
Chapter 6: Process Synchronization

肖 卿 俊
办公室：江宁区无线谷6号楼226办公室

电邮：csqjxiao@seu.edu.cn
主页： https://csqjxiao.github.io/PersonalPage

电话：025-52091022

mailto:csqjxiao@seu.edu.cn
https://csqjxiao.github.io/PersonalPage

Southeast University6.2Operating System Concepts

Chapter 6: Process
Synchronization

nBackground
nThe Critical-Section Problem
nSynchronization Hardware
nSemaphores
nClassical Problems of Synchronization
nConditional Variables and Monitors
nSynchronization Examples

Southeast University6.3Operating System Concepts

Background
nConcurrent access to shared data may result in

data inconsistency. Recall what is race condition
uSeveral processes (threads) access and manipulate

the same data concurrently and the outcome of the
execution depends on the particular order in which
the access takes place.

Maintaining data consistency needs mechanism
to ensure the orderly execution of cooperating
processes.

Southeast University6.4

A Previously Used Example

Operating System Concepts

volatile int counter = 0;

The “for”-loop are split across two threads that are
executed on two CPU cores Main task

child task 2child task 1

// volatile keyword forces the compiler to
avoid caching the variable in CPU register.
It always firstly read the data from memory.

Southeast University6.5

How much faster?
nHere’s the mental picture that we have – two

processors, shared memory

nWe’re expecting a speedup of 2
nOK, perhaps a little less because of Amdahl’s

Law, which is to predict the theoretical
speedup when using multiple processors
uoverhead for creating and joining multiple threads

nBut it is actually slower!! Why?? Operating System Concepts

for(i=0; i<1e7; i++)
 counter++;

for(i=0; i<1e7; i++)
 counter++;

Southeast University6.6

This mental picture is wrong!
nWe have forgotten about CPU caches!

uThe memory may be shared, but each processor
has its own L1 cache

uAs each processor updates counter, it bounces
between L1 caches

Operating System Concepts

counter

counter counter Maintain cache
consistency

counter

CPU cache hierarchy

Southeast University6.7

The code is not only slow, it’s WRONG!
n Due to shared variable counter, we can get a data race
n Increment operation: counter ++

nEquivalent assembly code on MIPS:

n A data race occurs when data is accessed and
manipulated by multiple processors, and the outcome
depends on the sequence or timing of these events.

Operating System Concepts

lw $t0, counter
addi $t0, $t0, 1
sw $t0, counter

Sequential Memory Access Simultaneous Memory Access

lw (load word) instruction

Southeast University6.8

Another Example: Revisit the
Producer Consumer Problem

nRecall the shared-memory solution to
bounded-buffer problem in Chapter 3
uThe code can only use N-1 items in the buffer

We modify the above code by adding a
variable counter, such that all items in the
buffer can be used

Operating System Concepts

Producer:
while (1) {
 while (((in+1) % BUF_SIZE) == out) ;
 ……
 in = (in+1) % BUF_SIZE;
}

Consumer:
while (1) {
 while (in == out) ;
 ……
 out = (out+1) % BUF_SIZE;
}

Southeast University6.9Operating System Concepts

nShared data

#define BUF_SIZE 10
class Item {
 . . .
 Item & operator=(const Item &) { … }
}
Item buffer[BUF_SIZE];
int in = 0;
int out = 0;
int counter = 0; // initially an empty buffer

Bounded-Buffer Solution

Southeast University6.10Operating System Concepts

Bounded-Buffer Solution
nProducer process

Item nextProduced;

while (1) {
 while (counter == BUF_SIZE)

 ; /* do nothing */
 buffer[in] = nextProduced;
 in = (in + 1) % BUF_SIZE;

 counter++;
}

nConsumer process

Item nextConsumed;

while (1) {
 while (counter == 0)
 ; /* do nothing */
 nextConsumed = buffer[out];
 out = (out + 1) % BUF_SIZE;
 counter--;
}

Southeast University6.11Operating System Concepts

Critical Shared Data
nCounter is a piece of critical shared data
nThe statements

counter++;
counter--;

must be performed atomically.
The following statements also need atomicity
 in = (in + 1) % BUF_SIZE;
 out = (out + 1) % BUF_SIZE;
nAtomic operation means an operation that

completes in its entirety without interruption.

Southeast University6.12Operating System Concepts

Difficult to Implement Atomic Guarantee
nHowever, the statement “count++” may be

implemented in machine language as:
register1 = counter
register1 = register1 + 1
counter = register1

nThe statement “count--” may be implemented as:
register2 = counter
register2 = register2 – 1
counter = register2

n If both the producer and consumer attempt to
update the buffer concurrently, the assembly
language statements may get interleaved.

Southeast University6.13Operating System Concepts

Potential Data Inconsistency

n Interleaving depends upon how the producer
and consumer processes are scheduled.

nAssume counter is initially 5. One interleaving
of statements is:
producer: register1 = counter (register1 = 5)
producer: register1 = register1 + 1 (register1 = 6)
consumer: register2 = counter (register2 = 5)
consumer: register2 = register2 – 1 (register2 = 4)
producer: counter = register1 (counter = 6)
consumer: counter = register2 (counter = 4)

Southeast University6.14Operating System Concepts

Potential Data Inconsistency
nThe value of count may be either 4 or 6, where

the correct result should be 5.

register1 = counter

register1 = register1 + 1

counter = register1

register2 = counter

register2 = register2 – 1

counter = register2

Producer Consumer

Southeast University6.15Operating System Concepts

Summary: Concept of Race Condition
nRace condition occurs, if:

uTwo or more processes/threads access and
manipulate the same data concurrently, and

uThe outcome of the execution depends on
the particular order in which the access
takes place.

nTo prevent race conditions, concurrent
processes must be synchronized.

Southeast University6.16Operating System Concepts

Chapter 6: Process
Synchronization

nBackground
nThe Critical-Section Problem
nSynchronization Hardware
nSemaphores
nClassical Problems of Synchronization
nConditional Variables and Monitors
nSynchronization Examples

Southeast University6.17

Three Typical Mechanisms of
Process Synchronization

nLocks for shared memory programming
uExclusive Lock

uShared Lock:
üMultiple readers can share

a lock, but writers must have
exclusive access to the data. So no readers are allowed
to be present while a writer is accessing the data

nThere are other synchronization primitives for
shared memory programming, e.g., Barrier

Operating System Concepts

Shared
Data

Lock P2P1

P1

Barrier

P2 P3

http://www.linuxgrill.com/anonymous/fire/netfilter/kernel-hacking-HOWTO-5.html#ss5.3

Southeast University6.18

OS Support to Implement
an Exclusive Lock for Threads

nUsing Mutex: is used to lock/unlock threads
and perform operations without any other
threads interfering

nAPIs of PThread to lock and unlock a mutex
int pthread_mutex_lock(pthread_mutex_t* mutex)
int pthread_mutex_unlock(pthread_mutex_t* mutex)

nAn Example
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_lock(&lock);
counter = counter+1; // or whatever your critical section is
pthread_mutex_unlock(&lock);

Operating System Concepts

Give a demonstration

Southeast University6.19Operating System Concepts

The Critical-Section Problem:
An Use Case of Exclusive Lock

nMultiple processes all competing to use
some shared data

nEach process has a code segment, called
critical section（关键代码段、临界区、…）,
in which the shared data is accessed.

Southeast University6.20Operating System Concepts

Critical Section and
Mutual Exclusion

nProblem – ensure that when one process is
executing in its critical section, no other
process is allowed to execute in its critical
section.

nTherefore, the execution of critical sections
must be mutually exclusive, e.g., at most
one process can be in its critical section at
any time.

