
Chapter 5: CPU Scheduling

肖 卿 俊
办公室：江宁区无线谷6号楼226办公室

电邮：csqjxiao@seu.edu.cn
主页： https://csqjxiao.github.io/PersonalPage

电话：025-52091022

mailto:csqjxiao@seu.edu.cn
https://csqjxiao.github.io/PersonalPage

Southeast University5.2Operating System Concepts

Chapter 5: CPU Scheduling

nBasic Concepts
nScheduling Criteria
nScheduling Algorithms
nReal System Examples
nThread Scheduling
nAlgorithm Evaluation
nMultiple-Processor Scheduling

Southeast University5.3Operating System Concepts

Basic Concepts

nMaximum CPU utilization
obtained with
multiprogramming

nA Fact: Process execution
consists of an alternating
sequence of CPU
execution and I/O wait,
called CPU–I/O Burst
Cycle

Southeast University5.4Operating System Concepts

CPU-I/O Burst Cycle

nProcess execution
repeats the CPU burst
and I/O burst cycle.

nWhen a process begins
an I/O burst, another
process can use the
CPU for a CPU burst.

Southeast University5.5Operating System Concepts

CPU-bound and I/O-bound
nA process is CPU-bound if it generates I/O

requests infrequently, using more of its time
doing computation.

nA process is I/O-bound if it spends more of its
time to do I/O than it spends doing computation.

nA CPU-bound process might have a few very
long CPU bursts, while an I/O-bound process
typically has many short CPU bursts

Southeast University5.6Operating System Concepts

CPU Scheduler
nWhen the CPU is idle, the OS must select

another process to run.
nThis selection process is carried out by the

short-term scheduler (or CPU scheduler).
nThe CPU scheduler selects a process from the

ready queue and allocates the CPU to it.
nThe ready queue does not have to be a FIFO

one. There are many ways to organize the
ready queue.

LTS (Long-Term
Scheduling)，长期调
度（也称为Job调度）

STS (Short–Term
Scheduling)，短期调度
（也称为CPU调度）

STS

STS

STS

LTS

Southeast University5.7Operating System Concepts

Circumstances that scheduling
may take place

1. A process switches from the running state
to the waiting state (e.g., doing for I/O)

4

1

23

Southeast University5.8Operating System Concepts

Circumstances that scheduling
may take place

2. A process switches from the running state
to the ready state (e.g., an interrupt occurs)

4

1

23

Southeast University5.9Operating System Concepts

Circumstances that scheduling
may take place

3. A process switches from the waiting state
to the ready state (e.g., I/O completion)

4

1

23

Southeast University5.10Operating System Concepts

Circumstances that scheduling
may take place

4. A process terminates

4

1

23

Southeast University5.11Operating System Concepts

Non-preemptive vs. Preemptive
nNon-preemptive scheduling: scheduling

occurs when a process voluntarily leave the
CPU resource. It either enters the waiting state
(case 1) or terminates (case 4).
uSimple, but very efficient with less context switch
u对应以前提过的多道系统（multi-programed OS）

4

1
2

3

Southeast University5.12Operating System Concepts

nPreemptive scheduling (抢占式调度):
scheduling occurs in all possible cases.
uWhat if the running process is in critical section

modifying some shared data? There is a possibility
of race condition. Mutual exclusion of accessing
critical section may be violated.

uThe kernel must pay special attention to this
situation and, hence, is more complex

Operating System Concepts

4

1
2

3

Southeast University5.13Operating System Concepts

Dispatcher
nDispatcher module (分配器) gives control of the

CPU to the process selected by the short-term
scheduler (调度器); this involves:
uswitching execution context (save & reload)
uswitching to user mode
ujumping to the proper location in the user program to

restart that program

nDispatch latency – time it takes for dispatcher to
stop one process and start another running.

