
Chapter 7: Deadlocks

肖 卿 俊

办公室：九龙湖校区计算机楼212室

电邮：csqjxiao@seu.edu.cn

主页： https://csqjxiao.github.io/PersonalPage

电话：025-52091022

Southeast University7.2Operating System Concepts

Chapter 7: Deadlocks

◼System Model

◼Deadlock Characterization

◼Methods for Handling Deadlocks

◼Deadlock Prevention (死锁预防)

◼Deadlock Avoidance (死锁避免)

◼Deadlock Detection (死锁检测)

◼Recovery from Deadlock (死锁恢复)

Southeast University7.3

What Is a Deadlock?

◼Deadlock (死锁) is a special phenomenon of

resource scarcity among a group of

processes (or threads)

◼A set of blocked processes each holding a

resource and waiting to acquire a resource

held by another process in the set.

◼A Simple Example

◆System has 2 tape drives.

◆P1 and P2 each hold one tape drive and each

needs another one.

Operating System Concepts

Southeast University7.4

Formalize the Simple

Example of Deadlock

◼A simple example of deadlock between two

processes P1 and P2

◆P1 holds R1 and needs R2

◆P2 holds R2 and needs R1

Operating System Concepts

Southeast University7.5Operating System Concepts

Deadlock can be

of a much larger scale

Southeast University7.6Operating System Concepts

System Model

◼Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices, etc.

◼Each resource type Ri has Wi instances.

◼Each process utilizes a resource as follows:

◆Request

◆Use

◆Release

Southeast University7.7Operating System Concepts

System Model

◼System resources are used in the following way:

◆Request: If a process makes a request to use
a system resource which cannot be granted
immediately, then the requesting process
must block until it can acquire the resource.

◆Use: The process can operate on the
resource.

◆Release: The process releases the resource.

◼Deadlock: A set of process is in a deadlock
state when every process in the set is waiting
for an event that can only be caused by another
process in the set.

Southeast University7.8Operating System Concepts

Chapter 7: Deadlocks

◼System Model

◼Deadlock Characterization

◼Methods for Handling Deadlocks

◼Deadlock Prevention (死锁预防)

◼Deadlock Avoidance (死锁避免)

◼Deadlock Detection (死锁检测)

◼Recovery from Deadlock (死锁恢复)

Southeast University7.9Operating System Concepts

Four Necessary Conditions

for a Deadlock Situation

◼For a deadlock to occur, each of the

following four conditions must hold.

◆Mutual exclusion: only one process at a time can
use a resource.

◆Hold and wait: A process must be holding a

resource and waiting for another.

◆No preemption: A resource can be released only
voluntarily by the process holding it, after that
process has completed its task.

◆Circular wait: A waits for B, B waits for C, C

waits for A.

Southeast University7.10

Many real-world phenomenon can

be modelled as a graph

◼Social Networks

◆Scientific interaction

Operating System Concepts

◼Communication Ntwk

◆P2P system

Southeast University7.11Operating System Concepts

Model process resource request &

allocation relations as a graph

◼Vertices V is partitioned into two types:

◆P = {P1, P2, …, Pn}, the set consisting of all the

processes in the system.

◆R = {R1, R2, …, Rm}, the set consisting of all

resource types in the system.

◼Edges E is also partitioned into two types:

◆Resource request edge

– directed edge Pi→ Rj

◆Resource assignment edge

– directed edge Rj → Pi

A set of vertices V and a set of edges E.

Southeast University7.12Operating System Concepts

Resource-Allocation Graph (Cont.)
◼Process

◼Resource Type with 4 instances

◼Pi requests instance of Rj

◼Pi is holding instance of Rj

◼There can be weights on directed edges

◆Pi requests/holds wij instances of Rj

◼Can the graph have edge multiplicity?

Pi

Pi

Rj

Rj

How to draw a directed

graph using latex tikz?

http://www.texample.net/

tikz/examples/graph/

http://www.texample.net/tikz/examples/graph/

Southeast University7.13Operating System Concepts

A Simple Example of Resource

Allocation Graph

Southeast University7.14Operating System Concepts

Resource Allocation Graph

With A Deadlock

Problem: Detection of a Cycle in an Directed

Graph.