Southeast University6.21Operating System Concepts

The Critical Section Protocol
nThe critical-section

problem is to design a
protocol that processes
can use to cooperate.
nSuch a protocol consists of

two parts: an entry section
(or lock) and an exit
section (or unlock).

nBetween them is the
critical section that must
run in a mutually exclusive
way.

Southeast University6.22Operating System Concepts

Solution to Critical-Section Problem
nAny solution to the critical section problem

must satisfy the following three conditions:
uMutual Exclusion（互斥、忙则等待）

ü如果已经有进程进入临界区，则其它同样想要进入的进程
只能等着

uProgress（进展、空闲让进）
ü临界区空闲时，说明没有进程使用临界资源，此时应该让
想要进入临界区的进程立刻进来

uBounded Waiting（有限等待）
ü不能让进程一直干等着，要保证他在有限的时间内可以进
入临界区

nSolution correctness cannot depend on relative
speed of processes and scheduling policy.

Southeast University6.23Operating System Concepts

Mutual Exclusion（互斥、忙则等待）
n If a process P is executing in its critical

section, then no other processes can be
executing in their critical sections.

nThe entry protocol should be capable of
blocking processes that wish to enter but
cannot.

nMoreover, when the process that is
executing in its critical section exits, the
entry protocol must be able to know this
fact and allows a waiting process to enter.

Southeast University6.24Operating System Concepts

Progress（进展、空闲让进）
n If no process is executing in its critical

section and some processes wish to enter
their critical sections, then
uOnly those processes that are waiting to enter

can participate in the competition (to enter their
critical sections).

uNo other process can influence this decision.
uThis decision cannot be postponed indefinitely.

Southeast University6.25

n Case 1: One process repeatedly
attempts to enter the critical section (CS)
uProgress Test: Whether P0’s repeated

entering of CS is independent of P1’s attempt
n Case 2: One process is already in the

critical section, and meanwhile the other
process attempts to enter
uMutual Exclusive Test: P0 safely block P1 out
uProgress Test: When P0 exits, P1 is notified

n Case 3: Two processes try to enter the
critical section simultaneously
uProgress Test: Whether it is possible for the

two processes to block each other’s entry
uMutual Exclusive Test: Whether it is possible

for them to both enter the section

P0

Three Test Cases for MET and PT

Operating System Concepts

P0

P1

P1P0

Southeast University6.26Operating System Concepts

Bounded Waiting（有限等待）
nAfter a process made a request to enter its

critical section and before it is granted the
permission to enter, there is a bound on the
number of times that other processes are
allowed to enter.

nHence, even though a process may be
blocked by other waiting processes, it will
not be waiting forever.
nAssume that each process executes

at a nonzero speed
nNo assumption concerning relative

speed of the n processes
nExample: If a quicker process P0 can

repeatedly lock and unlock the critical
section, then P1 may be blocked forever

P1P0

Southeast University6.27Operating System Concepts

Solve the Problem without
any OS Support

nConsider a simple case of only 2 processes,
P0 and P1

nGeneral structure of process Pi (and Pj)
do { entry section

critical section
exit section
remainder section

} while (1);
nProcesses may share some common

variables to synchronize their actions.

Southeast University6.28Operating System Concepts

Our First Attempt: Algorithm 1
nShared variables:

uboolean lock; // initially lock = false
ulock = true Þ the critical section has been locked

nProcess Pi :
do { while (lock) ; // if locked then wait

 lock = true; // acquire the lock
critical section

lock = false; // release the lock
remainder section

 } while (1);
nDoes not satisfy mutual exclusion. Why?

lock

Southeast University6.29Operating System Concepts

Our Second Attempt: Algorithm 2
nShared variables:

uint victim; initially victim = 0 (or victim = 1)
nProcess Pi :
do {victim = i; // determine who is the victim
 while (victim == i) ; // if I am victim, then wait

critical section // assume empty
// do nothing for CS exit
remainder section

} while (1);
nProcesses are forced to run in an alternating way
nSatisfies mutual exclusion, but not progress

victim

Southeast University6.30

Alternating and Atomic Execution
of Algorithm 2

Operating System Concepts

Southeast University6.31

Deadlock of Algorithm 2

Operating System Concepts

Southeast University6.32Operating System Concepts

Another Failed Attempt: Algorithm 3
nShared variables:

uboolean flag[2]; // initially flag[0] = flag[1] = false
uflag[i] = true Þ Pi wants to enter its critical section

nProcess Pi
do {flag[i] = true; // I want to enter

while (flag[1-i]) ; // If you also want, then I wait
 critical section

flag[i] = false; // I leave
remainder section

 } while (1);
nCan satisfy mutual exclusion, but not progress

requirement. Why?

Southeast University6.33

Deadlock Problem of Algorithm 3

Operating System Concepts

Southeast University6.34Operating System Concepts

Is the Following Algorithm Correct?

nWhat if we change the location of the
statement: flag[i] = true?

nProcess Pi :
do { while (flag[1-i]) ;

flag[i] = true;
critical section

flag[i] = false;
 remainder section

 } while (1);
nDoes not satisfy mutual exclusion

Southeast University6.35

Comparison of Algorithms 1, 2, 3
Critical Section

Algorithms
Test Case 1: P0
serialized enter

Test Case 2: P0, P1
serialized enter

Test Case 3: P0, P1
concurrent enter

Algorithm 1 with a
shared lock
variable √ √ × (ME)

Algorithm 2 with a
shared victim
variable

×(Progress) √ √
Algorithm 3 with
two shared flag[2]
variables √ √ ×(Progress)

Peterson's
Algorithm,
with a shared
victim variable
and two shared
flag[2] variables

√ √ √

Operating System Concepts

Combine the advantages of
Algorithms 2 and 3

Southeast University6.36Operating System Concepts

Peterson's Algorithm
nCombined shared variables of algorithms 2, 3.
nProcess Pi

do { flag[i] = true; // I’m interested
victim = i; // you go first

 while (flag[1-i] and victim == i) ;
critical section

flag[i] = false; // I’m not interested
// any more

 remainder section
} while (1);

nMeet all the three requirements; Can solve the
critical-section problem for two processes.

Gary Peterson. Myths about the Mutual Exclusion Problem.
Information Processing Letters, 12(3):115-116, 1981.

Give a demonstration

Southeast University6.37

Peterson’s Lock: Serialized
Acquires

Operating System Concepts

Southeast University6.38

Peterson’s Lock: Concurrent Acquires

Operating System Concepts

Southeast University6.39

Test the Bounded Waiting Property

Operating System Concepts

nRecall: After a process made a request
to enter its critical section and before it is
granted the permission to enter, there
exists a bound on the number of times that
other processes are allowed to enter.

nTest Case: Two processes attempt to
enter the critical section
simultaneously
uAssume P0 is fast, while P1 is slow
uCan P0 repeatedly grab the exclusive

lock, causing P1 to starve?
üIf yes/no, the solution of critical section

cannot/can satisfy bounded waiting property

P1P0

Southeast University6.40

Proof of Peterson's Algorithm
n The mutual exclusion requirement is assured.
n The progress requirement is assured. The victim

variable is only considered when both processes
are using, or trying to use, the resource.

n Deadlock is not possible. If both processes are
testing the while condition, one of them must be
the victim. The other process will proceed.

n Finally, bounded waiting is assured. When a
process that has exited the CS reenters, it will
mark itself as the victim. If the other process is
already waiting, it will be the next to proceed.

