Chapter 5: CPU Scheduling

D /NE- SR

BN

— N

L HS

EREING

X L& 65124226/ s =

. 025-52091022

mailto:csqjxiao@seu.edu.cn
https://csqjxiao.github.io/PersonalPage

e#‘a Chapter 5: CPU Scheduling

B Basic Concepts
m Scheduling Criteria
m Scheduling Algorithms

m Real System Examples

B Thread Scheduling

m Algorithm Evaluation

®m Multiple-Processor Scheduling

Operating System Concepts 5.2 Southeast University

e#‘m Basic Concepts

B Maximum CPU utilization
obtained with
multiprogramming

m A Fact: Process execution
consists of an alternating
sequence of CPU
execution and I/O walit,
called CPU-I/O Burst
Cycle

Operating System Concepts 5.3

load store
add store
read from file

wail for IO

store increment
index
write to file

waif for I/O

load store
add store
read from file

wait for I'O

% CPU burst

> /O burst
-

f CPU burst

> /O burst
+ CPU burst

= /O burst

e#% CPU-I/O Burst Cycle

m Process execution
repeats the CPU burst
and |/O burst cycle.

CPU burst

l I/0O burst l CPU burst

/O burst ®\When a process begins
an |/O burst, another
process can use the

I/O burst 1cpv burst CPU for a CPU burst.

CPU burst

Operating System Concepts 5.4 Southeast University %‘, q

. CPU-bound and I/O-bound

u |5?ocess is CPU-bound if it generates 1/0
requests infrequently, using more of its time
doing computation.

B A process is I/O-bound if it spends more of its
time to do I/O than it spends doing computation

m A CPU-bound process might have a few very
long CPU bursts, while an I/0O-bound process
typically has many short CPU bursts

(a) / 1
Long CPU burst \

Waiting for 1/0

e

Short CPU burst

/ \ \,2
0w +—0—+—r—0—0—1F—0—0O—0—0—)))

Time
—

Operating System Concepts

-

]

edu CPU Scheduler

® \When the CPU is idle, the OS must select
another process to run.

m This selection process is carried out by the
short-term scheduler (or CPU scheduler).

B The CPU scheduler selects a process from the
ready queue and allocates the CPU to it.

B The ready queue does not have to be a FIFO
one. There are many ways to organize the

CPU

ready queue LTS Ready Queue —— STS- Exit

LTS (Long-Term

Scheduling), K} STS (Short-erm

B (HFHKAJobifAE)
STS (WHKACP ﬁ%‘)&?

Operating System Concepts

, 4. Circumstances that scheduling
S may take place

1. A process switches from the running state
to the waiting state (e.g., doing for 1/0O)

CPU Scheduling Occurs

converting to process

i resource
destroy terminated
admitted

N exit
reau*y running
intgrrupt

waiting for CPU U
2
3
170 or even
completion waiting : BN
Operating System Concept: waiting for 1/0 or event 6 AT ,

new

, 4. Circumstances that scheduling
S may take place

2. A process switches from the running state
to the ready state (e.g., an interrupt occurs)

CPU Scheduling Occurs

converting to process

i resource
destroy terminated
admitted

N exit
reau*y running
intgrrupt

waiting for CPU U
2
3
170 or even
completion waiting : BN
Operating System Concept: waiting for 1/0 or event 6 AT ,

new

, 4. Circumstances that scheduling
S may take place

3. A process switches from the waiting state
to the ready state (e.g., I/0O completion)

CPU Scheduling Occurs

converting to process

i resource
destroy terminated
admitted

N exit
reau*y running
intgrrupt

waiting for CPU U
2
3
170 or even
completion waiting : BN
Operating System Concept: waiting for 1/0 or event 6 AT ,

new

. * Circumstances that scheduling
D may take place

4. A process terminates

CPU Scheduling Occurs

converting to process
retlaim resource
hew destroy terminated
admitted 4
N exit
rea running
intgrrupt
waiting for CPU U"‘ 5

1I/0 or even
completion waiting

) 6
Operating System Concept: wmﬁng f or I/0 or event “ 45)

ec{,,l\lon -preemptive vs. Preemptive

® Non-preemptive scheduling: scheduling
occurs when a process voluntarily leave the
CPU resource. It either enters the waiting state
(case 1) or terminates (case 4).

¥ Simple, but very efficient with less context switch
O XTI LLRTHE 2 8 24t (multi-programed OS)

Non-Preemptive Scheduling Preemptive Scheduling .
CPU Scheduling Occurs
Process 1 Process 2 Process 1 Process 2 converting to process
new “racess |terminated
D admitted sehe
Xt
Switch Switch = LZ{
‘ » rea vnning
up
< Switch > Switch Interrupt waiting for CPU 2
Switch > D Switch 1/0 or even 3 L/O or event wait
b completion waiting 1
h
<M <SW”7C Interrupt waiting for I/O or event s
D D Southeast University K "4) As\\“;

‘,

ggxeemptlve scheduling (¥ &5 = £):
heéduling occurs in all pOSSIble cases.

What if the running process is in critical section
modifying some shared data? There is a possibility
of race condition. Mutual exclusion of accessing
critical section may be violated.