Southeast University5.14Operating System Concepts

Chapter 6: CPU Scheduling

nBasic Concepts
nScheduling Criteria
nScheduling Algorithms
nReal System Examples
nThread Scheduling
nAlgorithm Evaluation
nMultiple-Processor Scheduling

Southeast University5.15

Separation of Policy and Mechanism
n “Why and What” vs. “How”
nObjectives and strategies vs. data structures

uhardware and software implementation issues.
nProcess abstraction vs. Process machinery

Operating System Concepts

CPU Scheduling Policy/AlgorithmProcess Data Structures

Southeast University5.16

Scheduling: Policy and Mechanism
n Scheduling policy answers the question:

uWhich process/thread, among all those ready to run, should
be given the chance to run next? In what order do the
processes/threads get to run? For how long?

n Mechanisms are the tools for supporting the
process/thread abstractions and affect how the
scheduling policy can be implemented (this is review)
uHow the process or thread is represented to the system -

process or thread control blocks.
uWhat happens on a context switch.
uWhen do we get the chance to make these scheduling

decisions (timer interrupts, thread operations that yield or
block, user program system calls)

Operating System Concepts

Southeast University5.17

CPU Scheduling Policy

Operating System Concepts

n The scheduler’s moves are dictated by a
scheduling policy

n The CPU scheduler makes a sequence of “moves”
that determines the interleaving of processes
uPrograms use process synchronization to prevent

“bad moves”
u…but otherwise scheduling choices appear (to the

program) to be nondeterministic.

Southeast University5.18Operating System Concepts

Scheduling Criteria
nBefore presenting detailed scheduling policies,

we discuss how to evaluate the “goodness” of a
scheduling policy.

nThere are many criteria for comparing different
scheduling policies. Here are five common ones
uCPU utilization (CPU利用率)
uThroughput (执行任务的吞吐量)
uTurnaround time (进程的周转时间)
uWaiting time (进程的等待时间)
uResponse time (对用户的响应时间)

Southeast University5.19Operating System Concepts

CPU Utilization
nWe want to keep the CPU as busy as possible.
nCPU utilization ranges from 0 to 100 percent.

Normally 40% is lightly loaded and 90% or
higher is heavily loaded.

nYou can bring up a CPU usage meter to see
CPU utilization on your system.

Southeast University5.20Operating System Concepts

Throughput
nThe number of processes completed per time

unit is called throughput.
nHigher throughput means more jobs get done.
nHowever, this criteria is affected by the

characteristics of processes.
uFor long processes, this rate may be one job per

hour, and, for short jobs, this rate may be 10 per
minute.

Southeast University5.21Operating System Concepts

Turnaround Time
nThe time period between job submission to

completion is the turnaround time.
nFrom a user’s point of view, turnaround time

is more important than CPU utilization and
throughput.

nTurnaround time is the sum of
uWaiting time before

entering the system
uWaiting time in the

ready queue
uWaiting time in all

other events (e.g., I/O)
uBurst time, i.e., the

process actually
running on the CPU

Southeast University5.22Operating System Concepts

CPU Waiting Time
nCPU waiting time (or waiting time for short)

is the sum of the periods that a process
spends waiting in the ready queue.

nWhy only ready queue?
uCPU scheduling algorithms do not affect the

amount of the waiting time during which a
process waits for I/O and other events.

uHowever, CPU
scheduling algorithms
do affect the time that
a process stays in the
ready queue

Southeast University5.23Operating System Concepts

Response Time
nThe time from the submission of a request (in

an interactive system) to the first response is
called response time. It does not include the
time that it takes to output the response.
n For example, in front of your workstation, you perhaps

care more about the time between hitting the Return key
and getting your first output (e.g., response time) than
the time from hittingthe Return key to the completion of
your program (e.g., turnaround time).

Southeast University5.24Operating System Concepts

CPU Scheduling Optimization Criteria

nMax CPU utilization
nMax throughput

nMin turnaround time
nMin waiting time
nMin response time

Southeast University5.25Operating System Concepts

Chapter 6: CPU Scheduling

nBasic Concepts
nScheduling Criteria
nScheduling Algorithms
nReal System Examples
nThread Scheduling
nAlgorithm Evaluation
nMultiple-Processor Scheduling

Southeast University5.26Operating System Concepts

Scheduling Algorithms
nWe will discuss a number of scheduling

algorithms (or scheduling policies):
uFirst-Come, First-Served (FCFS)
uRound-Robin
uLottery Scheduling (with demonstration code)
uShortest-Job-First (SJF)
uPriority
uMultilevel Queue
uMultilevel Feedback Queue

Southeast University5.27Operating System Concepts

First-Come, First-Served (FCFS)
Scheduling

nThe process that requests the CPU first is
allocated the CPU first.

nThis can easily be implemented using a
FIFO (First In First Out) queue.

nFCFS is not preemptive. Once a process
has the CPU, it will occupy the CPU until the
process completes or voluntarily enters the
wait state.