Operating System Concepts
https://en.wikipedia.org/wiki/Peterson%27s_algorithm

https://en.wikipedia.org/wiki/Peterson's_algorithm

Southeast University6.41

Quiz: Is the following code correct?
nWhat if we change victim = i to victim = 1-i?
do { flag[i] = true; // I’m interested
 victim = 1-i; // I go first
 while (flag[1-i] and victim == i) ;

critical section
flag[i] = false; // I’m not interested

remainder section
} while (1);

uCan the code satisfy mutual exclusion?
uCan the code satisfy progress?
uCan the code satisfy bounded waiting?

Operating System Concepts

Southeast University6.42

Quiz: Is the following code correct?
nWhat if we change victim = i to victim = 1-i?
do { flag[i] = true; // I’m interested
 victim = 1-i; // I go first
 while (flag[1-i] and victim == i) ;

critical section
flag[i] = false; // I’m not interested

remainder section
} while (1);

uCan the code satisfy mutual exclusion? NO
uCan the code satisfy progress? YES
uCan the code satisfy bounded waiting? NO

Operating System Concepts

Southeast University6.43

Memory Fence
nGive a C-code demo of Peterson’s algorithm
nA memory barrier, also known as a membar,

memory fence or fence instruction, is a type
of barrier instruction that causes a central
processing unit (CPU) or compiler to enforce
an ordering constraint on memory
operations issued before and after the
barrier instruction.

nOperations issued prior to the barrier are
guaranteed to be performed before
operations issued after the barrier.

Operating System Concepts

https://en.wikipedia.org/wiki/Memory_barrier

https://gcc.gnu.org/onlinedocs/gcc-4.6.2/gcc/Atomic-Builtins.html

Southeast University6.44

Guarantee Memory Access Ordering
n Insert full memory barrier at multiple points
do { flag[i] = true; // I’m interested
__sync_synchronize(); // full memory barrier
 victim = i; // You go first
 while (flag[j] and victim == i) ;
__sync_synchronize(); // full memory barrier
 critical section
__sync_synchronize(); // full memory barrier

flag[i] = false; // I’m not interested
 remainder section

} while (1);
Operating System Concepts

Southeast University6.45Operating System Concepts

Lamport’s Bakery Algorithm

nBefore entering its critical section, process
receives a number. Holder of the smallest
number enters the critical section.

n If processes Pi and Pj receive the same
number, if i < j, then Pi is served first; else Pj
is served first.

nThe numbering scheme always generates
numbers in non-decreasing order of
enumeration, i.e., 1,2,3,3,3,3,4,5,...

Solve the critical section problem for
an arbitrary number of processes

Southeast University6.46Operating System Concepts

Bakery Algorithm
nNotation

u(a,b) < (c,d) if a < c or if a = c and b < d
umax (a0,…, an-1) is a number, k, such that k ³ ai

for i = 0, …, n – 1

nShared data
boolean choosing[n];
int number[n];

Data structures are initialized to false and 0
respectively

Southeast University6.47Operating System Concepts

Bakery Algorithm do {
choosing[i] = true; //进程 i正在选择一个号码
number[i] = max(number[0], number[1], …,

number[n – 1]) + 1;
choosing[i] = false; //进程 i取号完成
for (j = 0; j < n; j++) {

while (choosing[j]) ; //进程 i等待进程 j 完成取号
 //进程 j 不在排队等待进入临界区，并且j号码低于i

while ((number[j] != 0) &&
((number[j], j) < (number[i], i))) ;

}
critical section

number[i] = 0;
remainder section

} while (1);

Which parts are the entry and
exit sections?
What is the use of choosing[]?
Give a Demonstration.

Southeast University6.53Operating System Concepts

Chapter 6: Process
Synchronization

nBackground
nThe Critical-Section Problem
nSynchronization Hardware to Build a Lock
nSemaphores
nClassical Problems of Synchronization
nConditional Variables and Monitors
nSynchronization Examples

Southeast University6.54Operating System Concepts

Hardware Support
nThere are two types of hardware

synchronization supports:
uDisabling/Enabling interrupts: This is slow

and difficult to implement on multiprocessor
systems.

uSpecial machine instructions:
üTest and set (TAS)
üSwap
üAtomic fetch-and-add

Southeast University6.55Operating System Concepts

Interrupt Disabling
nBecause interrupts are

disabled, no context
switch will occur in a
critical section.

n Infeasible in a
multiprocessor system
because all CPUs
must be informed.

nSome features that
depend on interrupts
(e.g., clock) may not
work properly.

Southeast University6.56Operating System Concepts

Test-and-Set (TAS)
nTest and modify the content of a machine

word atomically
boolean TestAndSet(boolean &target) {

boolean rv = target;
target = true;
return rv;

}

Southeast University6.57Operating System Concepts

Mutual Exclusion with Test-and-Set
nShared data:

boolean lock = false;
nProcess Pi

do {
key = true

 while (key) key = TestAndSet(lock);
critical section

lock = false;
remainder section

} while(1);

Cannot satisfy
bounded waiting.
Why?

Southeast University6.58Operating System Concepts

Bounded Waiting Mutual
Exclusion with TestAndSet

waiting[i] = true;
key = true;
while (waiting[i] && key)
 key=TestAndSet(lock);
waiting[i] = false;

j = (i+1)%n
while ((j!=i) && !waiting[j])

j = (j+1)%n;
if (j == i)

lock = false;
else

waiting[j] = false;

n Shared data (initialized to false):
boolean lock = false; boolean waiting[n]; //init to false

n local variable: boolean key;
Enter Critical Section (Lock) Leave Critical Section (unlock)

Southeast University6.59Operating System Concepts

Atomic Swap

nAtomically swap two variables.

void Swap(boolean &a, boolean &b) {
boolean temp = a;
a = b;
b = temp;

}

Southeast University6.60Operating System Concepts

Mutual Exclusion with Swap
nShared data (initialized to false):

boolean lock = false;
n local variable

boolean key;
n Process Pi or Interrupt Handler THi

do {
 key = true;
 while (key == true) Swap(lock, key);
 critical section
 lock = false;
 remainder section
} while(1);

Cannot satisfy
bounded waiting.
Why?

Southeast University6.61

Another Atomic CPU
Instruction Fetch-and-add

n fetch-and-add instruction performs the operation

n can be used to implement concurrency
control structures such as mutex
locks and semaphores.

nAn atomic fetch_add function appears in the
C++11 standard

Operating System Concepts

<< atomic >>
function FetchAndAdd(address location, int inc)
{
 int value := *location
 *location := value + inc
 return value
}

https://en.wikipedia.org/wiki/Fetch-and-add

Southeast University6.62

Spin Locks
nA spinlock is a lock, which causes a thread

trying to acquire it to simply wait in a loop
(“spin”) while repeatedly checking if the lock
is available. Since the thread remains active
but is not performing a useful task, the use of
such a lock is a kind of busy waiting.
n用忙等待方式实现的信号量称为自旋锁。自旋锁等
待进入临界区需要占有CPU周期。

#include <pthread.h>
int pthread_spin_lock(pthread_spinlock_t *lock);
int pthread_spin_trylock(pthread_spinlock_t *lock);
int pthread_spin_unlock(pthread_spinlock_t*lock);
Operating System Concepts

Southeast University6.63

Question: Why spinlocks are not
appropriate for single-processor

systems yet are often used in
multiprocessor system?

n在单处理器系统中，这将导致已进入临界区的进程得不
到机会执行，反而使想进临界区的进程等待更长时间。

n在多处理器系统中，当临界区很短时，自旋锁是合适的

n由于有多个处理器，忙等待的进程不影响在临界区中的
进程在其他处理器上执行。由于临界区很短，在临界区
里的进程很快就能离开临界区，其他忙等待的进程就可
以进入它的临界区。这种情况下反而避免了由于阻塞和
唤醒导致的上下文切换开销。

Operating System Concepts

Southeast University6.65

Adaptive Mutex（自适应互斥锁）
nMost operating systems (including Solaris,

Mac OS X and FreeBSD) use a hybrid
approach called "adaptive mutex".

n当一个线程尝试获取一个被其他线程锁定的资
源时，会首先判断持有锁的线程的状态。

n It uses a spinlock when trying to access a
resource locked by a currently-running thread,
but to sleep if the thread is not currently
running. (The latter is always the case on
single-processor systems.)