The kernel must pay special attention to this
situation and, hence, is more complex

Interrupt waiting for CPU

Non-Preemptive Scheduling Preemptive Scheduling .
CPU Scheduling Occurs
Process 1 Process 2 Process 1 Process 2 converting to process |
| ‘ new Sracess terminated\

l_l “*ﬁi’ admitted sele f)
ﬁJ . P exit

Switch > Switch > 4

»| rea
‘ » Switch o 7

/0 or eveniT 3
completion

Switch >

waiting

m . L]
-

Switch
<

waiting for I/0 or eveit

Interrupt

@.
]
”

Southeast University

gtﬁq Dispatcher

m Dispatcher module (7 F#%) gives control of the
CPU to the process selected by the short-term
scheduler (I & #%); this involves:

switching execution context (save & reload)
switching to user mode

jumping to the proper location in the user program to
restart that program

Dispatcher takes P1 to running state
P4 P3 P2 P1 CPU (Running)

Scheduler selects
process P1

m Dispatch latency — time it takes for dispatcherd
.stop.one process and start another.runningg 3y

?»"’%‘a Chapter 6: CPU Scheduling

B Basic Concepts

®m Scheduling Criteria

B Scheduling Algorithms

m Real System Examples

B Thread Scheduling

m Algorithm Evaluation

m Multiple-Processor Scheduling

Operating System Concepts 5.14 Southeast University

e,_@;gparation of Policy and Mechanism

N “W

ny and What” vs. “How”

m Ob)

ectives and strategies vs. data structures

hardware and software implementation issues.
B Process abstraction vs. Process machinery

Process Control Block Process Data Structures CPU Scheduling Policy/Algorithm

Ready queue l Running

Pointer
—> e e e ° Po Completed
Process State

Process Number

Process Counter Waiting — Ready

preempted

Registers

Memory Limit

-

List of Open Files Block on I/O

Waiting queues

~

s e#.Scheduling: Policy and Mechanism

®m Scheduling policy answers the question:

Which process/thread, among all those ready to run, should
be given the chance to run next? In what order do the
processes/threads get to run? For how long?

® Mechanisms are the tools for supporting the
process/thread abstractions and affect how the
scheduling policy can be implemented (this is review)

How the process or thread is represented to the system -
process or thread control blocks.

What happens on a context switch.

When do we get the chance to make these scheduling
decisions (timer interrupts, thread operations that yield er
block, user program system calls) /

Operating System Concepts 5.16 Southeast University

ed‘k., CPU Scheduling Policy

®m The scheduler’s moves are dictated by a
scheduling policy

Wakeup or \

ReadyToRun

v GetNexl%m()

v
CONTEXTSWITCH

® The CPU scheduler makes a sequence of “moves’
that determines the interleaving of processes

Programs use process synchronization to prevent
“bad moves”

..but otherwise scheduling choices appear (to,the
. E)ro ram) to be nondeterministic. kyg

5.17 Southeast University

Scheduler S

sc®._ scheduling Criteria

m Before presenting detailed scheduling policies,
we discuss how to evaluate the “goodness” of a

scheduling policy.

® There are many criteria for comparing different
scheduling policies. Here are five common ones
CPU utilization (CPUF|F %)
Throughput (FATHES5 A &)
Turnaround time (2 i) & 451 [R))

Waiting time (GHFE 1

e

17 M 2 S [A])

Response time (%}

Operating System Concepts

F 1))

5.18 Southeast University Mﬂ g

e,c{,, CPU Utilization
m We want to keep the CPU as busy as possible.

m CPU utilization ranges from 0 to 100 percent.
Normally 40% is lightly loaded and 90% or
higher is heavily loaded.

® You can bring up a CPU usage meter to see
CPU utilization on your system.

UNIPROGRAMMED SYSTEM MULTIPROGRAMMED SYSTEM

(O

CPU

o IIo ‘BFJ ’ s
Operating System Concepts o))

-~ -

CPU

wn

E—

Qd\. Throughput
® The number of processes completed per time
unit is called throughput.
m Higher throughput means more jobs get done.
®m However, this criteria is affected by the
characteristics of processes.

For long processes, this rate may be one job per
hour, and, for short jobs, this rate may be 10 per
minUte. Task queue

— 0 _l
¥ (e] (6] [0)[] |[e){[®)
Completed tasks \
Operating System Concepts — O

Sl

Yo 4 Turnaround Time

m The time period between job submission to
completion is the turnaround time.

B From a user’s point of view, turnaround time
IS more important than CPU utilization and
throughput.

® Turnaround time is the sum of
Waiting time before |
entering the system e, ~ Tmeen
Wa|’[|ng t|me |n ’[he < Waiting Time (WT) > Burst Time (BT) >

eacy Gueue

Waiting time in all

other events (e.g., 1/0) Turn Around Time (TAT) = CT - AT

Burst time, i_e_, the Turn Around Time (TAT) = WT + BT

process actually 2 -
oreraing P ETIFIE] ON the C DU Waiting Time (WT) = TAT - BT

s CPU Waiting Time

m CPU waiting time (or waiting time for short)
IS the sum of the periods that a process
spends waiting in the ready queue.

® Why only ready queue?

CPU scheduling algorithms do not affect the
amount of the waiting time during which a
process waits for I1/O and other events.

Ready queue Running

However, CPU =000 @

scheduling algorithms
do affect the time that Waing — Ready

a process stays in the s
ready queue

Operating System Concepts

preempted

o

Waiting queues

#ﬁe Response Time

¢ Ae-time from the submission of a request (in
an interactive system) to the first response is
called response time. It does not include the

time that it takes to output the response.