Southeast University5.28Operating System Concepts

FCFS Scheduling (Cont.)
Process Burst Time

 P1 24
P2 3
P3 3

nSuppose that the processes arrive in the order:
P1 , P2 , P3
The Gantt Chart for the schedule is:

P1 P2 P3

24 27 300

Waiting time?Average waiting time?

nWaiting time for P1 = 0; P2 = 24; P3 = 27
nAverage waiting time: (0 + 24 + 27)/3 = 17

Southeast University5.29Operating System Concepts

FCFS Scheduling (Cont.)

P1P3P2

63 300

Suppose that the processes arrive in the order
P2 , P3 , P1 .

nThe Gantt chart for the schedule is:

nWaiting time for P1 = 6; P2 = 0; P3 = 3
nAverage waiting time: (6 + 0 + 3)/3 = 3
nMuch better than previous case.
nConvoy effect short process behind long process

Southeast University5.30Operating System Concepts

FCFS Problems
n It is easy to have the convoy effect: all the

processes wait for the one big process to
get off the CPU.

nConsider a CPU-bound process running with
many I/O-bound process.

n It is in favor of long processes and may not
be fair to those short ones. What if your 1-
minute job is behind a 10-hour job?

n It is troublesome for time-sharing systems,
where each user needs to get a share of the
CPU at regular intervals.

Southeast University5.31Operating System Concepts

Round Robin (RR) (1)
nRR is similar to FCFS, except that each

process is assigned a time quantum.
nAll processes in the ready queue is a FIFO list.
nWhen CPU is free, the scheduler picks the first

and lets it run for one time quantum (or slice)
First-Come, First-Served Scheduling Round Robin Scheduling

Southeast University5.32Operating System Concepts

Round Robin (RR) (2)
n If that process uses CPU for less than one time

quantum, it is moved to the of the waiting list.
nOtherwise, when one time quantum is up, that

process is preempted by the scheduler and
moved to the tail of the ready queue, a FIFO list

First-Come, First-Served Scheduling Round Robin Scheduling

Southeast University5.33Operating System Concepts

Example of RR with Time Quantum
= 20

Process Burst Time
P1 53
P2 17
P3 68
P4 24

nThe Gantt chart is:
P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

Southeast University5.34Operating System Concepts

RR Scheduling: Some Issues
n If time quantum is too large (i.e., larger than all

the CPU bursts), RR reduces to FCFS
n If time quantum is too small (smaller than all the

CPU bursts), RR becomes processor sharing
nContext switching may affect RR’s performance

uShorter time quantum means more context
switches

nTurnaround time also depends on the size of
time quantum.

n In general, 80% of the CPU bursts should be
shorter than the time quantum

Southeast University5.35Operating System Concepts

Time Quantum and
Context Switch Time

nContext switching may affect RR’s performance
uShorter time quantum means more context

switches

Southeast University5.36Operating System Concepts

Turnaround Time Varies With The
Time Quantum

§ When time quantum = 1,
Turnaround of P1 = 15
Turnaround of P2 = 9
Turnaround of P3 = 3
Turnaround of P4 = 17
Average Turnaround = 11

§ If using SJF (P3, P2, P1, P4)
Turnaround of P1 = 10
Turnaround of P2 = 4
Turnaround of P3 = 1
Turnaround of P4 = 17
Average Turnaround = 8

Southeast University5.38

Lottery Scheduling

Operating System Concepts

nRR gives a roughly equal share of CPU to all
ready processes

nLottery scheduler is a proportional-share
scheduler (fair-share scheduler)

n Instead of optimizing for turnaround or
response time, a scheduler might instead try to
guarantee that each job obtain a certain
percentage of CPU time

Ticket holder gets CPU
until next drawing

T=30 T=15 T=25 T=30

P₂
15%

P₀
30%

P₄
30%

P₃
25%

Issue 100 Lottery Tickets

Southeast University5.39

Lottery Scheduling (cont.)

