Chapter 6: Process Synchronization
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2 Background
ﬁfgn'eurrent access to shared data may result in
data inconsistency. Recall what is race condition

Several processes (threads) access and manipulate
the same data concurrently and the outcome of the
execution depends on the particular order in which
the access takes place.

B Maintaining data consistency needs mechanism

to ensure the orderly execution of cooperating

Sequential memory Simultaneous memory
processes. processes processes

Read value Read value

Flip value Read value
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A Previously Used Example

// volatile keyword forces the compiler to
avoid caching the variable in CPU register.
It always firstly read the data from memory.

>

volatile int counter = 0;

1 vold | The “for”-loop are split across two threads that are
15 mythread (void xarqg)

6 1 executed on two CPU cores :

17 printf("%$s: begin\n"/ (char %) arq); Maln taSk
18 int i;

19 for (i = 0; 1 < le7; i++) { . .

20 counter = counter + 1; Chlld taSk 1 Chlld taSk -
21 }

22 printf("%s: done\n", (char x) arg

23 return NULL;

24 }

32 int

33 main(int argc, char xargv/[])

34 {

35 pthread_t pl, p2;

36 printf("main: begin (counter = %d)\n", counter);

37 Pthread_create (&pl, NULL, mythread, "A");

38 Pthread_create (&p2, NULL, mythread, "B");

39

40 // join waits for the threads to finish

41 Pthread_join(pl, NULL);

42 Pthread_ join(p2, NULL);

43 printf("main: done with both (counter = %d)\n", counter);

44 return 0;

45 } ly




9
?dL How much faster”

m Here’s the mental picture that we have — two
processors, shared memory

for (1=0; i<le7; i++) for (i=0; 1i<le7; i++) o
counter++; counter++; ) o
. VARRIE—T
» / S
counter . " // e
g 1 e =
Memory \ shared variable /:/-
4 ya
S
m We're expecting a speedup of 2 " oiiiiiiiiies

B OK, perhaps a little less because of Amdahl S
Law, which is to predict the theoretical
speedup when using multiple processors

overhead for creating and joining multiple thkead
M.But-itis actually slower!! Why2:2. .. Sy




ec{ This mental picture is wrong!
® We have forgotten about CPU caches!

¥ The memory may be shared, but each processor

has its own L1

© As each processor updates counter, it bounces

cache

between L1 caches

CPU cache hierarchy

counter

-

e

L2 coun

v

L1 |counter

Ler

Maintain cache

consistency
Multiple bouncing
slows performance
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g’a'é’code is not only slow, it’'s WRONG!

® Due to shared variable counter, we can get a data race

lw (load word) instruction

® Increment operation: counter ++ 1w $t0, counter

Equivalent assembly code on MIPS: addi $t0, $t0, 1
sw $t0, counter
B A data race occurs when data is accessed and

manipulated by multiple processors, and the outcome
depends on the sequence or timing of these events.

Sequential Memory Access Simultaneous Memory Access

Processor 1 Processor 2 Processor 1 Processor 2
1w $t0, counter 1w $t0, counter
addi $t0, $tO0, 1 1w $t0, counter
SW $t0, counter addi $t0, $tO0, 1
1w St0, counter addi $t0, $t0, 1
addi $t0, $tO0, 1 SW $t0, counter
SW St0, counter SW $St0, counter

counter increases by 2 counter increases by 1 !!



dL Another Example: Revisit the

Producer Consumer Problem

m Recall the shared-memory solution to
bounded-buffer problem in Chapter 3

The code can only use N-1 items in the buffer

Producer: Consumer:
while (1) { while (1) {
while (((in+1) % BUF SIZE) == out) ; while (in == out) ;

in = (in+1) % BUF SIZE,; out = (out+1) % BUF SIZE;
} }
B We modify the above code by adding a
variable counter, such that all items in the
buffer can be used &
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e,c{,, Bounded-Buffer Solution
B Shared data

#define BUF SIZE 10

class Item {

Item & operator=(const Item & ) { ... }
h

Item buffer| BUF SIZE];

int in = 0;

int out = 0;

int counter = 0; // initially an empty buffér

Operating System Concepts 6.9 Southeast University v {Q




e,c{,, Bounded-Buffer Solution

® Producer process B Consumer process
Iterri nextProduced:; Item nextConsumed,;
while (1) { while (1) {
while (counter == BUF SIZE) while (counter == 0)

. /* do nothing */ ; /* do nothing */
buffer[in] = nextProduced; nextConsumed = buffer[out];
in = (in + 1) % BUF_SIZE; out = (out + 1) % BUF_SIZE;
counter++; counter--;

! h

Operating System Concepts 6.10 Southeast University l&{&?




g,dl__, Critical Shared Data

m Counter is a piece of critical shared data

B The statements

counter—++;
counter--;

must be performed atomically.

M The following statements also need atomicity
in=(in +1) % BUF _SIZE;
out = (out + 1) % BUF _SIZE;

m Atomic operation means an operation that
completes in its entirety without |nterrupt|o

Operating System Concepts 6.11 Southeast Uni %Q




eQ#icult to Implement Atomic Guarantee

o Howﬂever, the statement “count++” may be
implemented in machine language as:
registerl = counter
registerl = registerl + 1
counter = registerl

B The statement “count--" may be implemented as
register2 = counter
register2 = register2 — 1
counter = register2

B |f both the producer and consumer attempt to

update the buffer concurrently, the assemEﬂy
~language statements may get interleaved. )‘}’Q




¢ Potential Data Inconsistenc
et ’

® [nterleaving depends upon how the producer
and consumer processes are scheduled.

B Assume counter is initially 5. One interleaving

of statements is:

producer: register1 = counter (register1 = 5)
producer: register1 = register1 + 1 (register1 = 6)
consumer: register2 = counter (register2 = 5)
consumer: register2 = register2 — 1 (register2 = 4)
producer: counter = register1 (counter = 6)
consumer: counter = register2 (counter = 4)

Operating System Concepts 6.13 Southeast Univ l&/&?




N dL Potential Data Inconsistency

® The value of count may be either 4 or 6, where
the correct result should be 5.

Producer Consumer

register1 = counter
register2 = counter

register1 = register1 + 1

register2 = register2 — 1
counter = registert

counter = register2

Operating System Concepts 6.14 Southeast University EA{Q




lemary Concept of Race Condition

B Race condition occurs, if:

Two or more processes/threads access and
manipulate the same data concurrently, and

The outcome of the execution depends on
the particular order in which the access

takes place. sequential memory Simultaneous memory
processes processes

Read value Read value

Flip value Read value

Read value Flip value

- - o o

o - = o

Flip value Flip value

B To prevent race conditions, concurrent l _
.processes must be synchronized..., Ny
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> Three Typical Mechanisms of

== Process Synchronization

W L ocks for shared memory programming
‘ P1 Lock P2

——

Shared e

Data
v'"Multiple readers can share

)
;'hg
a lock, but writers must have

exclusive access to the data. So no readers are allowed
to be present while a writer is accessing the data

B There are other synchronization primitives for
shared memor¥3programm|n e.g., Barrier

\

Barrier

perating System Concepts 6.17




OS Support to Implement

£&T%an Exclusive Lock for Threads
m Using Mutex: is used to lock/unlock threads
and perform operations without any other
threads interfering

N

B APIs of PThread to lock and unlock a mutex

int pthread_mutex_lock(pthread_mutex_t* mutex)
int pthread_mutex_unlock(pthread_mutex_t* mutex)

Give a demonstration
B An Example
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER,;
pthread_mutex_lock(&lock);
counter = counter+1; // or whatever your critical sectio

pthread_mutex_unlock(&lock); | 124;(/5\?
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- The Critical-Section Problem:
“An Use Case of Exclusive Lock

®m Multiple processes all competing to use
some shared data

m Each process has a code segment, called

critical section (REEACIEEL. mFIX. ...,
In which the shared data is accessed.