Two Methods to solve this

• DFS: https://www.geeksforgeeks.org/detect-

cycle-in-a-graph/

• Kahn's Algorithm (BFS):

https://www.geeksforgeeks.org/detect-cycle-

in-a-directed-graph-using-bfs/

Time Complexity: O(V + E),

https://www.geeksforgeeks.org/detect-cycle-in-a-graph/
https://www.geeksforgeeks.org/detect-cycle-in-a-directed-graph-using-bfs/

Southeast University7.15Operating System Concepts

Resource Allocation Graph With

A Cycle But No Deadlock

Southeast University7.16Operating System Concepts

◼When there is only one instance per

resource type, a resource allocation graph

can be easily transformed to a process-wait-

for graph

Resource-Allocation Graph Process Wait-for Graph

Resource-Allocation Graph

and Wait-for Graph (1)

transform

Southeast University7.17

Resource-Allocation Graph

and Wait-for Graph (2)
◼The transformation is difficult, when there are

multiple instances per resource type

P1 P2 P3

OR

Directed hyperedge

Operating System Concepts

transform

Southeast University7.18Operating System Concepts

Basic Facts about

Deadlock Detection

◼ If a resource allocation graph contains no

cycles  no deadlock.

◼ If a resource allocation graph contains a

cycle 

◆if only one instance per resource type, then

deadlock.

◆if several instances per resource type,

possibility of deadlock.

Southeast University7.19Operating System Concepts

Chapter 7: Deadlocks

◼System Model

◼Deadlock Characterization

◼Methods for Handling Deadlocks

◼Deadlock Prevention (死锁预防)

◼Deadlock Avoidance (死锁避免)

◼Deadlock Detection (死锁检测)

◼Recovery from Deadlock (死锁恢复)

Southeast University7.20Operating System Concepts

Methods for Handling Deadlocks

1. Ignore the problem and pretend that deadlocks

never occur in the system.

2. Allow the system to enter a deadlock state, (事
后) detect it, and recover from it, typically by

killing the processes that hold popular resources

3. (事先) Ensure that the system will never enter a

deadlock state.

◆Prevention（预防）: Ensure one of the four

necessary conditions fails.

◆Avoidance （避免）: The OS needs more

information so that it can determine if the current

request can be satisfied or delayed.

Southeast University7.21Operating System Concepts

Chapter 7: Deadlocks

◼System Model

◼Deadlock Characterization

◼Methods for Handling Deadlocks

◼Deadlock Prevention (死锁预防)

◼Deadlock Avoidance (死锁避免)

◼Deadlock Detection (死锁检测)

◼Recovery from Deadlock (死锁恢复)

Southeast University7.22Operating System Concepts

Deadlock Prevention (死锁预防):

Mutual Exclusion

◼By ensuring that at least one of the four

conditions cannot hold, we can prevent the

occurrence of a deadlock.

◼Mutual Exclusion: Some sharable resources

must be accessed exclusively (e.g., printer),

which means we cannot deny the mutual

exclusion condition.

◼Some OS mechanisms may bring inspirations,

e.g., CPU time sharing and reader-writer lock

Southeast University7.23Operating System Concepts

Deadlock Prevention (死锁预防):

Hold and Wait
◼Strictly forbid a process to hold some resources

and then request for other resources.

◼Two strategies are possible:

◆A process must acquire all resources before it runs.

◆When a process requests for resources, it must
hold none (i.e., return all resources before
requesting for more).

◼Resource utilization may be low, since many
resources will be held and unused for long time

◼Starvation is possible. A process that needs
some popular resources may have to wait
indefinitely.

Southeast University7.24

◼Strictly forbid a process to hold some resources
and then request for other resources.

◼Two strategies are possible:

◆A process must acquire all resources before it runs.

◆When a process requests for resources, it must
hold none (i.e., return all resources before
requesting for more).

◼Resource utilization may be low, since many
resources will be held and unused for long time

◼Starvation is possible. A process that needs
some popular resources may have to wait
indefinitely.

Operating System Concepts

Deadlock Prevention (死锁预防):

Hold and Wait

The dining philosopher problem can be

solved, if we wrap the taking of left

chopstick and the taking of right chopstick

as an atomic operation. WHY?

Southeast University7.25Operating System Concepts

Deadlock Prevention (死锁预防):

No Preemption
◼ If a process that is holding some resources

requests another resource that cannot be

immediately allocated to it, then all resources

currently being held are released.

◼ If the requested resources are not available:

◆If they are being held by processes that are waiting

for additional resources, these resources are

preempted and given to the requesting process.

◆Otherwise, the requesting process waits until the

requested resources become available. While it is

waiting, its resources may be preempted.