Operating System Concepts

https://en.wikipedia.org/wiki/Solaris_(operating_system)
https://en.wikipedia.org/wiki/Mac_OS_X
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Thread_(computing)

Southeast University6.66Operating System Concepts

Chapter 6: Process
Synchronization

nBackground
nThe Critical-Section Problem
nSynchronization Hardware
nSemaphore as a generic synchronization tool
nClassical Problems of Synchronization
nConditional Variables and Monitors
nSynchronization Examples

Southeast University6.67

nEdsger Wybe Dijkstra
u(Dutch: [‘ɛtsxər ‘ʋibə ‘dɛikstra])
u11 May 1930 - 6 August 2002

(aged 72)

nKnown for
uDijkstra's algorithm (single-

source shortest path problem)
uStructured programming, First

implementation of ALGOL 60
(“Goto Statements
Considered Harmful”)

uSemaphores, Layered
approach to operating system
design, software-based paged
virtual memory in
üTHE multiprogramming

system

Dijkstra

Southeast University6.68Operating System Concepts

Concept of Semaphore
n In real-world systems, semaphores are often

used as a synchronization mechanism to
control access to a type of shared resources.

nSemaphores act as a
record of the availability
of a resource and help
coordinating access to it,
among multiple processes or threads,

n It is a synchronization tool that does not require
busy waiting, but needs the support from kernel

semop() - Unix, Linux System Call
http://www.tutorialspoint.com/unix_system_calls/semop.htm

Southeast University6.69Operating System Concepts

Concept of Semaphore (cont.)

nSemaphore S –– an integer variable
n It can only be accessed via two indivisible

(atomic) operations: wait and signal
nThey are functionally equivalent to the following

busy-waiting operations.
wait (S): signal (S):

while S £ 0 do no-op; S++;
S--;

Southeast University6.70Operating System Concepts

Semaphore Implementation
nDefine a semaphore as a structural record

typedef struct {
int counter;
struct process * L;
an in-kernel exclusive lock;

 } semaphore;

nAssume two simple operations:
ublock: block the process that invokes it.
uwakeup(P): resumes the execution of a

blocked process P.

Southeast University6.71Operating System Concepts

Semaphore Schematics
Semaphore = counter + kernel mutex + waiting list

A useful way to think of a semaphore as used in
the real-world systems is as a record of how
many units of a particular resource are available,

Southeast University6.72

POSIX Library's Support of Semaphore
nAll POSIX semaphore functions and types are

prototyped or defined in semaphore.h
#include <semaphore.h>

n To define a semaphore object, use
sem_t sem_name; OR sem_t * sem_pointer;

n For initialization, use either of the following APIs.
int sem_init (sem_t *sem, int pshared, unsigned int initial_value);
sem_t * sem_open (const char* name, int oflag, unsigned int
initial_value);

n To increment/decrement the value of a semaphore,
int sem_wait (sem_t * sem_pointer);
int sem_post (sem_t * sem_pointer);

Operating System Concepts

http://pubs.opengroup.org/onlinepubs/009695399/functions/sem_init.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/sem_init.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/sem_wait.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/sem_post.html

Southeast University6.74Operating System Concepts

Semaphore Implementation
n What do we do in a multiprocessor platform to

implement wait(S) and signal(S)?
uCan’t turn off interrupts to get low-level mutual exclusion
uSuppose hardware provides atomic test-and-set instruction

signal(S):
 while(TAS(S.lock));
 S.counter++;
 if (S.counter <= 0) {
 remove a process P
 from S.L;
 wakeup(P);
 }
 S.lock = 0;

wait(S):
 while(TAS(S.lock));
 S.counter--;
 if (S.counter < 0) {
 add this process to S.L;
 block;
 }
 S.lock = 0;

Southeast University6.75Operating System Concepts

Applications of Binary Semaphore:
1. Solve the Critical Section Problem

n Shared data: semaphore ex_lock = 1; // initialize to 1

n Process Pi:
do {

wait(ex_lock);
critical section

signal(ex_lock);
remainder section

} while (1);

n Give a demonstration

P0

P1 P2
wait(ex_lock)

signal(ex_lock)

Southeast University6.76Operating System Concepts

Applications of Binary Semaphore:
1. Solve the Critical Section Problem

n Shared data: semaphore ex_lock = 1; // initialize to 1
P0 P1 P2

Semaphore S {
 int counter;
 struct process * L;
 an in-kernel exclusive lock;
}

User
Mode

Kernel
Mode

signal(S):
 while(TAS(S.lock));
 S.counter++;
 if (S.counter <= 0) {
 remove a process P
 from S.L;
 wakeup(P);
 }
 S.lock = 0;

wait(S):
 while(TAS(S.lock));
 S.counter--;
 if (S.counter < 0) {
 add this process to S.L;
 block;
 }
 S.lock = 0;

进程P1和P2同时竞
争ex_lock锁的控制权
，可能产生竞争条件
。因为都试图修改信
号量S=ex_lock内部
的S.counter变量。

此时必须依靠内核信
号量S的S.lock自旋锁
，将修改信号量内部
状态的wait(S)和
signal(S)方法都实现
为关键代码段。

wait(ex_lock)
…
signal(ex_lock)

Semaphore
ex_lock;

Southeast University6.77

Difference between Binary
Semaphore and Mutex

nQuestion: Is there any difference between
binary semaphore and mutex, or they are
essentially the same?

nAnswer: They're semantically the same, but
in practice you will notice weird differences
uSemaphore is implemented by process/thread

blocking and wakeup
uMutex may be internally implemented by some

kernels as spin locks, which could be more
efficient on multi-processor systems but will
slow down a single processor machine

Operating System Concepts
http://gauss.ececs.uc.edu/Courses/c4029/extra/difference-between-semaphore-and-mutex.html

http://gauss.ececs.uc.edu/Courses/c4029/extra/difference-between-semaphore-and-mutex.html

Southeast University6.78Operating System Concepts

Applications of Binary Semaphore:
2. Act as an Event Notification Tool

nExecute B in Pj only after A executed in Pi

nUse semaphore flag, which is initialized to 0

nShared data:
semaphore flag = 0; // initialize to 0

Pi Pj

A wait(flag)
signal(flag) B

Southeast University6.79Operating System Concepts

Side Effect of Semaphore:
Deadlock and Starvation

n Deadlock – a set of two or more processes are waiting
indefinitely (无限期) for an event that can be caused by
only one of the waiting processes within this set.
uExample: Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);
wait(Q); wait(S);

signal(S); signal(Q);
signal(Q) signal(S);

n Starvation – indefinite blocking. A process may never
be removed from the semaphore queue in which it is
waiting.

semaphore S=1, Q=1;

Southeast University6.80Operating System Concepts

Chapter 6: Process
Synchronization

nBackground
nThe Critical-Section Problem
nSynchronization Hardware
nSemaphores
nClassical Problems of Synchronization
nConditional Variables and Monitors
nSynchronization Examples

Southeast University6.81Operating System Concepts

Classical Problems of
Synchronization

nBounded-Buffer Problem (or called
Producer-Consumer Problem)

nReaders and Writers Problem (or called
Shared-Lock Problem)

nDining-Philosophers Problem

Southeast University6.82Operating System Concepts

Producer-Consumer Problem
nAlso called bounded buffer problem
nA producer produce data that is to be consumed

by a consumer
nA buffer holds produced data not yet consumed
nThere exists several producers and consumers
nApplication: Multi-threaded web server

Southeast University6.83Operating System Concepts

Solution 1 for Producer-Consumer

nShared variables besides the shared buffer

semaphore fullCount, emptyCount;

Initially:

fullCount = 0, emptyCount = n
n fullCount: the number of items in the buffer
nemptyCount: the number of empty slots in

the buffer

Southeast University6.84Operating System Concepts

Solution 1 for Producer-Consumer

Producer:
do {

…
produce an item in nextp

…
wait(emptyCount);
insert nextp to buffer
signal(fullCount);

} while (1);

Consumer:
do {

wait(fullCount);
remove an item from
buffer to nextc
signal(emptyCount);

…
consume the item in nextc

…
} while (1);

Question: Is this solution correct? Give a demo.