CPU1 CPU2

Memory

X=2

P1

P2
Operating System cOncep2(=X+1 ; 6.19 " ?ﬁ%e'rs;] , 1}4{&?




3 Critical Section and
Q,d L .
T— Mutual Exclusion

B Problem — ensure that when one process is
executing in its critical section, no other
process is allowed to execute in its critical
section.

B Therefore, the execution of critical sections
must be mutually exclusive, e.g., at most
one process can be in its critical section at
any time.

Operating System Concepts 6.20 Southeast University Eb{&?




a#% The Critical Section Protocol

do { B The critical-section
problem is to design a
protocol that processes
entry section can use 1o cooperate.

Such a protocol consists of

two parts: an entry section
: ' (or lock) and an exit

exit section section (or unlock).

Between them is the
critical section that must

run in a mutually exclusive
} while (1); way. |

Operating System Concepts 6.21 Southeast University E%{Q




Qé_olutlon to Critical-Section Problem

m Any solution to the critical section problem
must satisfy the following three conditions:

Mutual Exclusion (B F. fi-l&4&)
R B ARG X, U EE IR AR B A {0

o A
/|:\l HE;—J‘

Progress GERE. BB

s A XS N, U IR BERR AR A I A BT, eI N ik
AR ZEHE NI 5 XA RS S 21 3k K

Bounded Waiting (B PR

/I?%ﬁ/ —H 8%, BEORubth e BR A a) iy n] Lk
I T [X

m Solution correctness cannot depend on re TE
..speed.of processes and scheduling.policy #3a¥

H-ln




$cMutual Exclusion (ELF. =% )

m |f a process P is executing in its critical
section, then no other processes can be
executing in their critical sections.

® The entry protocol should be capable of
blocking processes that wish to enter but
cannot.

B Moreover, when the process that is
executing in its critical section exits, the
entry protocol must be able to know this
fact and allows a waiting process to ent

Operating System Concepts 6.23 Southeast Uni E&{Q




*‘»d%. Progress (i#fE. =W iki#)

m |[f no process is executing In its critical
section and some processes wish to enter
their critical sections, then

Only those processes that are waiting to enter
can participate in the competition (to enter their
critical sections).

No other process can influence this decision.
This decision cannot be postponed indefinitely.

Operating System Concepts 6.24 Southeast University EH{Q




¥ Three Test Cases for MET and PT

h@&eﬂ One process repeatedly

attempts to enter the critical section (CS) =50

Progress Test: Whether Py’s repeated
entering of CS is independent of P,’s attempt [ exit section ]

m Case 2: One process is already in the
critical section, and meanwhile the other :
prOCeSS attemptS tO enter entry section

Mutual Exclusive Test: P, safely block Py out Pofcriticalsection |
Progress Test: When PO exits, P1 is notified Wl

m Case 3: Two processes try to enter the
critical section simultaneously
Progress Test: Whether it is possible for the —
two processes to block each other’s entry
I exit section I

Mutual Exclusive Test: Whether it is possible
orerating SfE5F FHEM tO both enter the $ection Southeast University




du Bounded Waiting (5 R £F)

m After a process made a request to enter its
critical section and before it is granted the
permission to enter, there is a bound on the

number of times that other processes are
allowed to enter.

®m Hence, even though a process may be
blocked by other waiting processes, it will
not be waiting forever.

Assume that each process executes
at a nonzero speed

|
|
[
entry section

No assumption concerning relative —
speed of the n processes

Exampl(eji Ifla (ﬂ(uicléer plrockeshs PO c:anI
repeatedly lock and unlock the critica :
e seF@EHON, then P1 may:=be blocked-forever ‘W{/ﬁ\i

eXit section

L




> Solve the Problem without
LA 2 any OS Support

m Consider a simple case of only 2 processes,
P, and P,

m General structure of process P; (and P)
do{ \|entry section
critical section
exit section
remainder section
} while (1);

B Processes may share some common
~variables to synchronize their actions. EWQ




QL Our First Attempt: Algorithm 1

m Shared variables:
boolean lock; //initially lock = false
lock = true — the critical section has been locked

m Process P;:
do{ while (lock) ; // if locked then wait
lock = true; // acquire the lock
critical section
lock = false; // release the lock
remainder section !, ,!
} while (1); N S
m Does not satisfy mutual exclusion. Why’? ‘&x}r@

Operating System Concepts 6.28 Southeast Uni




dLOur Second Attempt: Algorithm 2

m Shared variables:

int victim;  initially victim =0 (or victim = 1)
m Process P;:
do {victim = i; // determine who is the victim

while (victim == i) ; /if | am victim, then wait
critical section // assume empty
// do nothing for CS exit !’ ,
remainder section
} while (1);
m Processes are forced to run in an alternatigg \@
B Satisfies mutual exclusion, but not progre (/gv

V|ct|m
shared variable in memo




Alternating and Atomic Execution

- of Algorithm 2
thread 0 thread 1
~victim=0 victim = 1
while(victim == 0); while(victim == 1);
a
E >wait
.

victim=0
while(victim == 0);

}wait

v



%4:::- Deadlock of Algorithm 2

thread 0

victim=0 I
while(victim == 0);
)

deadlock! v
2]
Operating System Concepts 6.31 Southeast University “d g O




t“Q‘Q‘nother Failed Attempt: Algorithm 3

B Shared variables:
boolean flag[2]; / initially flag[0] = flag[1] = false
flag[i] = true = P, wants to enter its critical section

m Process P,
do {flag[i] =true; /| wantto enter
while (flag[1-i]) ; / If you also want, then | wait
critical section
flag[i] = false; //Ileave
remainder section
} while (1);

m Can satisfy mutual exclusion, but not prog
~feguirement. Why? .. St Unversy

P




Q&{Deadlock Problem of Algorithm 3

thread 0 thread 1
flag[0] = t
ag[0] = true flag[1] = true I
while(flag[1] == true) !\ while(flag[0] == true);

wait

> N

deadlock!

Operating System Concepts 6.33 Southeast University




,cafis the Following Algorithm Correct?

®m What if we change the location of the
statement: flag[i] = true?

m Process P;:
do{ while (flag[1-i]) ;
flag[i] = true;
critical section
flag[i] = false;
remainder section
} while (1);
m Does not satistfy mutual exclusion

Operating System Concepts 6.34 Southeast University EH{Q
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R %Comparison of Algorithms 1, 2, 3

Critical Section
Algorithms

Algorithm 1 with a
shared lock
variable

Algorithm 2 with a
shared victim
variable

Algorithm 3 with
two shared flag[2]
variables

Peterson's
Algorithm,

with a shared
victim variable
and two shared
flag[2] variables

Operating System Concepts

Test Case 1: P,
serialized enter

v

Test Case 2: P, P,

serialized enter

v
v
v
v

Test Case 3: P, P,
concurrent enter

X (ME)

Combine the advantages of
Algorithms 2 and 3

6.35
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t‘:%_terson s Algorithm Give a demonstration

m Combined shared variables of algorithms 2, 3.
m Process P,
do{ flag[i] =true; // I’'m interested
victim = i; // 'you go first
while (flag[1-i] and victim ==1) ;
critical section

flag[i] = false; // I'm not interested
/[ any more

remainder section

= . Gary Peterson. Myths about the Mutual Exclusion Problem.
} Whlle (1)5 Information Processing Letters, 12(3):115-116, 1981.

m Meet all the three requirements; Can solveédh
A

wa@pitical-section problem for tweproeessesE:




: ‘ Peterson’s Lock: Serialized
> Ty

Acquires
thread 0 thread 1

flag[0] = true
victim=0
while(flag[1] == true

&& victim == 0)’r flag[1] = true

victim =1

while(flag[0] == true

CS, < && victim == 1);

wait

flag[0] = false\-
CS,

flag[1] = false

. i
Operating System Concepts .ot UL L Uiy ity — o




e,t“é;erson’s Lock: Concurrent Acquires

thread 0 thread 1
flag[0] = true
victim=0 flag[1] = true
victim =1
while(flag[1] == true while(flag[0] == true
&& victim == 0); && victim == 1);
~ "
cs :
0< - >wa|t
flag[0] = false™- -
flag[1] = false
Operating System Concepts . S, \q




QQ«"Test the Bounded Waiting Property

m Recall: After a process made a request
to enter its critical section and before it is
granted the permission to enter, there
exists a bound on the number of times that
other processes are allowed to enter.