For example, in front of your workstation, you perhaps
care more about the time between hitting the Return key
and getting your first output (e.g., response time) than
the time from hittingthe Return key to the completion of
your program (e.g., turnaround time).

On-line system

L
28

Operating System Concepts ReSpE)}SG

2 &CRU Scheduling Optimization Criteria

m Max CPU utilization ® Min turnaround time
® Max throughput ® Min waiting time
® Min response time

SCHEDULING CRITERIA

Maximize Minimize
Turnaround Time
Waiting Time
Response Time

CPU Utilization
Throughput

Operating Sys

?»"’%‘a Chapter 6: CPU Scheduling

m Basic Concepts

m Scheduling Criteria

B Scheduling Algorithms

m Real System Examples

B Thread Scheduling

m Algorithm Evaluation

m Multiple-Processor Scheduling

Operating System Concepts 5.25 Southeast University

e,_dta Scheduling Algorithms

®m We will discuss a number of scheduling
algorithms (or scheduling policies):

-irst-Come, First-Served (FCFS)

Round-Robin

_ottery Scheduling (with demonstration code)

Shortest-Job-First (SJF)

Priority

Multilevel Queue

Multilevel Feedback Queue

Operating System Concepts 5.26 Southeast University M, q

-

]

. d‘L First-Come, First-Served (FCFS)

p— Scheduling o
® The process that requests the CPU first is

allocated the CPU first.

® This can easily be implemented using a
FIFO (First In First Out) queue.

B FCFS is not preemptive. Once a process
has the CPU, it will occupy the CPU until the
process completes or voluntarily enters the

Walt State Incoming job to be queue Ongoing job execution
P4 —» ‘(1 P3 P1 —>»

| P2
l T I M
Operating System Concepts Free space Queued jobs “d 3 q

ed‘k., FCFS Scheduling (Cont.)

Process Burst Time

P, 24
P, 3
P 3

B Suppose that the processes arrive in the order:
P1 / PZ’ P3

t for the schedule-s:
Average m e? ~Waiting time2-
1 P- '3

.0 _ 24 27 33)
®m Waiting time for P1 = 0; P2 = 24; P3 = 277
E-Average waiting timei» (0 + 244 2+4)/3 = ¥£¥ i

¥ FCFS Scheduling (Cont.)
é%"@‘se th

at the processes arrive in the order

P,, Ps;, P,.
® The Gantt chart for the schedule is:
P, Ps P,

0 3 6 30

m Waiting time for P;=6,P,=0.P;=3

m Average waiting time: (6 + 0+ 3)/3=3

B Much better than previous case.

m Convoy effect short process behind long process

Operating System Conc

= FCFS Problems

W |t is easy to have the convoy effect. all the

processes walit for the one big process to
get off the CPU.

m Consider a CPU-bound process running with
many |/O-bound process.

m |t is in favor of long processes and may not
be fair to those short ones. What if your 1-
minute job is behind a 10-hour job?

m |t is troublesome for time-sharing systems,
where each user needs to get a share ohthe
- CPU at regular intervals. . Q!

2c#._ Round Robin (RR) (1)

m RR is similar to FCFS, except that each
process is assigned a time quantum.

m All processes in the ready queue is a FIFO list.

B When CPU is free, the scheduler picks the first
and lets it run for one time quantum (or slice)

First-Come, First-Served Scheduling Round Robin Scheduling

Ready queue Running Ready queue Running
OO . VOVl
Waiting — Ready Waitng - Ready preempted

Waiting queues Waiting queues

Operating System Concepts 5.31 Southeast University mi%?

»c#._ Round Robin (RR) (2)

B |f that process uses CPU for less than one time
quantum, it is moved to the of the waiting list.

m Otherwise, when one time quantum is up, that
process is preempted by the scheduler and
moved to the tail of the ready queue, a FIFO list

First-Come, First-Served Scheduling Round Robin Scheduling

Ready queue Running Ready queue Running
| @ ° e O <P°> Completed ~ e Q e G Po Completed
Waiting — Ready Waitin o — Ready preempted

Waiting queues Waiting queues

Operating System Concepts 5.32 Southeast University l‘“\l’i%?

Example of RR with Time Quantum

N = 20
Process Burst Time

P, 53

P, 17

P, 68

P, 24

B The Gantt chart is:

Py | Py [Py | Py | Py | Py | Py| Py | Ps| Py

O 20 37 57 77 97 117 121 134 154 162

Operating System Concepts 5.33 Southeast University : > s.., ,

-

E—

e,_d‘;_q RR Scheduling: Some Issues

m [f time quantum is too large (i.e., larger than all
the CPU bursts), RR reduces to FCFS

m |f time quantum is too small (smaller than all the
CPU bursts), RR becomes processor sharing

m Context switching may affect RR’s performance

Shorter time quantum means more context
switches

®m Turnaround time also depends on the size of

time quantum.
® In general, 80% of the CPU bursts should% q

_.shorter than the time quantum

Southeast Uni

& Time Quantum and
A4 Context Switch Time

m Context switching may affect RR’s performance
¥ Shorter time quantum means more context

switches
procass ime = 10 quantum context
switches
12 0
0 10
6 1
0 & 10
1 9

Operating System Concepts 5.35 Southeast University F r ‘%

- Turnaround Time Varies With The

e Time Quantum
process time

12.5 p

1 6
12.0 ,’32 ?

