waiting for Windows* Thread

BOOL thrdDone = FALSE;

thrdDone = TRUE;

while (!thrdDone);

Not a good idea!

Southeast University4.56Operating System Concepts

Waiting for a Thread

Southeast University4.57Operating System Concepts

Waiting for Many Threads

Southeast University4.58Operating System Concepts

Notes on WaitFor* Functions

◼Handle as parameter

◼Used for different types of objects

◼Kernel objects have two states

◆Signaled

◆Non-signaled

◼Behavior is defined by object referred to
by handle
◆Thread: signaled means terminated

Southeast University4.59Operating System Concepts

Example: Waiting for multiple threads

Southeast University4.60Operating System Concepts

Example: HelloThreads

◼Modify the previous example code to print

out

◆appropriate “Hello Thread”message

◆Unique thread number

✓use for-loop variable of CreateThread loop

◼Sample output:

Southeast University4.61Operating System Concepts

What’s Wrong?

What is printed for myNum?

Southeast University4.62Operating System Concepts

Hello Threads Timeline

Southeast University4.63Operating System Concepts

Race Conditions

◼Concurrent access of same variable by
multiple threads

◆Read/Write conflict

◆Write/Write conflict

◼Most common error in concurrent programs

◼May not be apparent at all times

◼How to avoid data races?
◆Local storage

◆Control shared access with critical regions

Southeast University4.64Operating System Concepts

Hello Thread: Local Storage solution

Southeast University4.65◼ Operating System Concepts

◼ Chapter 4: Threads

◼Overview

◼Multithreading Models

◼Threading Issues

◼Windows XP Threads

◼ Linux Threads

◼ Java Threads

◼Pthreads

◼Windows Threads API

Southeast University4.66Operating System Concepts

Threading Issues

1. Semantics of fork() and exec() system calls.

2. Thread cancellation.

3. Signal handling

4. Thread pools

5. Thread specific data

6. Scheduler Activations

Southeast University4.67Operating System Concepts

Semantics of fork() and exec()

◼Does fork() duplicate only the calling thread

or all threads?

◼ In a Pthreads-compliant implementation, the

fork() call always creates a new child

process with a single thread, regardless of

how many threads its parent may have had

at the time of the call.

◼Furthermore, the child's thread is a replica of

the thread in the parent that called fork

Southeast University4.68Operating System Concepts

Thread Cancellation

◼Terminating a thread before it has finished

◼Two general approaches:

◆Asynchronous cancellation terminates the

target thread immediately

◆Deferred cancellation allows the target thread

to periodically check if it should be cancelled

✓The point a thread can terminate itself is a

cancellation point.

Southeast University4.69Operating System Concepts

Thread Cancellation (Cont.)

◼With asynchronous cancellation, if the target
thread owns some system-wide resources, the
system may not be able to reclaim all recourses

◼With deferred cancellation, the target thread
determines the time to terminate itself.
Reclaiming resources is not a problem.

◼Most systems implement asynchronous
cancellation for processes (e.g., use the kill
system call) and threads.

◼Pthread supports deferred cancellation.

Southeast University4.70

An example of deferred cancellation

Operating System Concepts

#include <stdio.h>

#include <pthread.h>

#include <sys/time.h>

#include <unistd.h>

void* thread_func(void* arg)

{

//pthread_setcancelstate(PTHREAD_CANCEL_DISABLE,

NULL);

int count = 0;

while(1) {

//pthread_testcancel();

printf("count = %d\n", ++count);

fflush(stdout);

sleep(1);

pthread_testcancel();

}

printf("this is a thread cancel test 111\n");

pthread_testcancel();

Southeast University4.71Operating System Concepts

printf("test 222\n");

printf("Thread cancellation requested.

Exiting...\n");

pthread_exit(NULL);

return NULL;

}

int main()

{

pthread_t thread;

pthread_create(&thread, NULL, thread_func, NULL);

sleep(5);

pthread_cancel(thread);

printf("call pthread_cancel.\n");

pthread_join(thread, NULL);

printf("Thread canceled successfully.\n");

printf("end\n");

return 0;

}

An example of deferred cancellation

Southeast University4.72

Output of deferred cancellation example

Operating System Concepts

$ gcc -o deferred_cancellation deferred_cancellation.c -

lpthread

$./deferred_cancellation

count = 1

count = 2

count = 3

count = 4

count = 5

call pthread_cancel.

Thread canceled successfully.

end

Southeast University4.73Operating System Concepts

Signal Handling

◼Signals are used in UNIX systems to notify
a process that a particular event has
occurred

◼All signals follow the same pattern:

1.Signal is generated by particular event

2.Signal is delivered to a process

3.Signal is handled

◼A signal handler is used to process
signals

Southeast University4.74

C program to illustrate User-

defined Signal Handler
#define SIGHUP 1 /* Hang up the process */

#define SIGINT 2 /* Interrupt the process */

#define SIGQUIT 3 /* Quit the process */

#define SIGILL 4 /* Illegal instruction. */

#define SIGTRAP 5 /* Trace trap. */

#define SIGABRT 6 /* Abort. */

#include <stdio.h>

#include <signal.h>

// Handler for SIGINT, triggered by

// Ctrl-C at the keyboard

void handle_sigint(int sig) {

printf("Caught signal %d\n", sig);

}

int main() {

signal(SIGINT, handle_sigint);

Operating System Concepts

for (int i=0; 1; i++) {

printf("hello world

%d\n", i);

sleep(1);

}

return 0;

}

Try Press Ctrl+C

Southeast University4.75Operating System Concepts

Signal Handling (Cont.)