Southeast University7.26Operating System Concepts

Deadlock Prevention (死锁预防):

Circular Wait
◼To break the circular waiting condition, we

order all resource types (e.g., tapes, printers)

◼A process can only request resources higher
than the resource types it holds.

◼Suppose the ordering of tapes, disks, and
printers are 1, 4, and 8. If a process holds a
disk (4), it can only ask a printer (8) and
cannot request a tape (1). A process must
release some higher order resources to
request a lower order resource. To get tapes
(1), a process must release its disk (4).

◼ In this way, there will be no cycle. Why?

Southeast University7.27

哲学家问题的死锁预防

◼假设有5个哲学家，共享一张放有五把椅子的桌子，
每人分得一把椅子。

◼桌子上总共只有5支筷子，在每人两边分开各放一支

◼哲学家们在肚子饥饿时才试图分两次从两边拾起筷子
就餐。

◼条件：

1. 只有拿到两支筷子时，哲学家才能吃饭。

2. 如果筷子已在他人手上，则该哲学家
必须等待到他人吃完之后才能拿到筷子。

3. 任一哲学家在自己未拿到两支筷子吃饭之前，决不放下
自己手中的筷子。

◼试用信号量解决该哲学家用餐问题，要预防死锁问题
Operating System Concepts

Southeast University7.28Operating System Concepts

◼解法1：将抓左筷子和抓右筷子的动作捆绑成一个原
子操作（只有当左右筷子都拿到时，才释放mutex）
semaphore mutex = 1 ;

semaphore chopstick[5]={1，1，1，1，1};

void philosopher(int i)

{

do {

think();

wait(mutex);

wait(chopstick[(i+1)%5]);

wait(chopstick[i]);

signal(mutex);

eat();

signal(chopstick[(i+1)%5]);

signal(chopstick[i]);

} while(true);

}

Southeast University7.29

A Quiz

◼该解法有瑕疵。一个好的解法
应该允许不相邻的没有资源冲
突的哲学家同时进餐。

◆比如，哲学家P1和哲学家P3座位不相邻，那么
他们就不共用任何筷子。如果P1和P3都处于饥饿
状态，好的解法应当允许P1和P3同时进餐。

◼请设想如何才能出现下面的场景 --- 桌面上只
有一位哲学家（比如P1）正在进餐，同时另
一位非邻座的哲学家进程P3尽管饥饿，但是
被阻塞无法进餐，除非哲学家P1结束进餐。

◆提示：考虑其他哲学家也会处于饥饿状态。Operating System Concepts

Southeast University7.30

◼解法2：最多允许四个哲学家同时进餐,以保证至少

有一个哲学家能够拿起两只筷子,最终总会释放出
他使用的两支筷子,从而可使更多的哲学家进餐。
semaphore chopstick[5]={1，1，1，1，1};

semaphore room=4;

void philosopher(int i)

{

do {

think();

wait(room); //请求进入房间进餐

wait(chopstick[i]); //请求左手边的筷子

wait(chopstick[(i+1)%5]); //请求右手边的筷子

eat();

signal(chopstick[(i+1)%5]); //释放右手边的筷子

signal(chopstick[i]); //释放左手边的筷子

signal(room); //退出房间释放信号量room

} while(true);

}Operating System Concepts

每个人都要wait(room)和signal(room)，有一定性能损失

0

1

2

3

4

Southeast University7.31Operating System Concepts

semaphore chopstick[5] = {1，1，1，1，1};

void philosopher(int i) {

do {

think();

if(i%2 == 0) { // 偶数哲学家，先右后左。

wait (chopstick[(i+1)%5]) ;

wait (chopstick[i]) ;

eat();

signal (chopstick[(i+1)%5]) ;

signal (chopstick[i]) ;

} else { // 奇数哲学家，先左后右。

wait (chopstick[i]) ;

wait (chopstick[(i+1)%5]) ;

eat();

signal (chopstick[i]) ;

signal (chopstick[(i+1)%5]) ;

}

} while(true);

}

◼解法3：规定奇
数号的哲学家先
拿起他左边的筷
子，然后再去拿
他右边的筷子;而
偶数号的哲学家
则相反

◼奇数哲学家阻塞
后hold-and-wait

的方向顺时针，
偶数哲学家逆时
针，所以没回路

◼高效分布式解法

Southeast University7.32Operating System Concepts

Chapter 7: Deadlocks

◼System Model

◼Deadlock Characterization

◼Methods for Handling Deadlocks

◼Deadlock Prevention (死锁预防)

◼Deadlock Avoidance (死锁避免)

◼Deadlock Detection (死锁检测)

◼Recovery from Deadlock (死锁恢复)

Southeast University7.33Operating System Concepts

Deadlock Avoidance (死锁避免)

◼When only one instance per resource type,

deadlock-avoidance algorithm can examine the

resource-allocation state dynamically to ensure

that there will never be a circular-wait condition.