B Test Case: Two processes attempt to
enter the critical section N ip
simultaneously

Assume PO is fast, while P1 is slow

Can PO repeatedly grab the exclusive

lock, causing P1 to starve?

If yes/no, the solution of critical section lx} 2
Orerating System GereypynOt/can satisfy bourfded waiting propett @v




s _Proof of Peterson's Algorithm

B The mutual exclusion requirement is assured.

B The progress requirement is assured. The victim
variable is only considered when both processes
are using, or trying to use, the resource.

®m Deadlock is not possible. If both processes are
testing the while condition, one of them must be
the victim. The other process will proceed.

® Finally, bounded waiting is assured. When a
process that has exited the CS reenters, it will
mark itself as the victim. If the other process is
already waiting, it will be the next to procee

Operating System Concepts 6.40 Southeast Univ ﬂ%/&?



https://en.wikipedia.org/wiki/Peterson's_algorithm

Q*mz Is the following code correct?

® What if we change victim =i to victim = 1-i?
do{ flag[i] = true; // I'm interested
victim = 1-i; //'1 go first
while (flag[1-i] and victim ==1) ;
critical section
flag[i] = false; // I'm not interested
remainder section
} while (1);
Can the code satisfy mutual exclusion?

Can the code satisfy progress?
Can the code satisfy bounded waiting? \,W

Operating System Concepts




Q*mz Is the following code correct?

® What if we change victim =i to victim = 1-i?
do{ flag[i] = true; // I'm interested
victim = 1-; //'1 go first
while (flag[1-i] and victim ==1) ;
critical section
flag[i] = false; // I'm not interested
remainder section
} while (1);
Can the code satisfy mutual exclusion? NO

Can the code satisfy progress? YES
Can the code satisfy bounded waiting? Naﬁkﬂ

Operating System Concepts




Q.
8

edk Memory Fence
m Give a C-code demo of Peterson’s algorithm

B A memory barrier, also known as a membar,
memory fence or fence instruction, is a type
of barrier instruction that causes a central
processing unit (CPU) or compiler to enforce
an ordering constraint on memory
operations issued before and after the
barrier instruction_ https://en.wikipedia.org/wiki/Memory_barrier

B Operations issued prior to the barrier are
guaranteed to be performed before

operations issued after the barrier.
https //gcc gnu.org/onlinedocs/gcc-4.6.2/gcc/Atomic- BUIltlnS html X}Q
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tﬁ{ijarantee Memory Access Ordering

m [nsert full memory barrier at multiple points
do{ flag[i] = true; // I'm interested
__sync_synchronize(); // full memory barrier
victim = i; // ' You go first
while (flag[j] and victim == i) ;
__sync_synchronize(); // full memory barrier

critical section
__sync_synchronize(); // full memory barrier

flag[i] = false; // I’'m not interested
remainder section
} while (1);

ng System Concepts 6.44 Southeast University




QL Lamport’s Bakery Algorithm

Solve the critical section problem for
an arbitrary number of processes
m Before entering its critical section, process
receives a number. Holder of the smallest
number enters the critical section.

m If processes P;and P, receive the same
number, if i < j, then P;is served first; else P,
IS served first.

B The numbering scheme always generates
numbers in non-decreasing order of
enumeration, i.e., 1,2,3,3,3,3,4,5,... \r%,

Operating System Concepts 6.45 Southeast University




?‘di_., Bakery Algorithm

B Notation
(a,b)<(cd ifa<corifa=cand b<d

max (a,..., a,.1) iIs a number, k, such that k> a,
fori=0, ..., n—1

B Shared data
boolean choosing[n];
int number[n];

Data structures are initialized to false and 0
respectively

Operating System Concepts 6.46 Southeast University E&{Q




g% Bakery Algorithm
" *ehoosing[i] = true; /R i EAEERE—N5Y

number[i] = max(number[0], number[1], ...,
| number[n —1]) + 1;
choosing[i] = false; //3FF% i U5 58 ik
for(j=0;j<n;j++) {
while (choosing[j]) ; /1% | 51 AL | 56 5
RS | AEFHENERFEANIGAX, IF Hj 5 3K T
while ( (number]j] !=0) &&
((numberfj], j) < (numberfi], 1)) ) ;
}

critical section
numberli] = 0;
_ remainder section What is the use of choosir%%{.( ‘
Jowhile. (1) Gitve a Demurtrstriagtion. . Zl\i

Which parts are the entry and
exit sections?
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Q,Q% Hardware Support

® There are two types of hardware
synchronization supports:

Disabling/Enabling interrupts: This is slow
and difficult to implement on multiprocessor
systems.

Special machine instructions:
Test and set (TAS)
Swap
Atomic fetch-and-add

Operating System Concepts 6.54 Southeast University E%{Q




Q’Q'L__, Interrupt Disabling

m Because interrupts are
disabled, no context
switch will occur in a
critical section.

B Infeasible in a

multiprocessor system
_ because all CPUs
enable interrupts :
[enbieimerruns ] must be informed.

““ m Some features that
) ; depend on interrupts
(e.g., clock) may.not
Work properly

Operating System Concepts 6.55 Southeast Uni l&/&?
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e,_d%. Test-and-Set (TAS)
m Test and modify the content of a machine
word atomically
boolean TestAndSet(boolean &target) {
boolean rv = target;
target = true;
return rv;

}

@ g @ @ TRUE @
FALSE -+ | | TRUE
: = [
TRUE
TRUE -@
FALSE TRUE Lock TRUE

Lock Lock

Operating System Concepts 6.56 Southeast University &%{Q
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ewdjL_Mutual Exclusion with Test-and-Set

B Shared data:
boolean lock = false;

m Process P,
do {
key = true
while (key) key = TestAndSet(lock);
critical section
Cannot satisfy

lock = Talse; bounded waiting.
remainder section Why?

cep} Wh i Ie(1 ) ; 6.57 Southeast University 14#{&?
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Bounded Waiting Mutual

£E T % Exclusion with TestAndSet
B Shared data (initialized to false):

boolean lock = false; boolean waiting[n]; //init to false
B |ocal variable: boolean key;
Enter Critical Section (Lock) Leave Critical Section (unlock)

j = (i+1)°/on
while ((j!=1) && !waiting[j])
j = (j+1)%n;

waiting[i] = true;
key = true;
while (waiting[i] && key)

if (j == i)
key=TestAndSet(leck); Ijock _ false:
waiting[i] = false; s |

Operating System Concepts 6.9 wal tl nng]J ||||||| fal S€, MQ




1o o Atomic Swap
m Atomically swap two variables.

void Swap(boolean &a, boolean &b) {
boolean temp = a;
a=D>b;
b = temp;

}

Operating System Concepts 6.59 Southeast University EA{Q




dL Mutual Exclusion with Swap

B Shared data (initialized to false):
boolean lock = false;

B |local variable

boolean key;
m Process P;or Interrupt Handler TH,
do {
key = true;
while (key == true) Swap(lock, key);
critical section Cannot satisfy
lock = false; bounded waiting.

remainder section  Why?

hile(1);
} while(1); O
Operating System Concepts 6.60 Southeast University “d g <




Another Atomic CPU

£&T%.. Instruction Fetch-and-add
m fetch-and-add instruction performs the operation

<< atomic >>
function FetchAndAdd (address location, int inc)

{

N

*location
value + 1nc

int value :
*location :
return value

}

B can be used to implement concurrency
control structures such as mutex
locks and semaphores.