Operating System Concepts

nBasic idea
uEvery so often, hold a lottery to determine which

process should get to run next;
uProcesses that should run more often should be

given more chances to win the lottery.

nTickets
uare used to represent

the share of a resource
that a process (or user
or whatever) should
receive.

Southeast University5.40

A Simple Unfairness Metric

Operating System Concepts

nSuppose:
uTwo jobs competing against one another, each with

the same number of tickets and the same run time.

nAn unfairness metric U:
uThe time the first job completes divided by the time

that the second job completes.
uWith a perfect fair scheduler, two jobs should finish

at roughly the same time, i.e., U=1.

Southeast University5.41

A Simple Unfairness Metric

Operating System Concepts

Only as the jobs run for a significant number of
time slices does the lottery scheduler approach
the desired outcome.

Lottery scheduling is probabilistic.

Southeast University5.42

Lottery Scheduling: Summary

Operating System Concepts

nLottery scheduling has not achieved wide-
spread adoption as CPU schedulers.
uTicket assignment is a hard problem.

nHowever, it is useful in domains where this
problem is relatively easy to solve.
uVMWare: You might like to assign one-quarter of

your CPU cycles to the Windows VM and the rest to
your base Linux installation

Southeast University5.43

Lottery Demonstration Code

Operating System Concepts

int gtickets = 0; // global ticket count
struct node_t {

int tickets;
struct node_t *next;

};
struct node_t *head = NULL;
void insert(int tickets) {

struct node_t *tmp =
malloc(sizeof(struct node_t));

assert(tmp != NULL);
tmp->tickets = tickets;
tmp->next = head;
head = tmp;
gtickets += tickets;

}

int main(int argc, char *argv[]) {
……
// populate list with some number of jobs
insert(50); insert(100); insert(25);
for (int i = 0; i < loops; i++) {

int counter = 0;
int winner = random() % gtickets;
struct node_t *current = head;
while (current) {

counter = counter + current->tickets;
if (counter > winner) break;
current = current->next;

}
printf("winner: %d %d\n\n", winner,

current->tickets);
}

Southeast University5.44Operating System Concepts

Shortest-Job-First (SJF) Scheduling
nAssociate with each process the length of its

next CPU burst. Use these lengths to schedule
the process with the shortest time.

nWhen a process must be selected from the
ready queue, the process with the smallest
next CPU burst is selected.
nThus, organize the ready queue as a min heap, so

that the processes in the ready queue are sorted
by their CPU burst lengths, to avoid convoy effect.

Southeast University5.45Operating System Concepts

Shortest-Job-First Scheduling (Cont.)
nSJF can be non-preemptive or preemptive.

uNon-preemptive – once CPU given to the process it
cannot be preempted until completes its CPU burst.

uPreemptive – if a new process arrives (or enters the
ready queue) with CPU burst length less than
remaining time of current executing process, preempt

uThis scheme is known as the Shortest-Remaining
-Time-First (SRTF).

Southeast University5.46Operating System Concepts

nEvery time we make
a short job before a
long job, we reduce
average waiting time.

nWe may switch out of
order jobs until all
jobs are in order.

n If all the jobs are
sorted, job switching
is impossible.

SJF can be proved optimal – It gives
minimum average waiting time for a

given set of processes.

Southeast University5.47Operating System Concepts

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

nSJF (non-preemptive)

nAverage waiting time = (0 + 6 + 3 + 7)/4 = 4

An Example of Non-Preemptive SJF

P1 P3 P2

73 160

P4

8 12

Southeast University5.48Operating System Concepts

An Example of Preemptive SJF
Process Arrival Time Burst Time

P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

nSJF (preemptive)

nAverage waiting time = (9 + 1 + 0 + 2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

Southeast University5.49Operating System Concepts

But How Do We Know the
Next CPU Burst of a Process?

nWithout a good answer to this question,
SJF cannot be used for CPU scheduling.

nWe try to predict the next CPU burst!

nCan be done by using the length of
previous CPU bursts, using exponential
averaging.