◼Otherwise, simplest and most useful model

requires that each process declares the

maximum number of resources of each type

that it may need.

◼Resource-allocation state is defined by the

number of available and allocated resources,

and the maximum demands of the processes.

Requires that the system has some

additional a priori information available.

Southeast University7.34Operating System Concepts

Safe State
◼When a process requests an available resource,

system must decide if immediate allocation leaves
the system in a safe state.

◼ System is in safe state if there exists a safe
sequence of all processes to run to the end.

◼ Sequence <P1, P2, …, Pn> is safe if for each Pi, the
resources that Pi can still request can be satisfied
by currently available resources + resources held
by all the Pj, with j<i.

◆If Pi resource needs are not immediately available, then
Pi can wait until all Pj have finished.

◆When Pj is finished, Pi can obtain needed resources,
execute, return allocated resources, and terminate.

◆When Pi terminates, Pi+1 can obtain its needed
resources, and so on.

Southeast University7.35Operating System Concepts

Basic Facts

◼ If a system is in safe state  definitely not in

deadlock states.

◼ If a system is in unsafe state  possibility of

deadlock.

◼Avoidance  ensure that a system will

never enter an unsafe state.

Southeast University7.36Operating System Concepts

Safe, Unsafe , Deadlock State

Southeast University7.37Operating System Concepts

Single Instance per Resource Type:

Resource-Allocation Graph Algorithm

◼Claim edge Pi → Rj indicated that process Pi

may request resource Rj; represented by a

dashed line.

◼Claim edge converts to request edge when

a process requests a resource.

◼When a resource is released by a process,

assignment edge reconverts to a claim

edge.

◼Resources must be claimed apriori in the

system.

Southeast University7.38Operating System Concepts

Resource-Allocation Graph

For Deadlock Avoidance: Example 1

Deadlock?

Safe?

Unsafe?

Answer: Safe

Southeast University7.39Operating System Concepts

Resource-Allocation Graph

For Deadlock Avoidance: Example 2

Deadlock?

Safe?

Unsafe?

Answer: Unsafe

Southeast University7.40Operating System Concepts

Resource-Allocation Graph

For Deadlock Avoidance: Example 3

Deadlock?

Safe?

Unsafe?

Answer: Safe

Southeast University7.41Operating System Concepts

Resource-Allocation Graph

For Deadlock Avoidance: Example 4

Deadlock?

Safe?

Unsafe?

Answer: Safe

Southeast University7.42Operating System Concepts

Multiple Instances per Resource

Type: Banker’s Algorithm
◼Three Assumptions of Banker’s Algorithm

◆Each process must apriori claim its

maximum use of each resource type.

◆When a process requests for a particular

amount of resources, it may have to wait,

even if the system has the resources

available.

◆When a process gets all its needed

resources, it must return them in a finite

amount of time.
http://en.wikipedia.org/wiki/Banker%27s_algorithm

Southeast University7.43Operating System Concepts

Data Structures for

the Banker’s Algorithm

◼Available: Vector of length m. If Available[j] = k,

there are k instances of resource type Rj

available.

◼Max: n x m matrix. If Max [i, j] = k, then process

Pi may request at most k instances of resource

type Rj.

◼Allocation: n x m matrix. If Allocation[i, j] = k

then Pi is currently allocated k instances of Rj.

◼Need: n x m matrix. If Need[i, j] = k, then Pi may

need k more instances of Rj to finish its task.

n = number of processes, m = number of resources types

Southeast University7.44

Inspiration

Operating System Concepts

Southeast University7.45

Playing Pickup Sticks with

Processes
◼Pickup

◆Find a stick on top

= Find a process that can finish

with what it has plus what’s free

◆Remove a stick

= Process releases its

resources

◼Repeat

◆Until all processes have

finished, Answer: safe

◆Or we get stuck,

Answer: unsafeOperating System Concepts

Southeast University7.46

◼ 5 processes: P0 through P4

◼ 3 resource types: A (10 instances), B (5

instances), and C (7 instances).

◼System snapshot at the time T0:

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

Operating System Concepts

An Example of Banker’s Algorithm

Southeast University7.47Operating System Concepts

An Example of Banker’s Algorithm

(Cont.)