B An atomic fetch_add function appears in the
C++11 standard

https://en.wikipedia. org/W|k|/Fetch -and- addl%} ( g
Operating System Concepts 6.61 Southeast Uni &J




e#‘q Spin Locks

B A spinlock is a lock, which causes a thread
trying to acquire it to simply wait in a loop
(“spin”) while repeatedly checking if the lock
IS available. Since the thread remains active
but is not performing a useful task, the use of
such a lock is a kind of busy waiting.

IS5 7 LIS S =Ry B Edt. B el sE

ek Nl 7 X 75 22 545 CPUJE 3.

#include <pthread.h>

int pthread spin lock (pthread spinlock t *lock,
int pthread spin trylock (pthread spinlock t *I ck
1nt!gthread spin unlock(pthread splnlock t*loc )§¢3\9

Operating S




t&uestion: Why spinlocks are not
“ appropriate for single-processor
systems yet are often used in
multiprocessor system?

B EHLBESRGT, ﬁﬂ%@ﬁ(ﬂlﬁ)\llﬁﬁ X HIEFE A
PIPLZIAT, S s A8k i 7 X B HERE S5 5 B A IEﬂ

mAEZMHEE RS, Al XARER, Bithie5Er

B A2 MRS, TSR R AN R I AE I 7 X
BEFELE AR AL P 4% LT}L Tl A XARKE, FElm A X
HL YRR PR HE 25 T I Eq? FoAR T S A O HERE gl FT

BLHEE F I G X JE_C.%F RO N Semige e 1 ?Eﬂ%%ﬂ
N i T SR B SCU) BT
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t@Adaptive Mutex (HidM O 541

®m Most operating systems (including ,
and ) use a hybrid

approach called "adaptive !

B PR R 4113?%%3@%&[3’3%\?
PR, = E ST B FERIRES

m [t uses a spinlock when trying to access a
resource locked by a currently-running thread,
but to sleep if the IS not currently
running. (The latter is always the case on
single-processor systems.)
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https://en.wikipedia.org/wiki/FreeBSD
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https://en.wikipedia.org/wiki/Thread_(computing)

% Chapter 6: Process
e» e, | n n
S Synchronization

m Background

®m The Critical-Section Problem

B Synchronization Hardware

B Semaphore as a generic synchronization tool
m Classical Problems of Synchronization

m Conditional Variables and Monitors

®m Synchronization Examples
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g% m Edsger Wybe Dijkstra
‘"‘ - © (Dutch: [‘etsxar ‘vibs ‘deikstray)

—— O11 May 1930 - 6 August 2002
iIjkstra ‘aged 72)

® Known for

¥ Dijkstra's algorithm (single-
source shortest path problem)

¥ Structured programming, First
implementation of ALGOL 60
(“Goto Statements
Considered Harmful”)

¥ Semaphores, Layered
approach to operating system
design, software-based paged
virtual memory in

v THE multiprogrammin
6.67 Systemmeast University m
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“{_ Concept of Semaphore

m |n real-world systems, semaphores are often
used as a synchronization mechanism to
control access to a type of shared resources.

B Semaphores act as a
record of the availability
of a resource and help .
coordinating access to it, B S

SERMASENRESERENRER, CTUL g

mmmmmmmmmmm — ——

among multiple processes "~=====" ]

m [t is a synchronization tool that does not reqwre
busy waiting, but needs the support from kernel

semop() - Unix, Linux System Call

http://www.tutorialspoint.com/unix_system_calls/semop.htm§
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ed'k., Concept of Semaphore (cont.)

® Semaphore S — an integer variable

m [t can only be accessed via two indivisible
(atomic) operations: wait and signal

®m They are functionally equivalent to the following
busy-waiting operations.

wait (S): signal (S):
while S < 0 do no-op; S++;
S--;
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Q,Q'L_’ Semaphore Implementation

B Define a semaphore as a structural record
typedef struct {

int counter;

struct process * L;

an in-kernel exclusive lock;
} semaphore;

m Assume two simple operations:
block: block the process that invokes it.
wakeup(P): resumes the execution of a

blocked process P. E
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sc#._ Semaphore Schematics

Semaphore = counter + kernel mutex + waiting list

| semaphore
method signal

counter

method wait

A useful way to think of a semaphore as used in
the real-world systems is as a record of how
many units of a particular resource are availgiouss
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e,EfI_S,'X Library's Support of Semaphore

m All POSIX semaphore functions and types are

prototyped or defined in semaphore.h
#include <semaphore.h>

®m To define a semaphore object, use
sem_t sem_name; OR sem_t * sem_pointer;

®m For initialization, use either of the following APIs.
int (sem_t *sem, int pshared, unsigned int initial_value);
sem_t* (const char* name, int oflag, unsigned int
initial_value);

B To increment/decrement the value of a semaphore,
int (sem_t * sem_pointer);

int (sem_t * sem_pointer); E
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dL Semaphore Implementation

® What do we do in a multiprocessor platform to
implement wait(S) and signal(S)?
Can'’t turn off interrupts to get low-level mutual exclusion
Suppose hardware provides atomic test-and-set instruction

wait(S): signal(S):

while(TAS(S.lock)); while(TAS(S.lock));

S.counter--; S.counter++;

if (S.counter < 0) { if (S.counter <= 0) {
add this process to S.L; remove a process P
block; from S.L:

} wakeup(P);

S.lock = 0; }

- )" I {
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e

®m Process P;:
do {
wait(ex_lock);
critical section
signal(ex_lock);
remainder section
} while (1);

m Give a demonstration

Operating System Concepts 6.75

- Applications of Binary Semaphore:
—=Solve the Critical Section Problem

®m Shared data: semaphore ex_lock = 1; //initialize to 1

wait(ex_lock)

entry section
P, | critical section
exit section
|

signal(ex_lock) g

} while (1);

Southeast University l&{&?




e

¥ Applications of Binary Semaphore:
T=Solve the Critical Section Problem

®m Shared data: semaphore ex_lock = 1; //initialize to 1

User ;

Mode

wait(ex_lock)

Semaphore S{

Kernel| int counter;

Mode

}

struct process * L;
an in-kernel exclusive lock;

ex_lock;

s:gnal(ex lock)

Semaphore =

wait(S):
while(TAS(S.lock));
S.counter--;
if (S.counter < 0) {

add this process to S.L;
block;

}
S.lock = 0;

= signal(S):

while(TAS(S.lock));

S.counter++;

if (S.counter <= 0) {
remove a process P
from S.L;
wakeup(P);

}
S.lock = 0;

= BEFRP1FIP2[E] I 2

: Zrex_lock i 42 il AX

, ABEFEAE SRS SR
- IR EE S E
#=S=ex_lockH &
EI’JS.CounterEZE

LI AR AE P

ZESHS.lock H Jie s
, BBET=

Jf(j‘ﬁﬁwalt( ) Al

il

E signal(S) 7% ER 2

s NI EL




¥ Difference between Binary

LA 42 Semaphore and Mutex
® Question: Is there any difference between
binary semaphore and mutex, or they are
essentially the same?