3
11.5 i 4
11.0 = When time quantum =1,
105 Turnaround of P, = 15

Turnaround of P, =9

10.0 Turnaround of P; =3
Turnaround of P, =17
Average Turnaround = 11

average turnaround time

9.5

9.0

= |f using SJF (P3, P2, P1, P4)
Turnaround of P, =10
Turnaround of P, =4
Turnaround of P; = 1
Turnaround of P, =17 :

Operating System Concepts 5.36 Averag@utﬂé[ifrwaqf@sund =8 B

1 2 3 4 5 6 7

time quantum

QQL Lottery Scheduling

® RR gives a roughly equal share of CPU to all
ready processes

m Lottery scheduler is a proportional-share
scheduler (fair-share scheduler) r\

Issue 100 Lottery Tickets

PO P2 P3 P4 % - .
30% 15% 25% 30% R
T=30 T=15 T=25 T=30 Ticket holder gets CPU

until next drawing

® Instead of optimizing for turnaround or
response time, a scheduler might instead try to
guarantee that each job obtain a certain

~..percentage of CPU time — }Fﬁ 9

e,_dt_a Lottery Scheduling (cont.)
m Basic idea

Every so often, hold a lottery to determine which
process should get to run next;

Processes that should run more often should be
given more chances to win the lottery.

total = 20
random [1 .. 20] =15

m Tickets A 5 c DE

are used to represent 10 - 2
the share ofaresource, "} "} "L LT LY 1'4" 6 18 @ 2
that a process (or user
or Whatever) should List-based lottery (winner = 15)

receilve. ‘)
Operating System Concepts 5.39 Southeast University v \

winner

]

sc®._ A simple Unfairness Metric

B Suppose:

Two jobs competing against one another, each with
the same number of tickets and the same run time.

B An unfairness metric U:

The time the first job completes divided by the time
that the second job completes.

With a perfect fair scheduler, two jobs should finish
at roughly the same time, i.e., U=1.

Operating System Concepts 5.40 Southeast University M, q

eﬁ{q A Simple Unfairness Metric

L s T
0.8 1
0.6 1

0.4 1

Unfairness (Average)

021 Lottery scheduling is probabilistic.

0.0

1 10 100 1000
Job Length
Figure 9.2: Lottery Fairness Study

Only as the jobs run for a significant number of

time slices does the lottery scheduler approack
the desired outcome. 9

Operating System Concepts 5.41 Southeast University

e,_dk_., Lottery Scheduling: Summary
m L ottery scheduling has not achieved wide-
spread adoption as CPU schedulers.

Ticket assignment is a hard problem.

m However, it is useful in domains where this
problem is relatively easy to solve.

VMWare: You might like to assign one-quarter of
your CPU cycles to the Windows VM and the rest to

your base Linux installation ‘:
Operating System C pt 5.42 Southeast U y Q

gd‘\.’ Lottery Demonstration Code

int gtickets = 0; // global ticket count int main(int argc, char *argv(]) {

structnode_t{ ...

int tickets; // populate list with some number of jobs
struct node_t *next; insert(50); insert(100); insert(25);

J for (int i =0;i<loops; i++) {

struct node_t *head = NULL; int counter = 0;

void insert(int tickets) { int winner =random() % gtickets;
struct node_t *tmp = struct node_t *current = head;

malloc(sizeof(struct node_t)); while (current) {

assert(tmp != NULL); counter = counter + current->tickets;
tmp->tickets = tickets; if (counter > winner) break;
tmp->next = head; current = current->next;
head = tmp; })
gtickets += tickets; printf("winner: %d %d\n\n", W en}

_ current->ticketsg; o
Operating System Concepts 5.43 outheast University “d 3

dbortest-dob-First (SJF) Scheduling

‘" Alssociate with each process the length of its
next CPU burst. Use these lengths to schedule
the process with the shortest time. |

B When a process must be selected from thel
ready queue, the process with the smallestlcmmt
next CPU burst is selected.

Thus, organize the ready queue as a min heap, so

that the processes in the ready queue are sorted

by their CPU burst lengths, to avoid convoy effect.

(2 O
@ apify
® OO® |

aaaaaaaa

I/O burst

Max Heap Min Heap

» edfiortest-Job-First Scheduling (Cont.)
® SJF can be non-preemptive or preemptive.

Non-preemptive — once CPU given to the process it
cannot be preempted until completes its CPU burst.

Preemptive — if a new process arrives (or enters the
ready queue) with CPU burst length less than
remaining time of current executing process, preemp

This scheme is known as the Shortest-Remaining
-Time-First (SRTF). CPU Scheduling
_—

Preemptive Non-Preemptive

-_—

Priority RLong_ggt Shortest Longest
i sl Job First Job First\v
Scheduling Job First .)
Firet- Qnghest B
Shortest Round- Come e;p?nse
Remaining Robin First- ato ’
_ . Serve Next

Operating System Concepts Job First ~d) \

-

E—

JF can be proved optimal — It gives

S mimimum average waiting time for a
given set of processes.
| | m Every time we make
A waits () B waits a

a short job before a

a b long job, we reduce
average=a/2 gyerage waiting time.

® We may switch out of

. e b order jobs until all
TEEETYE jobs are in order.

m [f all the jobs are
sorted, job switching
IS Impossible.