◼The content of the matrix. Need is defined to

be Max – Allocation.

Need

A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

Southeast University7.48Operating System Concepts

Resource-Request Algorithm

for Process Pi
Request = request vector for process Pi.

If Requesti [j] = k, then the process Pi wants k
instances of resource type Rj.

Three-Step Algorithm

Step 1. If Requesti  Needi , then go to step 2.
Otherwise, raise error condition, since the process
Pi has exceeded its maximum claim.

Step 2. If Requesti  Available, then go to step 3.
Otherwise, the process Pi must wait, since the
requested resources are not available.

Step 3. Pretend to allocate requested resources to
Pi by simulating the resource allocation:

Southeast University7.49Operating System Concepts

Resource-Request Algorithm

for Process Pi

Explain the Step 3 in More Details

Step 3. Pretend to allocate requested
resources to process Pi by modifying the
state as follows:

For each jth type of resource with 0j<m,

Availablej = Availablej - Requesti[j];

Allocationi [j]= Allocationi[j] + Requesti[j];

Needi[j] = Needi[j] – Requesti[j] ;

• If safe  the resources are allocated to process
Pi, and Pi goes to Ready state

• If unsafe  process Pi must wait, and the old
resource-allocation state is restored

Southeast University7.50

Safety Algorithm

◼Purpose: Differentiate the safe and unsafe

states

◼Pessimistic Assumption: all processes will

eventually attempt to acquire their stated

maximum resources and terminate soon

afterward

◆If a process terminates without acquiring its

maximum resource, it only makes it easier on

the system

Operating System Concepts

Southeast University7.51

Safety Algorithm (cont.)

◼How to differentiate between safe and

unsafe system states?

◆Determines if a state is safe by trying to find a

hypothetical sequence of requests by the

processes that would allow each to acquire its

maximum resources and then terminate

(returning its resources to the system).

◆Any state where no such sequence exists is

an unsafe state.

Operating System Concepts

Southeast University7.52Operating System Concepts

Safety Algorithm (cont.)

Step 1. Let Work and Finish be vectors of length
m and n, respectively. Initialize them as

Work = Available (copy the array of available resources)

Finish [i] = false, for each i = 0, 1, …, n-1.

Step 2. Find an i such that both conditions satisfy:

(a) Finish [i] = false

(b) Needi  Work

If no such i exists, go to step 4.

Step 3. Finish[i] = true;
Work = Work +Allocationi // reclaim resources
go to step 2.

Step 4. If Finish [i] == true for all i,
then the system is in a safe state.

Southeast University7.53

Notes for Safety Algorithm

◼These requests and acquisitions are

hypothetical. The algorithm generates them

to check the safety of the state, but no

resources are actually given and no

processes actually terminate.

◼The order in which these requests are

generated – if several can be fulfilled –

doesn't matter, since safety is checked for

each resource request

Operating System Concepts

Southeast University7.54Operating System Concepts

An Example: P1 Request for (1,0,2)

◼Snapshot at time T0:

Allocation Max Available Need

A B C A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2 7 4 3

P1 2 0 0 3 2 2 1 2 2

P2 3 0 2 9 0 2 6 0 0

P3 2 1 1 2 2 2 0 1 1

P4 0 0 2 4 3 3 4 3 1

◼Firstly, check that Request  Need1.

That is, (1,0,2)  (1,2,2)  true.

Southeast University7.55Operating System Concepts

An Example: P1 Request for (1,0,2)

◼Secondly, check that Request  Available.

That is, (1,0,2)  (3,3,2)  true.

◼Thirdly, simulate the resource allocation

Allocation Need Available

A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0

P1 3 0 2 0 2 0

P2 3 0 2 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

Southeast University7.56Operating System Concepts

An Example: P1 Request for (1,0,2)

◼More details about the third step:

Executing the safety algorithm shows that there

exists an execution sequence <P1, P3, P4, P0,

P2> that can satisfy the safety requirement.

◼Further Questions:

◆Can the request for (3,3,0) by P4 be granted?

◆Can the request for (0,2,0) by P0 be granted?

Southeast University7.57Operating System Concepts

An Example: P4 Request for (3,3,0)

◼Snapshot at time T0:

Allocation Max Available Need

A B C A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2 7 4 3

P1 2 0 0 3 2 2 1 2 2

P2 3 0 2 9 0 2 6 0 0

P3 2 1 1 2 2 2 0 1 1

P4 0 0 2 4 3 3 4 3 1

◼Firstly, check that Request  Need4.