Southeast University6.85

Solution 1 for Producer-Consumer
nThis solution contains a serious race

condition that can result in two or more
producer (or consumer) processes modifying
the same cursor in (or out) at the same time.

nTo understand how this is possible, recall
how the procedures “insert nextp to buffer”
and “remove an item from buffer” are
implemented, by
in = (in+1)%BUF_SIZE, and
out = (out+1)%BUF_SIZE.

Operating System Concepts

Southeast University6.86Operating System Concepts

Solution 2 for Producer-Consumer

nShared data

semaphore fullCount, emptyCount, mutex;

Initially:

fullCount = 0, emptyCount = n, mutex = 1

nmutex: guarantee the mutual exclusive
access of the shared buffer

Southeast University6.87Operating System Concepts

Solution 2 for Producer-Consumer
Producer:
do {

…
produce an item in nextp

…
wait(mutex);
wait(emptyCount);
insert nextp to buffer
signal(fullCount);
signal(mutex);

} while (1);

Consumer:
do {

wait(mutex);
wait(fullCount);
remove an item from
buffer to nextc
signal(emptyCount);
signal(mutex);

…
consume the item in nextc

…
} while (1);

Question: Is this solution correct? Give a demo.

Southeast University6.88Operating System Concepts

Solution 3 for Producer-Consumer
Producer:
do {

…
produce an item in nextp

…
wait(emptyCount);
wait(mutex);
insert nextp to buffer
signal(mutex);
signal(fullCount);

} while (1);

Consumer:
do {

wait(fullCount);
wait(mutex);
remove an item from
buffer to nextc
signal(mutex);
signal(emptyCount);

…
consume the item in nextc

…
} while (1);

This code works! Give a demonstration

Southeast University6.89

A Short Summary
n结论1：需要用mutex确保对关键共享资源的互
斥访问，比如 shared bounded buffer

n结论2：信号量wait的顺序很重要
u例子：如果wait(mutex)错误放在了wait(fullCount)或
者wait(emptyCount)之前，会导致死锁

n问题1：信号量signal的顺序重要吗？
u例子：signal(mutex)和signal(fullCount)可以交换吗
？

n问题2：能否把produce an item和consume an
item放到wait(mutex)和signal(mutex)之间？

Operating System Concepts

Southeast University6.90Operating System Concepts

When the buffer size is only one,
can we remove the mutex variable?

Producer:
do {

…
produce an item in nextp

…
wait(emptyCount);
insert nextp to buffer
signal(fullCount);

} while (1);

Consumer:
do {

wait(fullCount);
remove an item from
buffer to nextc
signal(emptyCount);

…
consume the item in nextc

…
} while (1);

Initially: semaphore fullCount = 0, emptyCount = 1

Please give out your reasons.

Southeast University6.91

信号量：生产者消费者习题

n考虑三个吸烟者进程和一个经销商进程的系统

u每个吸烟者连续不断地做烟卷并抽他做好的烟卷，
做一支烟卷需要烟草、纸和火柴三种原料。

u这三个吸烟者分别掌握有烟草、纸和火柴。

u经销商源源不断地提供上述三种原料，但他只随机
的将其中的两种原料组合（A:烟草+纸，B:纸+火柴
，C:烟草+火柴）放在桌上，具有另一种原料的吸烟
者就可以做烟卷并抽烟，且在做完后给经销商发信号
，然后经销商再拿出两种原料放在桌上，如此反复

n基于信号量设计一个同步算法描述他们的活动
üSemaphore empty=1, fullA=0, fullB=0, fullC=0;
üBroker: SmokerA: SmokerB: SmokerC:

Operating System Concepts

Southeast University6.92

信号量：生产者消费者习题

n可以考虑：设置三个信号量fullA、fullB和fullC
，分别代表三种原料组合，初值均为0，即
ufullA表示烟草和纸的组合，
ufullB表示纸和火柴的组合，
ufullC表示烟草和火柴的组合。

n桌面上一次只能放一种组合，可以看作是只
能放一个产品的共享缓冲区，设置信号量
empty初值为1，控制经销商往桌子上放原料

Operating System Concepts

Southeast University6.93

信号量：生产者消费者习题
n算法

Semaphore fullA=fullB=fullC=0, empty=1;

process smokerA() {
do {

wait(fullA);
 take tobacco and paper from the table;

signal(empty); // signal an empty table event
 make cigarette;
 smoke cigarette;

} while (1);
}Operating System Concepts

Southeast University6.94

信号量：生产者消费者习题

process smokerB() {
do {

wait(fullB);
 take paper and match
 from the table;

signal(empty);
 make cigarette;
 smoke cigarette;

} while (1);
}
Operating System Concepts

process smokerC() {
do {

wait(fullC);
 take tobacco and match
 from the table;

signal(empty);
 make cigarette;
 smoke cigarette;

} while (1);
}

Southeast University6.95

信号量：生产者消费者习题
process provider() {

integer i;
do {

 i = random() % 3; // produce a combination
wait(empty); // wait for an empty table event

 switch(i) {
case 0: put T&P on table; signal(fullA); break;
case 1: put P&M on table; signal(fullB); break;
case 2: put T&M on table; signal(fullC); break;

}
} while(1);

}Operating System Concepts

Southeast University6.96Operating System Concepts

Classical Problems of
Synchronization

nBounded-Buffer Problem (or called
Producer-Consumer Problem)

nReaders and Writers Problem (or called
Shared-Lock Problem)

nDining-Philosophers Problem

Southeast University6.97

n Imagine a number of concurrent operations,
including reads and writes.
uWrites change the state of the data
uReads do not.

üMany reads can proceed concurrently, as long
as we can guarantee that no write is on-going.

nOccurs frequently in real systems, e.g. online
airplane booking, N-thread caching web proxy

Reader-Writer Locks

Reader-Writer Problem Producer-Consumer Problem

Southeast University6.98Operating System Concepts

Readers-Writers Problem (or
Shared-Lock Problem)

nShared data
int readcount;
semaphore mutex, wrt;
Initially readcount = 0, mutex = 1, wrt = 1

n readcount: the number of readers browsing
the shared content

nmutex: guarantee the mutual exclusive
access to the readcount variable

nwrt: the right of modifying the shared content

Southeast University6.99Operating System Concepts

Readers-Writers Problem (solution 1)

Writer Process
wait(wrt);

…
writing is performed

…
signal(wrt);

Reader Process
 wait(mutex);

 readcount++;
signal(mutex);

 if (readcount == 1)
wait(wrt);
…

reading is performed
…

wait(mutex);
readcount--;
signal(mutex);
if (readcount == 0)

signal(wrt);Question: Is this
solution correct?