®m Answer: They're semantically the same, but
in practice you will notice weird differences

Semaphore is implemented by process/thread
blocking and wakeup

Mutex may be internally implemented by some
kernels as spin locks, which could be more
efficient on multi-processor systems but will
slow down a single processor machine x
\/\!‘/
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> Applications of Binary Semaphore:
=79, Act as an Event Notification Tool

m Execute Bin P;only after A executed in P,

e

m Use semaphore flag, which is initialized to O

m Shared data:
semaphore flag = 0; // initialize to O

n A

A wait(flag)
signal(flag B 119[
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¥ Side Effect of Semaphore:
& T%.. Deadlock and Starvation
®m Deadlock — a set of two or more processes are waiting

indefinitely (FG[R ) for an event that can be caused by
only one of the waiting processes within this set.

Example: Let S and Q be two semaphores initialized to 1

PO P1
wait(S); wait(Q); semaphore S=1, Q=1;
wait(Q); wait(S);
signal(S) ,><ignal( Q);
signal(Q) signal(S);

m Starvation — indefinite blocking. A process may never
be removed from the semaphore queue in whic

~waiting.,. S \ng




% Chapter 6: Process
e» e, | n n
S Synchronization

m Background

®m The Critical-Section Problem

B Synchronization Hardware

B Semaphores

m Classical Problems of Synchronization
m Conditional Variables and Monitors

®m Synchronization Examples
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ﬁ Classical Problems of
¢CTA Synchronization

B Bounded-Buffer Problem (or called
Producer-Consumer Problem)
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et{- Producer-Consumer Problem
B Also called bounded buffer problem

m A producer produce data that is to be consumed
by a consumer

m A buffer holds produced data not yet consumed
B There exists several producers and consumers

m Application: Multi-threaded web server

Producer Main Thread : Thread Pool

.

|\ )
Y
Buffer Slots Consumer

(n)
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e,ﬁsolution 1 for Producer-Consumer

o Shared variables besides the shared buffer

semaphore fullCount, emptyCount;

Producer
k J
Y ,‘,

Initially:

Buffer Slots Consumer

fullCount = 0, emptyCount = n
® fullCount: the number of items in the buffer

B emptyCount: the number of empty slots in
the buffer
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gg%‘sxolution 1 for Producer-Consumer

Producer: Consumer:

do { | do {
wait(fullCount);

produce an item in nextp| emovean item from
buffer to nextc

wait(emptyCount); signal(emptyCount);

insert nextp to buffer
signal(fullCount);
} while (1);

consume the item in nextc
} while (1);

Question: Is this solution correct’? lee a}!? ?
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3
sc¥Solution 1 for Producer-Consumer

B This solution contains a serious race
condition that can result in two or more
producer (or consumer) processes modifying
the same cursor in (or out) at the same time.

B To understand how this is possible, recall
how the procedures “insert nextp to buffer”
and “remove an item from buffer” are
implemented, by
in = (in+1)%BUF_SIZE, and
out = (out+1)%BUF_SIZE. ‘E




£ _
g#ﬁﬁ?Nthh 2 for Producer-Consumer

B Shared data
semaphore fullCount, emptyCount, mutex;
Initially:

fullCount = 0, emptyCount = n, mutex = 1

B mutex: guarantee the mutual exclusive
access of the shared buffer
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£ _
g’dsaolutlon 2 for Producer-Consumer

Producer: Consumer:

do{ do {
wait(mutex);

produce an item in nextp| Wait(fullCount);
remove an item from

buffer to nextc
signal(emptyCount);
sighal(mutex);

wait(mutex);
wait(emptyCount);
insert nextp to buffer
signal(fullCount);
signal(mutex);

} while (1);

consume the item in nextc

} while (1);
Question: Is this solution correct? Give ag

ing System C

, \
A

E—




£ _
g’dsaolutlon 3 for Producer-Consumer

P‘roducer: Consumer:
do{ do {
wait(fullCount);

produce an item in nextp| Wait(mutex);
remove an item from

wait(emptyCount); butter to nextc
wait(mutex); signal(mutex);
insert nextp to buffer signal(emptyCount);
signal(mutex); | |
signal(fullCount); consume the item in nextc
} while (1);
} while (1);

This code works! Give a demgﬁﬁgg’gratio%}#
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e A Short Summary

m 2501 FEHmutexffi{f s e L R R |
iR, Lk shared bounded buffer

B 4502 [E5Ewaitl)iFR B E

B+ anRwait(mutex) s i3 E T wait(fullCount) 5§
Zwait(emptyCount) Z 1, <S5t

B o). 55 &Esignal i 5 20 2
¥ signal(mutex)flisignal(fullCount) ] DLAZ # 15,
?
B 1] i2: e {Eproduce an itemAllconsume a
_item i Flwait(mutex) flsignal(mutex) . [A] WQ
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> When the buffer size is only one,
& T¢an we remove the mutex variable?

Initially: semaphore fullCount =0, emptyCount =1

ProdUcer: Consumer:

do { do{
wait(fullCount);

produce an item in nextp| emovean item from
buffer to nextc

wait(emptyCount); signal(emptyCount);

insert nextp to buffer
signal(fullCount);
} while (1);

consume the item in nextc

} while (1); l
e 1€ASE giVE OYL yOUr reasons. pad
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Semaphore empty=1, fullA=0, fullB=0, fullC=0; -
Broker: SmokerA: SmokerB: SmokerC EX}{Q
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m Ik
Semaphore fullA=fullB=fullC=0, empty=1;

process smokerA() {

do {
wait(fullA);
take tobacco and paper from the table;
signal(empty); // signal an empty table event
make cigarette;
smoke cigarette;

} while (1);
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Q.
8
s Eg. AR

process smokerB() { process smokerC() {
do { do {
wait(fullB); wait(fullC);
take paper and match take tobacco and match
from the table; from the table;
signal(empty); signal(empty);
make cigarette; make cigarette;
smoke cigarette; smoke cigarette;
} while (1); } while (1);
} }
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O, EE. RS

process provider( ) {
integer i;
do{
| = random() % 3; // produce a combination
wait(empty); // wait for an empty table event
switch(i) {
case O: put T&P on table; signal(fullA); break;
case 1: put P&M on table; signal(fullB); break;
case 2: put T&M on table; signal(fullC); break;

Y
\ while(1):

| EX}V ’
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ﬁ Classical Problems of
¢CTA Synchronization

B Readers and Writers Problem (or called
Shared-Lock Problem)
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g,d'\;_,, Reader-Writer Locks
B Imagine a number of concurrent operations,
including reads and writes.
Writes change the state of the data
Reads do not.

v"Many reads can proceed concurrently, as long
as we can guarantee that no write is on-going.