Operating System Concepts 5.46 Southeast University

b

B waits 0 4 waifs b

e,@n,Example of Non-Preemptive SJF
Process Arrival Time Burst Time

P. 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4

m SJF (non-preemptive)

P, P, P, P,

0 3 7 8 12 16

m Average waiting time =(0 + 6 + 3 + 7)/4«ngr)
S

Operating System Concepts 5.47 Southeast University

Q,QL_.,An Example of Preemptive SJF
Process Arrival Time Burst Time

P, 0.0 7
P, 2.0 4
P 4.0 1
P, 5.0 4
B SJF (preemptive)
P, | P, [Ps | Py P, P,
O|2|4S|7|||11||||1|6

®m Average waitingtime =(9+1 + 0 + 2)/4<= 3

Operating System Concepts 5.48 Southeast Univ

1 But How Do We Know the

—=Z=Next CPU Burst of a Process?
m Without a good answer to this question,
SJF cannot be used for CPU scheduling.

e

m We try to predict the next CPU burst!

m Can be done by using the length of
previous CPU bursts, using exponential
averaging.

1. Let ¢, bethe actual lengh of n” CPU burst

2. Let 7, , be the predicted value for the next CPU burst
3. Given ,0<a <1

4. Define: — (—) B
r.o=at +\l-a)r . 4
Operating System Concepts 5.49 Southeast University “d g ¢

-

E—

et{ Two Extreme Examples of
= Exponential Averaging

T =at +(1—a)rn.

n

B When =0,
104 =14
¥ Recent history does not count.

B When a=1,
¢ 1t =1,
¥ Only the actual last CPU burst counts.

Operating System Concepts 5.50 Southeast University l > i.., ,

-

E—

Q,Bﬁa,nd Exponential Averaging Formula

qﬂzag+@—akw
m |f we expand the formula, we get:
tw=aty+(1-a ot +...+(1-d)at,; +...
+ (1 - o)™ 1,

Then, 1,4 Is a linear combination of 1, t, to, ..., t,

B Since both o and (1 - &) are no more than 1,
the (n-j)" term has the weight (1 - &) «, which
decreases exponentially as the index j grows

.))
:& 5§
Operating System Concepts 5.51 Southeast University “d g \

-

]

An Example of Predicting the
S5 % Length of the Next CPU Burst

12 —

T 10
8

t 6\
4
2

Assume « =0.5 e _’Tn+l =at, + (1 — a)z'n.
CPU burst (t) 6 4 6 4 13 13 13

quess' i) 10 What are predicted values? ..

Operating System Concepts 5.52 Southeast University

An Example of Predicting the
S5 % Length of the Next CPU Burst

12 —
t. 10
8
t 6
4
2
Assume « =0.5 e _an+1 =at, + (l — a)z'n.
CPU burst (t) 6 4 6 4 13 13 13
"quess” (t) 10 8 6 6 5 9 11 12

Question: How to train the model parameter «?

Operating System Concepts 5.53 Southeast University

ponential averaging is just one
sseries prediction tool. There are
many others, e.g., Recurrent Neural
‘Networks (RNN) 7., =at,+(-a),

\#y<t+1>l/
) —1
g <t—1> a<t> - q<tt1>
Model a<0> _.E L_, 1 L
State a<t= U g

Observations x<t~ a:<1> <

.
<2>

Predictions y<t~ y

<1> <t>

y

Discrete Time O, 1, 2, t, t+1,

B The seg2seq loss function Lis[Lo
defined based on the sum of [F@¥) =2 £@™v™)
prediction errors of all time steps l\&

Operating System Concepts 5.54 Southeast University

-

e,_d‘ta SJF Problems

m |t is difficult to estimate the next burst time
value accurately.

B SJF is in favor of short jobs. As a result,
some long jobs may not have a chance to
run at all. This is called starvation.

Operating System Concepts 5.55 Southeast University M, g

-

]

g,_d‘t_,, Priority Scheduling
m Each process has a priority.

m Priority may be decided internally or externally:

iInternal priority: determined by time limits, memory
requirement, # of files, and so on.

external priority: not controlled by the OS (e.g.,
importance of the process)
® The scheduler always e
picks the process (in o1 P4 P3 P2 Ps
ready queue) with the
highest priority to run.

TIME

: Process Pl | P2 | P3 | P4 |P5
The lesser the numeric

value of priority, the higher ®=ttme 3 | 4 2 | 1] 3

oains SREJALIONItY Of the process Prierity 113214

QQL Priority Scheduling (Cont.)

m FCFS and SJF can be regarded as special
cases of priority scheduling. (Why?)

® Priority scheduling can be non-preemptive

or preemptive. An example

of non-preemptive SJF:

The lesser the numeric
value of priority, the higher
the priority of the process

P1 has the lowest
arrival time so it is
scheduled first.

Next process P4 P1
o ALFIVES at time=2....

Process ID Priority Arrival Time

Burst Time

P1 2 0

11

P2 5

28

2

P4 2

10

0

P3 3 12
1
4

P5 9

16

Gantt Chart

P2 P4 P3

11 39 49 51

P3
67

B An example:

Priority Scheduling (Cont.)

'Withreemptive priority scheduling, if the
newly arrived process has a higher priority
than the running one, the latter is preempted.