!"#$%C#DD()
G+D,-%.#CDDDDL)

012P4D567C#U4DD$92D4:#DD.;<1#=2#>%?4#>DD4:#0#DD@#4DDDDA)
012P4D567DD9$<#CB:DDDD;?41;<DD4:#0#DD@#4DDDDG)

G

≤≤
+

αα
τ !

"#
! !"

() !"#" !!! " ταατ −+=+

Southeast University5.50Operating System Concepts

Two Extreme Examples of
Exponential Averaging

nWhen a = 0,
utn+1 = tn
uRecent history does not count.

nWhen a = 1,
u tn+1 = tn
uOnly the actual last CPU burst counts.

() !"#" !!! " ταατ −+=+

Southeast University5.51Operating System Concepts

Expand Exponential Averaging Formula

n If we expand the formula, we get:
tn+1 = a tn + (1 - a) a tn-1 + … + (1 - a)j a tn-j + …
 + (1 - a)n+1 t0

uThen, tn+1 is a linear combination of t0, t1, t2, …, tn

nSince both a and (1 - a) are no more than 1,
the (n- j)th term has the weight (1 - a)j a, which
decreases exponentially as the index j grows

() !"#" !!! " ταατ −+=+

Southeast University5.52Operating System Concepts

An Example of Predicting the
Length of the Next CPU Burst

Assume a =0.5

What are predicted values?

() !"#" !!! " ταατ −+=+

Southeast University5.53Operating System Concepts

An Example of Predicting the
Length of the Next CPU Burst

Assume a =0.5

Question: How to train the model parameter a?

() !"#" !!! " ταατ −+=+

Southeast University5.54

Exponential averaging is just one
time series prediction tool. There are
many others, e.g., Recurrent Neural

Networks (RNN)

Operating System Concepts

nThe seq2seq loss function L is
defined based on the sum of
prediction errors of all time steps

Model
State 𝑎!"#

Observations 𝑥!"#

Predictions 𝑦!"#

Discrete Time 0, 1, 2, …, t, t+1, ...

() !"#" !!! " ταατ −+=+

Southeast University5.55Operating System Concepts

SJF Problems

n It is difficult to estimate the next burst time
value accurately.

nSJF is in favor of short jobs. As a result,
some long jobs may not have a chance to
run at all. This is called starvation.

Southeast University5.56Operating System Concepts

Priority Scheduling
nEach process has a priority.
nPriority may be decided internally or externally:

uinternal priority: determined by time limits, memory
requirement, # of files, and so on.

uexternal priority: not controlled by the OS (e.g.,
importance of the process)

nThe scheduler always
picks the process (in
ready queue) with the
highest priority to run.
nThe lesser the numeric

value of priority, the higher
the priority of the process

Southeast University5.57Operating System Concepts

Priority Scheduling (Cont.)
nFCFS and SJF can be regarded as special

cases of priority scheduling. (Why?)
nPriority scheduling can be non-preemptive

or preemptive. An example
of non-preemptive SJF:
nThe lesser the numeric

value of priority, the higher
the priority of the process

uP1 has the lowest
arrival time so it is
scheduled first.

uNext process P4
arrives at time=2.…

Southeast University5.58Operating System Concepts

Priority Scheduling (Cont.)
nWith preemptive priority scheduling, if the

newly arrived process has a higher priority
than the running one, the latter is preempted.

nAn example:

nGantt chat:

Southeast University5.59Operating System Concepts

Aging
n Indefinite block (or starvation) may occur: a low

priority process may never have a chance to
run

nAging (gradually increases the priority of
processes that wait in system for a long time) is
a technique to overcome starvation problem.
nExample: If 0 is the highest (resp., lowest) priority,

we could decrease (resp., increase) the priority of a
waiting process by 1 each fixed period (e.g. minute)