Southeast University6.100Operating System Concepts

Readers-Writers Problem (solution 2)
Reader Process
wait(mutex);

 readcount++;
if (readcount == 1)

wait(wrt);
signal(mutex);

…
reading is performed

…
wait(mutex);
readcount--;
if (readcount == 0)

signal(wrt);
signal(mutex);

Writer Process
wait(wrt);

…
writing is performed

…
signal(wrt);

This solution
works!!

Southeast University6.101

typedef struct _rwlock_t {
sem_t * writelock;
sem_t * lock;
int readers;

} rwlock_t;
void rwlock_acquire_readlock(rwlock_t * rw) {
 sem_wait(rw->lock);
 rw->readers++;
 if (rw->readers == 1)
 sem_wait(rw->writelock);
 sem_post(rw->lock);
}
void rwlock_release_readlock(rwlock_t * rw) {
 sem_wait(rw->lock);
 rw->readers--;
 if (rw->readers == 0)
 sem_post(rw->writelock);
 sem_post(rw->lock);
}
void rwlock_acquire_writelock(rwlock_t *rw) {
 sem_wait(rw->writelock);
}
void rwlock_release_writelock(rwlock_t *rw) {
 sem_post(rw->writelock);
}

Give a demo

Southeast University6.102

n由于读者优先，存在写者饥饿问题

n用信号量解决无饥饿的读者——写者问题。

Exercise

R3: read 21
R1: read 21
R2: read 21
R4: read 21
R5: read 21
R3: read 21
R1: read 21
R2: read 21
R4: read 21
R5: read 21
R3: read 21
R1: read 21
R2: read 21
R4: read 21
R5: read 21
R3: read 21
R1: read 21

R2: read 21
R4: read 21
R5: read 21
R3: read 21
R1: read 21
R2: read 21
R4: read 21
R5: read 21
R3: read 21
R1: read 21
R2: read 21
R4: read 21
R5: read 21
R3: read 21
R1: read 21
R2: read 21
R4: read 21

R1: read 21
R2: read 21
R4: read 21
R2: done 21
R5: read 21
R1: read 21
R4: read 21
R1: done 21
R5: read 21
R4: done 21
R5: done 21
W2: write 22
W1: write 23
W2: write 24
W1: write 25
W2: write 26
W1: write 27

R3: read 21
R1: read 21
R2: read 21
R4: read 21
R5: read 21
R3: read 21
R1: read 21
R2: read 21
R4: read 21
R5: read 21
R3: read 21
R1: read 21
R2: read 21
R4: read 21
R5: read 21
R3: read 21
R1: read 21

Southeast University6.103Operating System Concepts

More Info about Reader-Writer Locks
nThe first readers–writers problem

urequires that no reader be kept
waiting unless a writer has already
obtained access right of shared object.

nThe second readers-writers problem
urequires that once a writer is ready, that writer

perform its write as soon as possible.

nDiscussion:
uWhich problem is solved by the previous codes?
uAnswer: The first readers-writers problem.
uHow to solve the second readers-writers problem?

Southeast University6.104

! The (No-starve) Readers-Writers
Problem

semaphore lock= 1;
semaphore writelock=1;
int read_count = 0;
semaphore wflock =1;

void write() {
do {

wait(wflock);
wait(writelock);
/* writing */
signal(writelock);
signal(wflock);

}
while (1);

}

void read() {
do {

wait(wflock);
signal(wflock);
wait(lock);
read_count ++;
if (read_count == 1)

 wait(writelock);
signal(lock);
/* reading */
wait(lock);
read_count --;
if (read_count == 0)

 signal(writelock);
signal(lock);

}
while (1);

}写者利用wflock将后续准备进入的
readers阻塞在acquire_readlock

acquire_readlock

release_readlock

Southeast University6.105

void read() {
do {

wait(wflock);
signal(wflock);
wait(lock);
read_count ++;
if (read_count == 1)

 wait(writelock);
signal(lock);
/* reading */
wait(lock);
read_count --;
if (read_count == 0)

 signal(writelock);
signal(lock);

}
while (1);

}

typedef struct
_rwlock_t {
 sem_t *
writelock;
 sem_t *
lock;
 int readers;
 sem_t *
wflock;
} rwlock_t;

void
rwlock_init(rwlo
ck_t * rw) {
 rw->readers
= 0;
 rw->lock =
sem_open(…, 1);
 rw-
>writelock =
sem_open(…, 1);
 rw->wflock =
sem_open(…, 1);
}

void rwlock_acquire_readlock(rwlock_t * rw) {
 sem_wait(rw->wflock);
 sem_post(rw->wflock);
 sem_wait(rw->lock);
 rw->readers++;
 if (rw->readers == 1)
 sem_wait(rw->writelock);
 sem_post(rw->lock);
}
void rwlock_release_readlock(rwlock_t * rw) {
 sem_wait(rw->lock);
 rw->readers--;
 if (rw->readers == 0)
 sem_post(rw->writelock);
 sem_post(rw->lock);
}
void rwlock_acquire_writelock(rwlock_t *rw) {
 sem_wait(rw->wflock);
 sem_wait(rw->writelock);
}
void rwlock_release_writelock(rwlock_t *rw) {
 sem_post(rw->writelock);
 sem_post(rw->wflock);
}

Give a demo

Southeast University6.106

! The (Writer-priority) Readers-Writers
Problem

void write() {
 do {

wait(writecount_lock);
write_count ++;
if (write_count == 1)
 wait(readlock);
signal(writecount_lock);
wait(writelock);

/* writing */

signal(writelock);
wait(writecount_lock);
write_count --;
if (write_count == 0)
 signal(readlock);
signal(writecount_lock);

}
while (1);

}

void read() {
 do {

wait(readlock);
wait(readcount_lock);
read_count ++;
if (read_count == 1)
 wait(writelock);
signal(readcount_lock);
signal(readlock);

/* reading */

wait(readcount_lock);
read_count --;
if (read_count == 0)
 signal(writelock);
signal(readcount_lock);

}
while (1);

}

int write_count = read_count = 0;
semaphore readcount_lock= 1;
semaphore writecount_lock= 1;
semaphore readlock=1; //0表示不能读
semaphore writelock=1; //0表示不能写

Give a demo

Southeast University6.107Operating System Concepts

Classical Problems of
Synchronization

nBounded-Buffer Problem (or called
Producer-Consumer Problem)

nReaders and Writers Problem (or called
Shared-Lock Problem)

nDining-Philosophers Problem

Southeast University6.108

ØOriginally formulated in 1965 by
Edsger Dijkstra

ØTony Hoare gave the problem its
present formulation

The Dining Philosophers

Southeast University6.109Operating System Concepts

Dining-Philosophers Problem

Shared data
semaphore chopstick[5];

Initial values of all semaphores are set to 1

Here is the basic loop
of each philosopher:

Southeast University6.110Operating System Concepts

Dining-Philosophers Problem
n Philosopher i:

do {
wait(chopstick[i]);
wait(chopstick[(i+1) % 5]);

…
eat
…

signal(chopstick[i]);
signal(chopstick[(i+1) % 5]);

…
think
…

} while (1);

nChallenges
uDeadlock

uStarvation

uLack of Fairness

Quick
hand

Quick
hand

Starving

Starving

Give a demo

0

1

2
3

4

Southeast University6.111

Semaphore 学习的四重境界

1. 理解基础概念

2. 熟练掌握经典问题（PC, RW, DP）。

3. 熟悉经典问题的变种，能够将应用题恰当的
归约到某个经典问题的变种。

4. 能够将经典问题灵活组合应用，随心所欲，
信手拈来。

Operating System Concepts

Southeast University6.112Operating System Concepts

Chapter 6: Process
Synchronization

nBackground
nThe Critical-Section Problem
nSynchronization Hardware
nSemaphores
nClassical Problems of Synchronization
nCondition Variables and Monitors
nSynchronization Examples

Southeast University6.113

Condition Variable
nSemaphore and condition variables are very

similar and are used mostly for the same
purposes.
uSemaphore can be easily understood as an in-

kernel counter for the units of a type of resource.
uCondition is an advanced event notification tech.

nHowever, there are minor differences that
could make one preferable.
uFor example, to implement barrier

synchronization, you would not be able to use a
semaphore. But a condition variable is ideal.