PO 0 4 5

P1

1

1

2

P2

3

3

4

P3

4

2

3

m Gantt chat:

Operating System Concepts

PO

Pl

P2

P3

P2

PO

10

Southeast University

14

ef.% Aging

® [ndefinite block (or starvation) may occur: a low
priority process may never have a chance to

ru n If new process with a low priority Priority 4

keeps on coming then a process
with Priority 5 will be starved .

Priority 5 Priority 3 Priority 2 Priority 1

Process Execution ~15))

m Aging (gradually increases the priority of
processes that wait in system for a long time) is
a technigue to overcome starvation problem.

Example: If O is the highest (resp., lowest) priority,

we could decrease (resp., increase) the priority 0
waiting process by 1 each fixed period (e.g. nytiAe)s

Operating System C

-

E—

?»_d;’x A Short Recap

Average Turnaround | Response Time
Time

FCFS Bad, Convoy effect Bad, convoy effect
Round Bad, change with time - -
Robin quantum
Lottery Bad, any policy that Probabilistic, so no Better and more
seeks fairness is bad guarantee on the flexible, but ticket
on performance worst case assignment is hard
SJF @abw optimal) Bad Bad, essentially a
priority scheduler

that favors short jobs
Priority Could be good, if higher Bad, a low-priority Bad, have starvation

Scheduling priority is given to process may not be problem, can be
(VO bound > processes with shorter executed after a mitigated by aging
CPU bound) CPU bursts long time

Can we combine the advantages of SJF and Round Rok

Operating System Concepts 5.60 Southeast University

4]

et% Multilevel Queue)

®m Ready queue is partltloned iInto separate

High Response Time

queues: o
foreground (interactive)
background (batch)

System Processes E} System Queue

Foreground / RR

[WTTEC TR IR i Interactive Queue

\ Background/ FCFS
g Batch Que

eeeeeeeeeeeeeee

m Each process is aSS|gned permanently to one
gqueue based on some properties of the process
(e.g., memory usage, priority, process type)

®m Each queue has its own scheduling algorithm,
foreground: RR for good fairness and responéw
oraippaekground: FCFS forssimpliCityeuness unver Q

F
. —

-

Ready Queue

highest
priority

System processes

Interactive running

Interactive editing

batch processes

PR E

student processes

U UL

lowest
priority

Operating System Concepts

5.62

W A process P can
run only if all
gueues above the
gueue that
contains P are
empty.

® When a process
IS running and a
process in a
higher priority
gueue comes in,
the running
process is

preempted. \b} ‘

e,dt_a Multilevel Queue (Cont.)

®m Scheduling must be done between the
queues.

Fixed priority scheduling; (i.e., serve all from
foreground then from background). Possibility
of starvation.

Lottery Scheduling — each queue gets a certain
amount of CPU time which it can schedule
amongst its processes, i.e., 80% to foreground
in RR, 20% to background in FCFS

Operating System Concepts 5.63 Southeast University }ﬁ, Q

Q,Q'L_’ Multilevel Feedback Queue

m Multilevel queue with feedback scheduling is
similar to multilevel queue; however, it allows
processes to move between queues.

Aging can be implemented by this way

m Basic |dea: Processes with shorter (longer)
CPU bursts are given higher (lower) priority.

B |[f a process uses more (less) CPU time, it is
moved to a queue of lower (higher) priority. As
a result, 1/0-bound (CPU-bound) processes will
be in higher (lower) priority queues.

Example: if a process didn’t finish (or finish) in 4{s
allocated time quantum, it will be demoted to a Ig.

oreraing SR OFIEY qUeuUe (or prometed to a higher-priority U

]

Q.
'

Example of Multilevel Feedback
Queue

e :
B Three queues:

Q, — RR with time quantum 8 milliseconds
Q, — RR with time quantum 16 milliseconds

Q, — FCFS (equivalently, RR with © time quantum)

B An example of demotion to low-priority queue

A new job enters Q, which is served by RR. When
it gains CPU, job receives 8 milliseconds. If it does
not finish in 8 milliseconds, job is moved to Q.

At Q, job is again served RR and receives 16
additional milliseconds. If it still does not complete
it is preempted and moved to queue 02 M /

Operating System Concepts 5.65 Southeast Uni

]

ﬂ{’ Multilevel Feedback Queues

quantum = 8

quantum = 16

FCFS

Kl

Operating System Concepts 5.66 Southeast University

Ready Queue

B Processes in queue /
have time quantum 2!

| Liﬁ;mﬂlﬂ . ®When a process’
| ' behavior changes, it
L per ' may be placed (i.e,
===t Y1 promoted or demoted)
e . Into a difference queue.
- . mThus, when an I/O-
o[quantum=2"___ |- .1 bound process starts to

"1 use more CPU, it may
. be demoted to a lower
e —— . queue

é* quantum = 2 -ml
Operating System Concepts 5.67 Southeast University “d g g

e,_d‘Multilevel Feedback Queue (Cont.)

m Multilevel-feedback-queue scheduler defined by

the following parameters:
number of queues

scheduling algorithms for each queue

met
met
met

enter when that process needs service

Operating System Con

nod used to determine w
nod used to determine w

nod used to determine w

cepts 5.68

nen to upgrade a process
nen to demote a process

nich queue a process will

Southeast University M, q

?»"’%‘a Chapter 6: CPU Scheduling

B Basic Concepts

m Scheduling Criteria

B Scheduling Algorithms

B Real System Examples

®m Thread Scheduling

m Algorithm Evaluation

®m Multiple-Processor Scheduling

Operating System Concepts 5.69 Southeast University

Solaris 2 Scheduling

class-
global scheduling specific scheduler run
priority order priorities classes queue
highest first real time kernel
A A 0_ threads of real-
time LWPs
®
system kernel
Q service
threads
Qo
interactive and kernel
time sharing o__._. threads of
interactive and
time-sharing
LWPs
ol
A/ A/
lowest last