Reader-Writer Problem F)roducli;roducer-Consumer Problem
- @\ / |
e @W— F—© pE N
Access
{ @/ \ } Buffer Slots Consumer

(n)

m Occurs frequently in real systems, e.g. onI'EZ
airplane booking, N-thread caching.web pi®




?»di., Readers-Writers Problem (or
S Shared-Lock Problem)
m Shared data
int readcount;

semaphore mutex, wrt;
Initially readcount = 0, mutex =1, wrt =1

m readcount: the number of readers browsing
the shared content

B mutex: guarantee the mutual exclusive
access to the readcount variable

m wrt: the right of modifying the shared coﬁﬁ g
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“j&e

“Reader Threads

Shared
Resource

Writer Threads

Writer Threads

<
Shared
er Threads

§558

X
)( :
X
Writer Process
wait(wrt);

writing is performed

Question: Is|thi

aders-Writers Problem (solution 1)

Reader Process
wait(mutex);

oseiug@al(nwrt); Solution cor ct?SIQ%I£Wn[;L)y;

readcount++;

signal(mutex);

if (readcount == 1)
wait(wrt);

reading is performed

wait(mutex);
readcount--;
signal(mutex);
é‘f (readcount =

= ﬁ*}f@




ej{eaders-erters Problem (solution 2)

Reader Process

Shed
“Reader Threads Writer Threads

wait(wrt);

writing is performed

This soluti
-signal(wrt); works!!

wait(mutex);
readcount++;

if (readcount == 1)
wait(wrt);
sighal(mutex);

reading is performed

wait(mutex);
readcount--;
if (readcount == 0)

signal(wrt); l
signal(mutex); ESAS




typedef struct _rwlock_t {
sem_t x writelock;
sem_t *x lock;
int readers;
} rwlock t;
void rwlock_acquire_readlock(rwlock_t * rw) A
sem_wait(rw—>lock);
rw—>readers++;
if (rw->readers == 1)
sem_wait(rw—>writelock);
sem_post (rw—>lock);
¥
void rwlock_release_readlock(rwlock t *x rw) {
sem_wait(rw—>1lock);
rw—>readers—;
if (rw->readers == 0)
sem_post(rw—>writelock);
sem_post (rw—>1ock);
¥
void rwlock_acquire_writelock(rwlock_t sxrw) A
sem_wait(rw—>writelock);
¥

void rwlock_release_writelock(rwlock t *xrw) {
sem_post(rw—>writelock);

1



EXxercise
-E? %m% TT%%W%@@

3: read 21 2: read 21 3: read 21 : read 21
R1: read 21 R4: read 21 R1: read 21 R2: read 21
R2: read 21 R5: read 21 R2: read 21 R4: read 21
R4: read 21 R3: read 21 R4: read 21 R2: done 21
R5: read 21 R1: read 21 R5: read 21 R5: read 21
R3: read 21 R2: read 21 R3: read 21 R1: read 21
R1: read 21 R4: read 21 R1: read 21 R4: read 21
R2: read 21 R5: read 21 R2: read 21 R1: done 21
R4: read 21 R3: read 21 R4: read 21 R5: read 21
R5: read 21 R1: read 21 R5: read 21 R4: done 21
R3: read 21 R2: read 21 R3: read 21 R5: done 21
R1: read 21 R4: read 21 R1: read 21 W2: write 22
R2: read 21 R5: read 21 R2: read 21 W1: write 23
R4: read 21 R3: read 21 R4: read 21 W2: write 24
R5: read 21 R1: read 21 R5: read 21 W1: write 25
R3: read 21 R2' read 21 R3: read 21 W2 write 26
R1: read 21 4: read 21 R1: read 21 . write 2
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1,tﬁllore Info about Reader-Writer Locks
: > 'first readers—writers problem

Reader Threads

requires that no reader be kept :
waiting unless a writer has already*'\
obtained access right of shared object

B The second readers-writers problem

requires that once a writer is ready, that writer
perform its write as soon as possible.

m Discussion:
Which problem is solved by the previous codes?

Answer: The first readers-writers problem. -
ororars SR 1QWY. 1O SOlVE the second readerg-witers pro;w&"‘




<.

>
< The (No-starve) Readers-Writers
Problem void reag()g
®
semaphore lock= 1; stiagi:](e\)/\ll(f\lx\i‘clzgc);;k)-
semaphore writelock=1; acauire readlock | ,
int read_count = 0; quire_ wait(lock);
semaphore wflock =1: rfe(ad_fcleUﬂt ++; )
if (read_count ==
void write() { Signvavlezli(t)((v:gi_teIock);
do { ’
wait(wflock): /% r_eadmg */
wait(writelock); Wa';(|OCk),
/* Writing */ _rea _count --;
signal(writelock) release_readlock | if (regd_coun_t — = )-
signal(wflock): | signal(writelock):
} signal(lock);
while (1); I
) while (1);

5 # F F wilock ¥ J5 8L &3 A\ K |
readersfH Z7Eacquire_readlock ... ,&%)’Q




typedef struct
_rwlock_t {
sem_t x
writelock;
sem_t x
lock;
int readers;
sem_t x
wflock;
} rwlock t;

void

rwlock_init(rwlo
ck t * rw) {
rw—>readers

rw—>1lock =
sem_open(.., 1);

rw—
>writelock =
sem_open(.., 1);

rw—>wTf lock =
sem_open(.., 1);

}

void rwlock_acquire_readlock(rwlock_t * rw) A
sem_wait(rw—>wflock);
sem_post ( rw—>wflock);
sem_wait(rw—>lock);
rw—>readers++;
if (rw->readers == 1)

sem_wait(rw—>writelock);
sem_post (rw->lock);

¥

void rwlock_release_readlock(rwlock t *x rw) {
sem_wait(rw—>1lock);
rw—>readers——;
if (rw->readers == 0)

sem_post(rw—>writelock);
sem_post (rw—>1ock);

¥

void rwlock_acquire_writelock(rwlock_t sxrw) A
sem_wait(rw—>wflock);
sem_wait(rw—>writelock);

¥

void rwlock_release writelock(rwlock t *xrw) {
sem_post(rw—>writelock);
sem_post ( rw—>wflock);




Z The (Writer-priority) Readers-Writers
Problem

void write() {

1

do {

}

wait(writecount lock);

write_count ++;
If (write_ count == 1)
wait(readlock);

signal(writecount_lock);

wait(writelock):;

/* Writing */ Give a demo

signal(writelock);
wait(writecount lock);

write_count --:
if (write_count == 0)
signal(readlock);

signal(writecount_lock):

while (1);

int write_count = read_count = 0;
semaphore readcount_lock= 1;
semaphore writecount_lock= 1;
semaphore readlock=1; //0FR 7R NBETE
semaphore writelock=1; /0~ E

void read() {

do{
wait(readlock);
walt(readcount_lock),
read_count ++;
if (read_count == 1)

walt(writelock);

signal(readcount_lock);
signhal(readlock);

/* reading */

walt(readcount_lock),
read_count --;
if (read_count == 0)
signal(writelock);

signal(readcount_lock);

}

while (1);

}



ﬁ Classical Problems of
ek 4 Synchronization

® Dining-Philosophers Problem
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+&#. The Dining Philosophers

» Originally formulated in 1965 by
Edsger Dijkstra

» Tony Hoare gave the problem its
present formulation

6.108 Southeast University




gd.\.’ Dining-Philosophers Problem

Here is the basic loop

of each philosopher:

while (1) {
think () ;
getforks () ;
eat () ;
putforks () ;

B Shared data
semaphore chopstick[5];
Initial values of all semaphores are set t

Operating System Concepts 6.109 Southeast Uni ()1&(&?




4 Dining-Philosophers Problem

® Philosopher i m Challenges

do { | o ¥ Deadlock
wait(chopstick]i]);

wait(chopstick[(i+1) % 5]);

eat

signal(chopstick[i]); ¢ Starvation

signal(chopstick[(i+1) % 5]); Starr

Quick
hand

think Quick
hand

} while (1); Give a demo OLack of Fairp

Operating System Concepts 6.110 Southeast University
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e&{, Semaphore Z > I EIRF
1. EARIERE
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% Chapter 6: Process
ew M, | n n
S Synchronization

m Background

®m The Critical-Section Problem

B Synchronization Hardware

B Semaphores

m Classical Problems of Synchronization
m Condition Variables and Monitors

®m Synchronization Examples
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Q,Q'Lﬂ Condition Variable

®m Semaphore and condition variables are very
similar and are used mostly for the same
purposes.