Operating System Concepts

Southeast University6.114

Condition Variable
n The condition variable mechanism allows

threads to suspend execution and relinquish the
processor until some condition is true.

n A problem of semaphore: We cannot read the in-
kernel counter hiding inside a semaphore

n A condition variable must be used inside a mutex
to avoid a race condition created by one thread
preparing to wait and another thread which may
signal the condition before the first thread
actually waits on it resulting in a deadlock. Operating System Concepts

Semaphore = counter + mutex + waiting list
Conditional Variable = waiting list

Southeast University6.115

企业级开发中条件变量会用的更多

n Java在企业开发市场占比80%

n Java最常用的同步机制
u（1）synchronized关键字实现的条件变量。每
一个Java对象就有一把看不见的锁，称为内部锁
或者Monitor锁，内部。

u（2）Lock接口及其实现类，如
ReentrantLock.ReadLock和
ReentrantReadWriteLock.WriteLock。

Operating System Concepts

不可不说的Java“锁”事
https://tech.meituan.com/2018/11/15/java-lock.html

Southeast University6.116

Condition Variable vs. Semaphore
Semaphore Condition Variable

Can be used anywhere Must be used inside the
protection of a mutex

wait() does not always
block its caller

wait() always blocks its
caller

signal() either releases a
process, or increases the
semaphore counter

signal() either releases a
process, or the signal is
lost as if it never occurs

If signal() releases a
process, the caller and
the released both
continue

If signal() releases a
process, either the caller
or the released continues,
but not both

Operating System Concepts

Southeast University6.117

Condition Variable in
Pthread Library

n Creating/Destroying:
upthread_cond_t cond = THREAD_COND_INITIALIZER;
upthread_cond_init
upthread_cond_destroy

n Waiting on condition:
upthread_cond_wait(pthread_cond_t *cond, pthread_mutex

_t *mutex) - unlocks the mutex and waits for the condition
variable cond to be signaled.

n Waking thread based on condition:
upthread_cond_signal(pthread_cond_t *cond) - restarts one

of the threads that are waiting on the condition variable cond.
upthread_cond_broadcast(pthread_cond_t *cond) - wake up

all threads blocked by the specified condition variable.
Operating System Concepts

http://man.yolinux.com/cgi-bin/man2html?cgi_command=pthread_cond_init
http://man.yolinux.com/cgi-bin/man2html?cgi_command=pthread_cond_destroy
http://man.yolinux.com/cgi-bin/man2html?cgi_command=pthread_cond_wait
http://man.yolinux.com/cgi-bin/man2html?cgi_command=pthread_cond_signal
http://man.yolinux.com/cgi-bin/man2html?cgi_command=pthread_cond_broadcast

Southeast University6.118

Barrier Problem
nSuppose we wanted to perform a multi-

threaded calculation that has two stages, but
we don't want to advance to the second
stage until the first stage is completed.

nWe could use a synchronization method
called a barrier. When a thread reaches a
barrier, it will wait at the barrier until all the
threads reach the barrier, and then they'll all
proceed together.

Operating System Concepts

Southeast University6.119

Barrier Problem
nPthreads has a pthread_barrier_wait()

function that implements this. You'll need to
declare a pthread_barrier_t variable and
initialize it with pthread_barrier_init().
upthread_barrier_init() takes the number of

threads that will be participating in the barrier as
an argument.

nNow let's implement our own barrier and use
it to keep all the threads in sync in a large
calculation.

Operating System Concepts

Southeast University6.120

Barrier Implementation by
Condition Variable

#define N (16)
double data[256][8192] ;
pthread_mutex_t m;
pthread_cond_t cv;
int main() {
 int tids[N], i;
 pthread_mutex_init(&m, NULL);
 pthread_cond_init(&cv, NULL);
 for(i = 0; i < N; i++) { tids[i] = i;
 pthread_create(&ids[i], NULL, calc, &(tids[i]));
 }
 for(i = 0; i < N; i++) pthread_join(ids[i], NULL);
}
Operating System Concepts

https://github.com/angrave/SystemProgra
mming/wiki/Synchronization%2C-Part-
6%3A-Implementing-a-barrier

Southeast University6.121

Barrier Implementation by
Condition Variable

double data[256][8192]
void *calc(void *ptr) {
 1. Threads do first calculation (use and
change values in data)

 2. Barrier! Wait for all threads to finish first
calculation before continuing

 3. Threads do second calculation (use and
change values in data)
}

Operating System Concepts
https://github.com/angrave/SystemProgramming/wiki/Synchronization%2C-
Part-6%3A-Implementing-a-barrier

Southeast University6.122

Barrier Implementation by
Condition Variable

Operating System Concepts

#int remain = N;
void *calc(void *ptr) {
// The thread does first calculation
pthread_mutex_lock(&m);
remain--;
if (remain ==0) pthread_cond_broadcast(&cv);
 else {
while(remain != 0) pthread_cond_wait(&cv,&m);
 }
pthread_mutex_unlock(&m);
// The thread does second calculation
}

If using condition variable, the state of counter
can be access. But when using semaphore,
the state of inner count cannot be accessed.

Give a demo

Southeast University6.123Operating System Concepts

Object-Oriented Monitors
n High-level synchronization construct that allows the

safe sharing of an abstract data type among
concurrent processes.

monitor monitor-name
{ shared variable declarations

procedure body P1 (…) {
. . .}

procedure body P2 (…) {
. . .}

procedure body Pn (…) {
. . .}

{ initialization code }
}

Southeast University6.124Operating System Concepts

Monitors: Mutual Exclusion
nNo more than one process can be executing

within a monitor. Thus, mutual exclusion is
guaranteed within a monitor.

nWhen a process calls a monitor procedure
and enters the monitor successfully, it is the
only process executing in the monitor.

nWhen a process calls a monitor procedure
and the monitor has a process running, the
caller will be blocked outside of the monitor.

Southeast University6.125Operating System Concepts

Schematic View of a Monitor

Southeast University6.126Operating System Concepts

Monitors: Event Notification
nTo allow a process to wait within the monitor, a

condition variable must be declared, as
 condition x, y;

nCondition variable can only be used with the
operations wait and signal.
uThe operation

x.wait();
means that the process invoking this operation is
blocked until another process invokes

x.signal();
uThe x.signal operation wakeup exactly one

blocked process. If no process is waiting for the
condition, then the signal operation has no effect.

Southeast University6.127Operating System Concepts

Schematic View of a
Monitor With Condition Variables

Southeast University6.128Operating System Concepts

A Subtle Issue of
Condition Variable

nConsider the released process (from the
signaled condition) and the process that
signals. There are two processes
executing in the monitor, and mutual
exclusion is violated!

nThere are two common and popular
approaches to address this problem:
uThe released process takes over the monitor

and the signaling process waits somewhere.
uThe released process waits somewhere and the

signaling process continues to use the monitor.

Southeast University6.129

Java's Monitor Supports

Method Description
void Object.wait(); Enter a monitor's wait set until notified by another thread

void Object.wait(long timeout); Enter a monitor's wait set until notified by another thread
or timeout milliseconds elapses

void Object.notify(); Wake up one thread waiting in the monitor's wait set. (If no
threads are waiting, do nothing.)

void Object.notifyAll(); Wake up all threads waiting in the monitor's wait set. (If no
threads are waiting, do nothing.)