Operating System Concepts 5.70 Southeast University

Lowest priority

Highest priority

Operating System Concepts

Solaris Dispatch Table

time return
time quantum from
priority quantum expired sleep
0 200 0 50
5 200 0 50
10 160 0 51
15 160 5 51
20 120 10 52
25 120 15 52
30 80 20 53
35 80 25 54
40 40 30 55
45 40 35 56
50 40 40 58
55 40 45 58
59 20 49 59
Demoted to

lower priority

5.71

Southeast University

s Windows 2000 (XP) Priorities

Thread prio -'tyrleea‘f-e I _ above below idle
time high normal normal normal priority

time-critical 31 15 15 15 15 15
highest 26 15 12 10 8 6
above normal 25 14 11 9 7 5
normal 24 13 10 8 6 4
below normal 23 12 9 7 5 3
lowest 22 11 8 6 4 2
idle 16 1 1 1 1 1

Process priority class

Operating System Concepts

5.72

Southeast University

s

https://msdn.microsoft.com/en-us/library/windows/desktop/ms685100(v=vs.85).aspx

Linux Schedulin
e J
®m Each CPU has a runqueue made up of 140
priority lists that are serviced in FIFO order.

B Tasks that are scheduled to execute are added
to the end of respective runqueue's priority list

®m Two scheduling algorithms

time-sharing algorithms_ "™ iy

for user tasks, and = [F erony

real-time scheduling E: g
algorithms t - Y = B

The Linux 2.6 scheduler runqueue structure
Operating System Concepts 5.73 Southeast University l“ Il \’

CPU X E p red CPU XAchve

Priority 1
Priority 2
Real-time task priorities
Priority 100
ority 101

ity 101 7“’

_ o
/, User task priorities

~ Linux Scheduling (Cont.)
eiLT'tlm

Posix.1b compliant

two classes: FCFS and RR

Highest priority process
always runs first

@ﬁ?ﬁﬁ@@

Paannng),

riority 140

S Oft re al -tl m e The Linux 2.6 scheduler r“nqueue(srt;u:tur;)
B Time-sharing
Prioritized credit-based (1f.5%: 24k 1) 3 18 FHAE I

F£): process with most credits is scheduled next
Credit subtracted when timer interrupt occurs
When credit = 0, another process chosen
When all runnable processes have credit =0

recrediting occurs \h D g

operating Systerf Bggged on factors including priority armd history .

The Relationship Between

= E=Priorities and Time-slice length

®m The first 100 priority lists of the runqueue are reserved
for real-time tasks, and the last 40 are used for user
tasks (MAX_RT_PRIO=100 and MAX_PRIO=140)

numeric relative time
priority priority quantum
0 highest 200 ms
* real-time
. tasks
99
100
* other
tasks
140 lowest 10 ms

Operating System Concepts 5.75 Southeast University

http://www.cs.montana.edu/~chandrima.sarkar/AdvancedOS/CSCI560_Proj_main/index.html
http://www.cs.montana.edu/~chandrima.sarkar/AdvancedOS/CSCI560_Proj_main/index.html

5 List of Tasks Indexed
e According to Priorities
B In addition to the CPU's runqueue, which is called the
active runqueue, there's also an expired runqueue

active expired
array array
priority task lists priority task lists
0] O—O [0] O—0O—0O
[1] 0—0—7~0 [1] O
[140] O [140] Oo—O

B When a task on the active runqueue uses all of its
time slice, it's moved to the expired runqueue. During
the move, its time slice is recalculated (and so is: its

priority)

Operating System Concepts 5.76 Southeast University

-

List of Tasks Indexed
ST %According to Priorities (cont.)

® |f no tasks exist on the active runqueue for a given
priority, the pointers for the active and expired
runqueues are swapped, thus making the expired
priority list the active one

active expired
array array
priority task lists priority task lists
0] O—O [0] O—O0—0
[1] o—0—-—=0 [1] O
[140] O [140] O—O

Operating System Concepts 5.77 Southeast University

e,d% Scheduler Policy

m Each process has an associated scheduling policy
and a static scheduling priority

SCHED_FIFO - A First-In, First-Out real-time process
SCHED_RR - A Round Robin real-time process

SCHED_NORMAL.: A conventional, time-shared process
(used to be called SCHED_OTHER) for normal tasks

SCHED_BATCH - for "batch" style execution of processes;
for computing-intensive tasks

job

Operating System Concznts 5. 28 Southeast University

SCHED_IDLE - for running very low priority backgrd?nd

-

http://linux.die.net/man/2/sched_setscheduler

eﬁ{Linux Completely Fair Scheduler

® Linux CFS was a process scheduler that was
merged into the 2.6.23 (October 2007) release
of the Linux kernel. It was the default scheduler
of the tasks of the SCHED_NORMAL class

m Goal: Each process gets an equal share of CPU

m N threads "simultaneously" execute on 1/N" of
CPU A

At any time twe CPU | e oL === {/N
I
MQ

would observe: Time

Operating System Concepts 5.79

e&{;inux Completely Fair Scheduler

m Can't do this with real hardware
¢ Still need to give out full CPU in time slices