Southeast University5.60

A Short Recap
Average Turnaround
Time

Response Time Fairness

FCFS Bad, Convoy effect Bad, convoy effect Bad

Round
Robin

Bad, change with time
quantum Good Good

Lottery Bad, any policy that
seeks fairness is bad
on performance

Probabilistic, so no
guarantee on the
worst case

Better and more
flexible, but ticket
assignment is hard

SJF Provably optimal Bad Bad, essentially a
priority scheduler
that favors short jobs

Priority
Scheduling
(I/O bound >
CPU bound)

Could be good, if higher
priority is given to
processes with shorter
CPU bursts

Bad, a low-priority
process may not be
executed after a
long time

Bad, have starvation
problem, can be
mitigated by aging

Operating System Concepts

Can we combine the advantages of SJF and Round Robin?

Southeast University5.61Operating System Concepts

Multilevel Queue
nReady queue is partitioned into separate

queues:
uforeground (interactive)
ubackground (batch)

nEach process is assigned permanently to one
queue based on some properties of the process
(e.g., memory usage, priority, process type)

nEach queue has its own scheduling algorithm,
uforeground: RR for good fairness and response time
ubackground: FCFS for simplicity

RR

FCFS

Southeast University5.62Operating System Concepts

nA process P can
run only if all
queues above the
queue that
contains P are
empty.

nWhen a process
is running and a
process in a
higher priority
queue comes in,
the running
process is
preempted.

Southeast University5.63Operating System Concepts

Multilevel Queue (Cont.)

nScheduling must be done between the
queues.
uFixed priority scheduling; (i.e., serve all from

foreground then from background). Possibility
of starvation.

uLottery Scheduling – each queue gets a certain
amount of CPU time which it can schedule
amongst its processes, i.e., 80% to foreground
in RR, 20% to background in FCFS

Southeast University5.64Operating System Concepts

Multilevel Feedback Queue
nMultilevel queue with feedback scheduling is

similar to multilevel queue; however, it allows
processes to move between queues.
uAging can be implemented by this way

nBasic Idea: Processes with shorter (longer)
CPU bursts are given higher (lower) priority.

n If a process uses more (less) CPU time, it is
moved to a queue of lower (higher) priority. As
a result, I/O-bound (CPU-bound) processes will
be in higher (lower) priority queues.
uExample: if a process didn’t finish (or finish) in its

allocated time quantum, it will be demoted to a lower-
priority queue (or promoted to a higher-priority queue)

Southeast University5.65Operating System Concepts

Example of Multilevel Feedback
Queue

nThree queues:
uQ0 – RR with time quantum 8 milliseconds
uQ1 – RR with time quantum 16 milliseconds
uQ2 – FCFS (equivalently, RR with ∞ time quantum)

nAn example of demotion to low-priority queue
uA new job enters Q0 which is served by RR. When

it gains CPU, job receives 8 milliseconds. If it does
not finish in 8 milliseconds, job is moved to Q1.

uAt Q1 job is again served RR and receives 16
additional milliseconds. If it still does not complete,
it is preempted and moved to queue Q2.

Southeast University5.66Operating System Concepts

Multilevel Feedback Queues

Southeast University5.67Operating System Concepts

nProcesses in queue i
have time quantum 2i

nWhen a process’
behavior changes, it
may be placed (i.e.,
promoted or demoted)
into a difference queue.

nThus, when an I/O-
bound process starts to
use more CPU, it may
be demoted to a lower
queue

Southeast University5.68Operating System Concepts

Multilevel Feedback Queue (Cont.)
nMultilevel-feedback-queue scheduler defined by

the following parameters:
unumber of queues
uscheduling algorithms for each queue
umethod used to determine when to upgrade a process
umethod used to determine when to demote a process
umethod used to determine which queue a process will

enter when that process needs service

Southeast University5.69Operating System Concepts

Chapter 6: CPU Scheduling

nBasic Concepts
nScheduling Criteria
nScheduling Algorithms
nReal System Examples
nThread Scheduling
nAlgorithm Evaluation
nMultiple-Processor Scheduling