Semaphore can be easily understood as an in-
kernel counter for the units of a type of resource.

Condition is an advanced event notification tech.

m However, there are minor differences that
could make one preferable.

For example, to implement barrier
synchronization, you would not be able to usg a
emaphore. But a condition variable is ideal. X;’/Q

Operating System




& .. :
s P Condition Variable
B The condition variable mechanism allows
threads to suspend execution and relinquish the

processor until some condition is true.

Semaphore = counter + mutex + waiting list

Conditional Variable = waiting list

B A problem of semaphore: We cannot read the in-
kernel counter hiding inside a semaphore

m A condition variable must be used inside a mutex
to avoid a race condition created by one thread
preparing to wait and another thread which may
signal the condition before the first thread A

ceagotralty waits on it resellting in asdeadtock. Eo /5&




s TR P AR RLFNES
B Javaft BN & T3 5 EE80%

m Javarg i F 1 [E 2B L5
(1) synchronized < 7 SE ) 5425 &
— MNavaxXt ZEtE — BB WL, TR AN ET
g Monitorgi, B
(2) Lock$zId J HszHZE,
ReentrantLock.ReadLock !l
ReentrantReadWriteLock.WriteLock -

A A Java“si”
https://tech.meituan.com/2018/11/15/java-lock.html 24}!
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e&{f;ondition Variable vs. Semaphore

Semaphore Condition Variable

Can be used anywhere  Must be used inside the
protection of a mutex

wait() does not always wait() always blocks its
block its caller caller

signal() either releases a signal() either releases a
process, or increases the process, or the signal is

semaphore counter lost as if it never occurs

If signal() releases a If signal() releases a
process, the caller and process, either the caller
the released both or the released continues,

continue but not both

Operating System Concepts




Condition Variable in

5
e Pthread Library
m Creating/Destroying:

pthread_cond_t cond = THREAD_COND_INITIALIZER;

m Waiting on condition:

(pthread_cond_t *cond, pthread_mutex
_t *mutex) - unlocks the mutex and waits for the condition
variable cond to be signaled.

m \Waking thread based on condition:

(pthread_cond_t *cond) - restarts one
of the threads that are waiting on the condition variable cond

(pthread_cond_t *cond)
all threads blocked by the specified condition varlable x}/@\?
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http://man.yolinux.com/cgi-bin/man2html?cgi_command=pthread_cond_init
http://man.yolinux.com/cgi-bin/man2html?cgi_command=pthread_cond_destroy
http://man.yolinux.com/cgi-bin/man2html?cgi_command=pthread_cond_wait
http://man.yolinux.com/cgi-bin/man2html?cgi_command=pthread_cond_signal
http://man.yolinux.com/cgi-bin/man2html?cgi_command=pthread_cond_broadcast

3
e Barrier Problem

B Suppose we wanted to perform a multi-
threaded calculation that has two stages, but
we don't want to advance to the second
stage until the first stage is completed.

® We could use a synchronization method
called a barrier. When a thread reaches a
barrier, it will wait at the barrier until all the
threads reach the barrier, and then they'll all
proceed together.
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3
e Barrier Problem

B Pthreads has a pthread_barrier_wait()
function that implements this. You'll need to
declare a pthread_barrier_t variable and
initialize it with pthread_barrier_init().

pthread_barrier_init() takes the number of

threads that will be participating in the barrier as
an argument.

®m Now let's implement our own barrier and use
it to keep all the threads in sync in a large
calculation.
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Barrier Implementation by

LA 428 Condition Variable
#define N (16)

double data[256][8192] ;
pth read—m Utex—t m, httpg://git.hL_Jb.com/angra\{e/System Progra
pth read_cond_t CV; gl;nér;\g{mkll/Synctr_lronlz?)tlop°/020-Part-
int maln(){ o3A-Implementing-a-barrier

int tids[N], i;

pthread_mutex_init(&m, NULL);

pthread_cond_init(&cv, NULL);

for(i = 0; i < N: i++) { tids[i] = i

pthread create(&lds[l] NULL calc, &(tidsJi]));

s
»d@Q(k=:0; 1 < N; i++) pthread_joein(ids(i], Nl}fﬂ;j

o




Barrier Implementation by
eCT Condition Variable
double data[256][8192]
void *calc(void *ptr) {
1. Threads do first calculation (use and
change values in data)

N

2. Barrier! Wait for all threads to finish first
calculation before continuing

3. Threads do second calculation (use and
change values in data)

} https://github. com/angrave/SystemProgramm|ng/W|k|/Synchron|zat|on /E)ﬁ)( §
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can be access. But when using semaphore,

If using condition variable, the state of counter
&
the state of inner count cannot be accessed.

#int remain = N;

void *calc(void *ptr) {

// The thread does first calculation
pthread_mutex_lock(&m); Give a demo
remain--;

if (remain ==0) |pthread_cond_broadcast(&cv);
else

while(remain != 0)| pthread_cond_wait(&cv,&m);

pthread_mutex_unlock(&m);
/I The thread does second calculation \r‘)‘i’f@j




dL Object-Oriented Monitors

m High-level synchronization construct that allows the
safe sharing of an abstract data type among
concurrent processes.

monitor monitor-name

{ shared variable declarations
procedure body P17 (...) {

_—
procedure body P2 (...) {

_—
procedure body Pn (...) {

L)

{ initialization code }
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3
e,d%. Monitors: Mutual Exclusion

m No more than one process can be executing
within a monitor. Thus, mutual exclusion is
guaranteed within a monitor.

® When a process calls a monitor procedure
and enters the monitor successfully, it is the
only process executing in the monitor.

B When a process calls a monitor procedure
and the monitor has a process running, the
caller will be blocked outside of the mon

iy r{ 2 g
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gd\.’ Schematic View of a Monitor

processes waitin gl !
to enter monitor Private Data
-~

Monitor Procedure ‘

Monitor Procediire ‘

Monirtor Procediire ‘

-

Initialization

. b )
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d“ Monitors: Event Notification

m To allow a process to wait within the monitor, a
condition variable must be declared, as

condition X, y;

m Condition variable can only be used with the
operations wait and signal.

The operation

x.wait();
means that the process invoking this operation is
blocked until another process invokes

x.signal();

The x.signal operation wakeup exactly one
blocked process. If no process is waiting for the
......condition, then the signal operation has no ef Q

126




o Schematic View of a
““Monitor With Condition Variables

queues associated with {
X, y conditions

operations

initialization
code
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§ A Subtle Issue of
1o Condition Variable

m Consider the released process (from the
signaled condition) and the process that
signhals. There are two processes
executing in the monitor, and mutual
exclusion is violated!

® There are two common and popular
approaches to address this problem:

The released process takes over the monitor
and the signaling process waits somewhere.

The released process waits somewhere and the
signaling process continues to use the moni
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;4 Java's Monitor Supports

B Synchronized methods for mutual exclusion

class classname {
- synchronized return_type methodname() {......}

Y
B Coordination support for event notification
Method Description
void Object.wait(); Enter a monitor's wait set until notified by another thread

Enter a monitor's wait set until notified by another thread

void Object.wait(long timeout); o o+ milliseconds elapses

Wake up one thread waiting in the monitor's wait set. (If no

void Object.notify(); threads are waiting, do nothing.)