® Instead: track CPU time given to a thread so far

Scheduling Decision:

+ "Repair" illusion of CPU[.......... e N
complete fairness Time

« Choose thread with
minimum CPU time

Operating System Concepts 5.80 Southeast University MQ

re Linux CFS

® Track a thread's virtual runtime rather than
its true physical runtime

m Higher weight: Virtual runtime increases

more slowly
m | ower weight: Virtual runtime increases
more quickly K
16
Physical
CPU Time p
A

5.81 Southeast University 1‘#{&?

eﬁi-ﬁ Linux CFS

® Track a thread's virtual runtime rather than
its true physical runtime

m Higher weight: Virtual runtime increases
more slowly

m | ower weight: Virtual runtime increases
more quickly X

Actually Virtual
Used for CPU Time
Decisions

-
5.82 Southeast University : 9 g {&?

?»"’%‘a Chapter 6: CPU Scheduling

B Basic Concepts

m Scheduling Criteria

B Scheduling Algorithms

m Real System Examples

m Thread Scheduling

m Algorithm Evaluation

®m Multiple-Processor Scheduling

Operating System Concepts 5.83 Southeast University

edk Thread Scheduling
m Local Scheduling — How the threads

library decides which
an available LWP

thread to put onto

m Global Scheduling — How the kernel

decides which kerne

thread to run next

) =

1C

Scheduler
ﬁ‘" : - b :A i \ %a
/ T y’ ": AR " "
Process .~~~ Process g U X ¥ Process <4, Process
tlnead thread thread thread
scheduler scheduler scheduler scheduler
threads threads threads threads

Operating System Concepts USER

Qt{ Pthread Scheduling API

#1nc ude <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

int main(int argc, char *argv[])

{ 1nt 1;
pthread_t tid[NUM_THREADS];
pthread_attr t attr;
/* get the default attributes */
pthread_attr_init(&attr);

/*set the scheduling algorithm to PROCESS or SYSTEM*/
pthread_attr_setscope(&attr, PTHREAD SCOPE SYSTEM);
/* set the scheduling policy - FIFO, RT, or OTHER */
pthread_attr_setschedpolicy(&attr, SCHED_OTHER);

/* create the threads */
for (1 = 0; 1 < NUM_THREADS; 1++) AR
pthread_create(&tid[1],&attr,runner,NULL); % ,

Operating System Concepts 5.85 Southeast University

e,r.{q Pthread Scheduling API

/* now join on each thread */
for (1 = @; 1 < NUM_THREADS; 1++)
pthread_join(tid[1], NULL);

}

/* Each thread will begin control
in this function */

void *runner(void *param) {
printf("I am a thread\n");
pthread exit(0);

}

SCHED_OTHER is the standard Linux time-sharing scheduler that is intended

for all processes that do not require the special real-time mechanisms. *:
Operating System Concepts 5.86 Southeast University “d g q

-

E—

http://linux.die.net/man/2/sched_setscheduler

?»"’%‘a Chapter 6: CPU Scheduling

m Basic Concepts

m Scheduling Criteria

B Scheduling Algorithms

m Real System Examples

B Thread Scheduling

m Algorithm Evaluation

m Multiple-Processor Scheduling

Operating System Concepts 5.87 Southeast University

se®.scheduling Algorithm Evaluation

m Deterministic modeling — takes a particular
predetermined workload and defines the
performance of each scheduling algorithm
for that workload.

B Queuing models
®m Simulations
® [mplementation

Operating System Concepts 5.88 Southeast University M, g

-

]

Evaluation of CPU Schedulers

e» ‘_4,
B This simulator looks

algorithms:

First Come First Served
Shortest Job First

at

Shortest Remaining Time First

Round Robin

POSIX Dynamic Priorities

Scheduling
®m \We will observe the

actual
process
execution

following output metrics:

Job Throughput
CPU Utilization

Average Turnaround Time

Average Response Time
Oreraigg Wirerayge Waiting Time

by Simulation

Simulation and Performance Evaluation of

the following scheduling C©PU Scheduling Algorithms

>

CPU 10
o 213
CPU 12
o 112
CPU 2
o 147
CPU 173

5.89

frace tape

simulation

| FCFS |

simulation

SJF

A~
~N

simulation

[RRIO=14) |

Southeast University

performance
= statistics
for FCFS

performance
s statistics
for SJF

performance
=) statistics
for RR(Q = 14)

g

https://github.com/jasmarc/scheduler
https://github.com/jasmarc/scheduler
https://github.com/jasmarc/scheduler

?»‘%‘a Chapter 6: CPU Scheduling

B Basic Concepts

m Scheduling Criteria

B Scheduling Algorithms

m Real System Examples

®m Thread Scheduling

m Algorithm Evaluation

m Multiple-Processor Scheduling

Operating System Concepts 5.90 Southeast University

seP._Multiple-Processor Scheduling

®m CPU scheduling is more complex when
multiple CPUs are available.

B Homogeneous processors within a
multiprocessor system.
Load sharing

B Asymmelric multiprocessing — only one
processor accesses the system data
structures, alleviating the need for data

Operating System Concepts 5.91 Southeast University M, g

-

]