Southeast University5.70Operating System Concepts

Solaris 2 Scheduling

Southeast University5.71Operating System Concepts

Solaris Dispatch Table

Highest priority

Lowest priority

Demoted to
lower priority

Southeast University5.72Operating System Concepts

Windows 2000 (XP) Priorities

https://msdn.microsoft.com/en-us/library/windows/desktop/ms685100(v=vs.85).aspx

Process priority class

Thread priority level

https://msdn.microsoft.com/en-us/library/windows/desktop/ms685100(v=vs.85).aspx

Southeast University5.73Operating System Concepts

Linux Scheduling
nEach CPU has a runqueue made up of 140

priority lists that are serviced in FIFO order.
nTasks that are scheduled to execute are added

to the end of respective runqueue's priority list
nTwo scheduling algorithms

ntime-sharing algorithms
for user tasks, and

nreal-time scheduling
algorithms

Southeast University5.74Operating System Concepts

Linux Scheduling (Cont.)
nReal-time

uPosix.1b compliant
ütwo classes: FCFS and RR
üHighest priority process

always runs first
uSoft real-time

nTime-sharing
uPrioritized credit-based (优先级化的基于信用值的调
度): process with most credits is scheduled next

uCredit subtracted when timer interrupt occurs
uWhen credit = 0, another process chosen
uWhen all runnable processes have credit = 0,

recrediting occurs
üBased on factors including priority and history

Southeast University5.75Operating System Concepts

The Relationship Between
Priorities and Time-slice length

n The first 100 priority lists of the runqueue are reserved
for real-time tasks, and the last 40 are used for user
tasks (MAX_RT_PRIO=100 and MAX_PRIO=140)

http://www.cs.montana.edu/~chandrima.sarkar/AdvancedOS/CSCI
560_Proj_main/index.html

http://www.cs.montana.edu/~chandrima.sarkar/AdvancedOS/CSCI560_Proj_main/index.html
http://www.cs.montana.edu/~chandrima.sarkar/AdvancedOS/CSCI560_Proj_main/index.html

Southeast University5.76Operating System Concepts

List of Tasks Indexed
According to Priorities

n In addition to the CPU's runqueue, which is called the
active runqueue, there's also an expired runqueue

n When a task on the active runqueue uses all of its
time slice, it's moved to the expired runqueue. During
the move, its time slice is recalculated (and so is its
priority)

Southeast University5.77Operating System Concepts

List of Tasks Indexed
According to Priorities (cont.)

n If no tasks exist on the active runqueue for a given
priority, the pointers for the active and expired
runqueues are swapped, thus making the expired
priority list the active one

Southeast University5.78

Scheduler Policy

Operating System Concepts

n Each process has an associated scheduling policy
and a static scheduling priority
uSCHED_FIFO - A First-In, First-Out real-time process

uSCHED_RR - A Round Robin real-time process

uSCHED_NORMAL: A conventional, time-shared process
(used to be called SCHED_OTHER) for normal tasks

uSCHED_BATCH - for "batch" style execution of processes;
for computing-intensive tasks

uSCHED_IDLE - for running very low priority background
job

http://linux.die.net/man/2/sched_setscheduler

http://linux.die.net/man/2/sched_setscheduler

Southeast University5.79

Linux Completely Fair Scheduler

Operating System Concepts

nLinux CFS was a process scheduler that was
merged into the 2.6.23 (October 2007) release
of the Linux kernel. It was the default scheduler
of the tasks of the SCHED_NORMAL class

nGoal: Each process gets an equal share of CPU
nN threads "simultaneously" execute on 1/Nth of

CPU
CPU
Time

T1 T2 T3

t/NAt any time t we
would observe:

Southeast University5.80

Linux Completely Fair Scheduler

Operating System Concepts

nCan't do this with real hardware
uStill need to give out full CPU in time slices

n Instead: track CPU time given to a thread so far

CPU
Time T1

T2
T3

t/N
Scheduling Decision:
• "Repair" illusion of

complete fairness
• Choose thread with

minimum CPU time

Southeast University5.81

Linux CFS

Physical
CPU Time B

A

16

4

nTrack a thread's virtual runtime rather than
its true physical runtime

nHigher weight: Virtual runtime increases
more slowly

nLower weight: Virtual runtime increases
more quickly

Southeast University5.82

Linux CFS

Virtual
CPU Time B A

Actually
Used for
Decisions

nTrack a thread's virtual runtime rather than
its true physical runtime

nHigher weight: Virtual runtime increases
more slowly

nLower weight: Virtual runtime increases
more quickly

Southeast University5.83Operating System Concepts

Chapter 6: CPU Scheduling

nBasic Concepts
nScheduling Criteria
nScheduling Algorithms
nReal System Examples
nThread Scheduling
nAlgorithm Evaluation
nMultiple-Processor Scheduling

Southeast University5.84Operating System Concepts

Thread Scheduling
nLocal Scheduling – How the threads

library decides which thread to put onto
an available LWP

nGlobal Scheduling – How the kernel
decides which kernel thread to run next

Southeast University5.85Operating System Concepts

Pthread Scheduling API
#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5
int main(int argc, char *argv[])
{ int i;

pthread_t tid[NUM_THREADS];
pthread_attr t attr;
/* get the default attributes */
pthread_attr_init(&attr);

/*set the scheduling algorithm to PROCESS or SYSTEM*/
pthread_attr_setscope(&attr, PTHREAD SCOPE SYSTEM);
/* set the scheduling policy - FIFO, RT, or OTHER */
pthread_attr_setschedpolicy(&attr, SCHED_OTHER);

/* create the threads */
for (i = 0; i < NUM_THREADS; i++)

pthread_create(&tid[i],&attr,runner,NULL);

Southeast University5.86Operating System Concepts

Pthread Scheduling API
/* now join on each thread */
for (i = 0; i < NUM_THREADS; i++)

pthread_join(tid[i], NULL);
}
/* Each thread will begin control
in this function */

void *runner(void *param) {
printf("I am a thread\n");
pthread exit(0);

}

SCHED_OTHER is the standard Linux time-sharing scheduler that is intended
for all processes that do not require the special real-time mechanisms.
http://linux.die.net/man/2/sched_setscheduler

http://linux.die.net/man/2/sched_setscheduler

Southeast University5.87Operating System Concepts

Chapter 6: CPU Scheduling

nBasic Concepts
nScheduling Criteria
nScheduling Algorithms
nReal System Examples
nThread Scheduling
nAlgorithm Evaluation
nMultiple-Processor Scheduling

Southeast University5.88Operating System Concepts

Scheduling Algorithm Evaluation

nDeterministic modeling – takes a particular
predetermined workload and defines the
performance of each scheduling algorithm
for that workload.

nQueuing models
nSimulations
n Implementation

Southeast University5.89Operating System Concepts

Evaluation of CPU Schedulers
by Simulation

Simulation and Performance Evaluation of
CPU Scheduling Algorithms
https://github.com/jasmarc/scheduler
https://github.com/joedodson/cpu-
scheduling-sim

n This simulator looks at
the following scheduling
algorithms:
u First Come First Served
u Shortest Job First
u Shortest Remaining Time First
u Round Robin
u POSIX Dynamic Priorities

Scheduling

n We will observe the
following output metrics:
u Job Throughput
u CPU Utilization
u Average Turnaround Time
u Average Response Time
u Average Waiting Time

https://github.com/jasmarc/scheduler
https://github.com/jasmarc/scheduler
https://github.com/jasmarc/scheduler

Southeast University5.90Operating System Concepts

Chapter 6: CPU Scheduling

nBasic Concepts
nScheduling Criteria
nScheduling Algorithms
nReal System Examples
nThread Scheduling
nAlgorithm Evaluation
nMultiple-Processor Scheduling

Southeast University5.91Operating System Concepts

Multiple-Processor Scheduling
nCPU scheduling is more complex when

multiple CPUs are available.

nHomogeneous processors within a
multiprocessor system.
uLoad sharing

nAsymmetric multiprocessing – only one
processor accesses the system data
structures, alleviating the need for data
sharing.