◼How to handle a signal when its target
process has multiple threads?

◼Options:

1. Deliver the signal to the thread to which the

signal applies

2. Deliver the signal to every thread in the

process

3. Deliver the signal to certain threads in the

process

4. Assign a specific thread to receive all signals

for the process

Southeast University4.76Operating System Concepts

Thread Pools

◼Create a number of threads in a pool where
they await work

◼Advantages:

◆Usually slightly faster to service a request with

an existing thread than create a new thread

◆Allows the number of threads in the

application(s) to be bound to the size of the pool
https://en.wikipedia.org/wiki/Thread_pool

Southeast University4.77

Thread Specific Data
◼Allows each thread to have its own copy of data

◼Useful when you do not have control over the
thread creation process (i.e., when using a
thread pool)

◼Pthreads library supports thread specific data

◼ pthread_key_create and

pthread_key_delete are used

respectively to create and

delete a key for thread-specific

data.

Operating System Concepts

https://en.wikipedia.org/wiki/Thread-local_storages

https://en.wikipedia.org/wiki/Thread-

local_storage#Pthreads_implementation

Southeast University4.78

Thread Scheduler Activations
◼Background: Server-version operating systems

often use many-to-many and two-level thread
models

◆The thread library needs to maintain the appropriate

number of kernel threads allocated to the process

◆Requires kernel-user space communication to do it

Operating System Concepts

Southeast University4.79

Thread Scheduler Activations

◆Scheduler activations provide upcalls: a communication

mechanism from the kernel to the user-mode thread lib

◆When the kernel knows a thread has blocked/resumed,

it notifies the process’ run-time system about this event

◆This communication allows an application to maintain

the correct number of available kernel threads

Operating System Concepts

	Slide 1: Chapter 4: Threads
	Slide 2: Chapter 4: Threads
	Slide 3: What is a thread?
	Slide 4: Single and Multi-threaded Processes
	Slide 5
	Slide 6: Why Do We Use Threads? Thread Usage (1)
	Slide 7: Why Do We Use Threads? Thread Usage (2)
	Slide 8: Why Do We Use Threads? Thread Usage (3)
	Slide 9: Benefits
	Slide 10: Economy for Creation
	Slide 11: Economy for Context Switching
	Slide 12: User Threads
	Slide 13: User Threads (Cont.)
	Slide 14: Pros and Cons of User Threads
	Slide 15: Kernel Threads
	Slide 16: Kernel Threads (Cont.)
	Slide 17: Implementing Threads in the Kernel
	Slide 18: Chapter 4: Threads
	Slide 19: Multithreading Models
	Slide 20: Many-to-One
	Slide 21: Many-to-One Model (Cont.)
	Slide 22: One-to-One
	Slide 23: One-to-one Model (Cont.)
	Slide 24: Many-to-Many Model
	Slide 25: Many-to-Many Model (Cont.)
	Slide 26: Chapter 4: Threads
	Slide 27: Tasks, LWPs and Threads on Solaris 2
	Slide 28: Windows XP Threads
	Slide 29: Linux Threads (not POSIX pthreads Library)
	Slide 30: Java Threads
	Slide 31: Chapter 4: Threads
	Slide 32: Pthreads
	Slide 33: pthread_create
	Slide 34: pthread_create explained
	Slide 35: Threads states
	Slide 36: Waiting for a thread
	Slide 37: pthread_join explained
	Slide 38: Example 1
	Slide 39: A Quiz about fork() and pthread_create()
	Slide 40: Example 2
	Slide 41: Discussion
	Slide 42: 用gcc -S命令简单验证一下
	Slide 43: Uncontrolled Scheduling
	Slide 44: Uncontrolled Scheduling
	Slide 45: Revisit the Threading Model
	Slide 46: What are possible outputs of the program?
	Slide 47: Fix the problem by threat-local states
	Slide 48: Chapter 4: Threads
	Slide 49: Windows Thread APIs
	Slide 50: Windows API Thread Creation
	Slide 51: Windows API Thread Termination
	Slide 52: Suspending and Resuming Threads
	Slide 53: Example: Thread Creation
	Slide 54: Example Explained
	Slide 55: Waiting for Windows* Thread
	Slide 56: Waiting for a Thread
	Slide 57: Waiting for Many Threads
	Slide 58: Notes on WaitFor* Functions
	Slide 59: Example: Waiting for multiple threads
	Slide 60: Example: HelloThreads
	Slide 61: What’s Wrong?
	Slide 62: Hello Threads Timeline
	Slide 63: Race Conditions
	Slide 64: Hello Thread: Local Storage solution
	Slide 65: Chapter 4: Threads
	Slide 66: Threading Issues
	Slide 67: Semantics of fork() and exec()
	Slide 68: Thread Cancellation
	Slide 69: Thread Cancellation (Cont.)
	Slide 70: An example of deferred cancellation
	Slide 71: An example of deferred cancellation
	Slide 72: Output of deferred cancellation example
	Slide 73: Signal Handling
	Slide 74: C program to illustrate User-defined Signal Handler
	Slide 75: Signal Handling (Cont.)
	Slide 76: Thread Pools
	Slide 77: Thread Specific Data
	Slide 78: Thread Scheduler Activations
	Slide 79: Thread Scheduler Activations