Operating System Conceptshttp://www.artima.com/insidejvm/ed2/threadsynchP.html

nSynchronized methods for mutual exclusion
class classname {

synchronized return_type methodname() {…...}
}

nCoordination support for event notification

http://www.ibm.com/developerworks/cn/java/j-lo-synchronized/index.html

Southeast University6.130

Producer-Consumer Example

monitor PCbuffer {
int itemCount; // <= BUFSIZE
condition full, empty;
putItemIntoBuffer(item) {…}
Item removeItemFromBuffer()
{…}
procedure void add(item) {

... // how to implement?
}
procedure item remove() {

… // how to implement?
}

}Operating System Concepts

procedure producer() {
do {

item = produceItem();
PCbuffer.add(item);

} while (true);
}

procedure consumer() {
do {

item = PCbuffer.remove();
consumeItem(item);

} while (true);
}

Southeast University6.131

Producer-Consumer Example
procedure void add(item) {

if (itemCount == BUFSIZE)
full.wait();

putItemIntoBuffer(item);
itemCount = itemCount + 1;
if (itemCount == 1)

empty.signal();
return;

}
 Note that if statement has been used in the above code, both

when testing if the buffer is full or empty.
 With multiple consumers, there is a race condition between the

consumer who gets notified that an item has been put into the
buffer and another consumer who is waiting on the monitor. Operating System Concepts

procedure item remove() {
if (itemCount == 0)

empty.wait();
item = removeItemFromBuffer();
itemCount = itemCount - 1;
if (itemCount == BUFSIZE - 1)

full.signal();
return item;

}

https://en.wikipedia.org/wiki/Race_condition

Southeast University6.132

Producer-Consumer Example
procedure void add(item) {

while (itemCount == BUFSIZE)
full.wait();

putItemIntoBuffer(item);
itemCount = itemCount + 1;
if (itemCount == 1)

empty.signal();
return;

}
n Note that while statement has been used in the above code,

both when testing if the buffer is full or empty.
n With multiple consumers, there is a race condition between the

consumer who gets notified that an item has been put into the
buffer and another consumer who is waiting on the monitor. Operating System Concepts

procedure item remove() {
while (itemCount == 0)

empty.wait();
item = removeItemFromBuffer();
itemCount = itemCount - 1;
if (itemCount == BUFSIZE - 1)

full.signal();
return item;

}

https://en.wikipedia.org/wiki/Race_condition

Southeast University6.133

Producer-Consumer Example
procedure void add(item) {

while (itemCount == BUFSIZE)
full.wait();

putItemIntoBuffer(item);
itemCount = itemCount + 1;
if (itemCount == 1)

empty.signal();
return;

}
n With multiple producers, there is also a race condition between

the producer who gets notified that the buffer is no longer full
and another producer is already waiting on the monitor.

n If the while was instead an if, too many items might be put into
the buffer or a remove might be attempted on an empty buffer.Operating System Concepts

procedure item remove() {
while (itemCount == 0)

empty.wait();
item = removeItemFromBuffer();
itemCount = itemCount - 1;
if (itemCount == BUFSIZE - 1)

full.signal();
return item;

}

https://en.wikipedia.org/wiki/Race_condition

Southeast University6.134Operating System Concepts

monitor dining_philosopher_sync_table
{

enum {thinking, hungry, eating} state[5];
condition self[5];

procedure void pickup(int i) ; // pick up chopsticks
procedure void putdown(int i) ; // put down chopsticks

private void test(int i) ; // test if Pi is eligible for eating
void init() {

for (int i = 0; i < 5; i++)
state[i] = thinking;

}
}

Dining Philosophers without Deadlock

Southeast University6.135

void pickup(int i) {
state[i] = hungry;
test(i);
while(state[i] != eating)

self[i].wait();
}
void test(int i) {

if ((state[(i + 4) % 5] != eating) &&
(state[i] == hungry) &&
(state[(i + 1) % 5] != eating)) {
state[i] = eating;
self[i].signal();

} }

When P1 and P4 finish eating at
the same time, will P2 and P3
compete for their common

chopstick after their wakeup?Operating System Concepts

void putdown(int i) {
state[i] = thinking;
test((i+4) % 5); // left
test((i+1) % 5); // right

}
The code has NO deadlock!!! Why?

0

1

23

4

Dining Philosophers without Deadlock

Southeast University6.136Operating System Concepts

Another Subtle Issue of Monitor:
Queue of Reentering Threads/Proc

A reentering process can be either the released process
(from the signaled condition) and the process that signals

Southeast University6.137Operating System Concepts

For Better Understanding, Let’s
Implement Monitor by Semaphores

n Variables
semaphore mutex; // (initially = 1)
semaphore next; // (initially = 0)
int next-count = 0;

n Each external procedure F will be replaced by
wait(mutex);

… // body of F;
if (next-count > 0)

signal(next);
else

 signal(mutex);

n Mutual exclusion within a monitor is ensured.

Southeast University6.138Operating System Concepts

n For each condition variable x, we have:
semaphore x-sem; // (initially = 0)
int x-count = 0;

n The operation x.wait can
be implemented as:
x-count++;
if (next-count > 0)

signal(next);
else

signal(mutex);
wait(x-sem);
x-count--;

n The operation x.signal
can be implemented as:
if (x-count > 0) {

next-count++;
signal(x-sem);
wait(next);
next-count--;

}

Monitor Implementation
Using Semaphores

Southeast University6.139Operating System Concepts

Monitor Implementation (Cont.)
nCheck two conditions to establish

correctness of system:
uUser processes must always make their

calls on the monitor in a correct sequence.

uMust ensure that an uncooperative
process does not ignore the mutual-
exclusion gateway provided by the monitor,
and try to access the shared resource
directly, without using the access protocols.

Southeast University6.140Operating System Concepts

Condition Enhanced with
a Priority Number

nConditional-wait construct: x.wait(c);
uc – integer expression evaluated when the

wait operation is executed.

uvalue of c (a priority number) stored with the
name of the process that is suspended.

uwhen x.signal is executed, process with
smallest associated priority number is
resumed next.

Southeast University6.141Operating System Concepts

Chapter 6: Process
Synchronization

nBackground
nThe Critical-Section Problem
nSynchronization Hardware
nSemaphores
nClassical Problems of Synchronization
nCondition Variables and Monitors
nSynchronization Examples

Southeast University6.142Operating System Concepts

Solaris 2 Synchronization
n Implements a variety of locks to support

multitasking, multithreading (including real-
time threads), and multiprocessing.

nUses adaptive mutexes for efficiency when
protecting data from short code segments.

nUses condition variables , semaphore, and
readers-writers locks when longer sections
of code need access to data.

nUses turnstiles to order the list of threads
waiting to acquire either an adaptive mutex
or reader-writer lock.

Southeast University6.143

Adaptive Mutex
nMost operating systems

(including Solaris, Mac OS X and FreeBSD)
use a hybrid approach called
"adaptive mutex". The idea is to use a
spinlock when trying to access a resource
locked by a currently-running thread, but to
sleep if the thread is not currently running.
(The latter is always the case on single-
processor systems.)

Operating System Concepts

https://en.wikipedia.org/wiki/Spinlock#Alternatives

https://en.wikipedia.org/wiki/Solaris_(operating_system)
https://en.wikipedia.org/wiki/Mac_OS_X
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Thread_(computing)

Southeast University6.144Operating System Concepts

Windows XP Synchronization
nUses interrupt masks to protect access to

global resources on uniprocessor systems.

nUses spinlocks on multiprocessor systems.

nAlso provides dispatcher objects which may
act as mutexes and semaphores.

nDispatcher objects may also provide events.
An event acts much like a condition variable.