Wake up all threads waiting in the monitor's wait set. (If no

void Object.notifyAll(); threads are waiting, do nothing.)

http://www.ibm.com/developerworks/cn/javal/j-lo-synchronized/index.html EL
Operating SystemlaLHREAWWW.artima.com/insidejvinigd2/threadsyRgRh B iy, ( ,




¥ Producer-Consumer Example
et P

procedure producer() { monitor PCbuffer {
do { int itemCount; // <= BUFSIZE
item = produceltem(); condition full, empty;
PCbuffer.add(item); putltemintoBuffer(item) {...}
} while (true); ltem removeltemFromBuffer()
Y {---}

procedure void add(item) {

procedure consumer() { . // how to implement?

do {
item = PCbuffer.remove();
consumeltem(item);

} while (true); \

Operating System Concepts 6.1 } Southeast University 1&{&?

Y
procedure item remove() {
... // how to implement?




¥ Producer-Consumer Example
s P

procedure void add(item) { procedure item remove() {
iIf (itemCount == BUFSIZE) if (itemCount == 0)
full.wait(); empty.wait();
putltemintoBuffer(item); item = removeltemFromBuffer();
itemCount = itemCount + 1; itemCount = itemCount - 1;
if (itemCount == 1) if (temCount == BUFSIZE - 1)
empty.signal(); full.signal();
return; return item;
Y Y

B Note that if statement has been used in the above code, both
when testing if the buffer is full or empty.

B With multiple consumers, there is a between the
consumer who gets notified that an item has been put in%

the
~Rutfer and another consumer, who is waiting on.the moni ?‘}VQ

ystem cep



https://en.wikipedia.org/wiki/Race_condition

¥ Producer-Consumer Example
s P

procedure void add(item) { procedure item remove() {
while (itemCount == BUFSIZE) while (itemCount == 0)
full.wait(); empty.wait();
putltemintoBuffer(item); item = removeltemFromBuffer();
itemCount = itemCount + 1; itemCount = itemCount - 1;
if (itemCount == 1) if (itemCount == BUFSIZE - 1)
empty.signal(); full.signal();
return; return item;
Y Y

B Note that while statement has been used in the above code,
both when testing if the buffer is full or empty.

® With multiple consumers, there is a between the
consumer who gets notified that an item has been put intg.the
~Rutfer and another consumer, who is waiting on.the moni P‘}VQ



https://en.wikipedia.org/wiki/Race_condition

¥ Producer-Consumer Example
= 4 P

procedure void add(item) { procedure item remove() {
while (itemCount == BUFSIZE) while (itemCount == 0)
full.wait(); empty.wait();
putltemintoBuffer(item); item = removeltemFromBuffer();
itemCount = itemCount + 1; itemCount = itemCount - 1;
if (itemCount == 1) if (temCount == BUFSIZE - 1)
empty.signal(); full.signal();
return; return item;
Y Y
m With multiple producers, there is also a between

the producer who gets notified that the buffer is no longer full
and another producer is already waiting on the monitor.

m [f the while was instead an if, too many items might be put.int
e Ruffer.or a remove might he attempted,on,an,empty QUi

]


https://en.wikipedia.org/wiki/Race_condition

*‘»QﬂTg Philosophers without Deadlock

monitor dining_philosopher_sync_table
{
enum {thinking, hungry, eating} state[5];
condition self[5];
procedure void pickup(int i) ; // pick up chopsticks
procedure void putdown(int i) ; // put down chopsticks
private void test(int i) ; // test if P; is eligible for eating
void init() {
for (int1=0;1<5; i++)
state[i] = thinking;
Y
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. Qﬁing Philosophers without Deadlock

void pickup(int i) { void putdown(int i) {
state[i] = hungry; state[i] = thinking;
test(i); test((i+4) % 5); // left
while(state]i] != eating) test((i+1) % 5); // right
self[i].wait(); \

} The code has NO deadlock!!! Why?

void test(int i) { OO0

iIf ( (state[(i + 4) % 5] != eating) && ’
(state[i] == hungry) && 4

(state[(i + 1) % 5] != eating)) { 30 02
state[i] = eating; When P, and P, finish eating at
. _ the same time, will P, and P,
selffi].signal(); compete for their com
Operating}vste}ooncepts s135 chopstick aftértheir waket
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waiting to enter the monitor

Y
o*”
’

- entry queue

> Another Subtle Issue of Monitor:
eue of Reentering Threads/Proc

c.v. waiting list
cv| | - -0
cv. | - |- |-»0
: s Monitor Procedure
| .
g Monitor Procedure
S = —
~ -
& o~
g .
§ Monitor Procedure
reenterin g SR
threads Initialization

A re;en'tering process can be either the released proc

£

E—



¥ For Better Understanding, Let’s
=CHmplement Monitor by Semaphores
m Variables
semaphore mutex; // (initially =1)
semaphore next; // (initially =0)
int next-count = 0;
®m Each external procedure F will be replaced by
wait(mutex);
. // body of F;
if (next-count > 0)
sighal(next);
else
sighal(mutex);
B Mutual exclusion within a monitor is ensured EWQ
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Monitor Implementation
e Using Semaphores

®m For each condition variable x, we have:
semaphore x-sem; // (initially = 0)
int x-count = 0;

B The operation x.wait can |® The operation x.signal

be implemented as: can be implemented as:

xX-count++; if (x-count > 0) {

if (next-count > 0) next-count++;
signal(next); signal(x-sem);

else wait(next);
sighal(mutex); next-count--;

wait(x-sem);

x-count--; . \,%VQ
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d“ Monitor Implementation (Cont.)

m Check two conditions to establish
correctness of system:

User processes must always make their
calls on the monitor in a correct sequence.

Must ensure that an uncooperative
process does not ignore the mutual-
exclusion gateway provided by the monitor,
and try to access the shared resource
directly, without using the access protocols.

Operating System Concepts 6.139 Southeast University l%{&?




§ Condition Enhanced with
et a Priority Number
m Conditional-wait construct: x.wait(c);

c — integer expression evaluated when the
wait operation is executed.

value of ¢ (a priority number) stored with the
name of the process that is suspended.

when x.signal is executed, process with
smallest associated priority number is
resumed next.
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% Chapter 6: Process
e» e, | n n
S Synchronization

m Background

®m The Critical-Section Problem

B Synchronization Hardware

B Semaphores

m Classical Problems of Synchronization
m Condition Variables and Monitors

m Synchronization Examples
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§
sc®._  Solaris 2 Synchronization
B Implements a variety of locks to support
multitasking, multithreading (including real-
time threads), and multiprocessing.

m Uses adaptive mutexes for efficiency when
protecting data from short code segments.

m Uses condition variables , semaphore, and
readers-writers locks when longer sections
of code need access to data.

m Uses turnstiles to order the list of threads
waiting to acquire either an adaptive mutex

or reader-writer lock. l
Southeast University ‘M:{Q
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e,dk_a Adaptive Mutex

®m Most operating systems

(including , and )
use a hybrid approach called
"adaptive ". The idea is to use a

spinlock when trying to access a resource
locked by a currently-running thread, but to
sleep if the IS not currently running.
(The latter is always the case on single-
processor systems.)

https://en.wikipedia.org/wiki/Spinlock#Alternatives
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https://en.wikipedia.org/wiki/Solaris_(operating_system)
https://en.wikipedia.org/wiki/Mac_OS_X
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Thread_(computing)

e,_di_, Windows XP Synchronization

B Uses interrupt masks to protect access to
global resources on uniprocessor systems.

m Uses spinlocks on multiprocessor systems.

m Also provides dispatcher objects which may
act as mutexes and semaphores.

m Dispatcher objects may also provide events.
An event acts much like a condition vanaﬁ
Ny
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