That is, (3,3,0)  (4,3,1)  true.

Southeast University7.58Operating System Concepts

An Example: P4 Request for (3,3,0)

◼Secondly, check that Request  Available.

That is, (3,3,0)  (3,3,2)  true.

◼Thirdly, simulate the resource allocation

Allocation Need Available

A B C A B C A B C

P0 0 1 0 7 4 3 0 0 2

P1 2 0 0 1 2 2

P2 3 0 2 6 0 0

P3 2 1 1 0 1 1

P4 3 3 2 1 0 1

Safe?

Unsafe?

Southeast University7.59Operating System Concepts

An Example: P0 Request for (0,2,0)

◼Snapshot at time T0:

Allocation Max Available Need

A B C A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2 7 4 3

P1 2 0 0 3 2 2 1 2 2

P2 3 0 2 9 0 2 6 0 0

P3 2 1 1 2 2 2 0 1 1

P4 0 0 2 4 3 3 4 3 1

◼Firstly, check that Request  Need0.

That is, (0,2,0)  (7,4,3)  true.

Southeast University7.60Operating System Concepts

An Example: P0 Request for (0,2,0)

◼Secondly, check that Request  Available.

That is, (0,2,0)  (3,3,2)  true.

◼Thirdly, simulate the resource allocation

Allocation Need Available

A B C A B C A B C

P0 0 3 0 7 2 3 3 1 2

P1 2 0 0 1 2 2

P2 3 0 2 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

Safe?

Unsafe?

Southeast University7.61Operating System Concepts

Chapter 7: Deadlocks

◼System Model

◼Deadlock Characterization

◼Methods for Handling Deadlocks

◼Deadlock Prevention (死锁预防)

◼Deadlock Avoidance (死锁避免)

◼Deadlock Detection (死锁检测)

◼Recovery from Deadlock (死锁恢复)

Southeast University7.62Operating System Concepts

Deadlock Detection (死锁检测)

◼Deadlock avoidance requires every process

to apriori claim its maximum number of

resources needed for each resource type

◼However, sometimes such knowledge is not

available in real systems

◼Alternatively, we may adopt the deadlock

detection mechanism

◆Allow the system to enter deadlock state

◆Run deadlock detection algorithm periodically

◆Recovery scheme upon the detection of

deadlocks

Southeast University7.63Operating System Concepts

A Simpler Situation: Single

Instance for Each Resource Type

◼Maintain wait-for graph

◆Nodes are processes.

◼Pi → Pj if Pi is waiting for Pj.

◼Periodically invoke a deadlock detection

algorithm that searches for a cycle in the graph.

◼An algorithm to detect a cycle in a graph needs

an order of n*e operations, where n (e) is the

number of vertices (edges) in the graph.

Southeast University7.64Operating System Concepts

Resource-Allocation Graph

and Wait-for Graph

Resource-Allocation Graph Corresponding Wait-for Graph

m resource types

n processes

Southeast University7.65Operating System Concepts

A More Difficult Situation: Multiple

Instances for a Resource Type

◼Available: A vector of length m indicates the

number of available resources of each type

◼Allocation: An n x m matrix defines the

number of resources of each type currently

allocated to each process.
➢Need matrix (pessimistic) →

Request matrix (realistic)

◼Request: An n x m matrix indicates the

current request of each process. If Request

[i,j] = k, then process Pi is requesting k more

instances of resource type Rj.

Southeast University7.66Operating System Concepts

Deadlock Detection Algorithm

Step 1. Let Work and Finish be vectors of

length m and n, respectively. Initialize:

(a) Work = Available

(b) For i = 1,2, …, n, if Allocationi  0, then

Finish[i] = false; otherwise, Finish[i] = true.

Step 2. Find an index i such that both:

(a) Finish[i] == false

(b) Requesti  Work

If no such i exists, go to step 4.

Southeast University7.67Operating System Concepts

Detection Algorithm (Cont.)

Step 3. Finish[i] = true
Work = Work + Allocationi // reclaim resource
go to step 2.

Step 4. If Finish[i] == false, for some i, 1  i 
n, then the system is in deadlock state.
Moreover, if Finish[i] == false, then Pi is
deadlocked.

Algorithm requires an order of O(m x n x n)

operations to detect whether the system is in

deadlocked states.

Southeast University7.68Operating System Concepts

An Example of Detection Algorithm

◼Five processes P0~4. Three resource types A (7

instances), B (2 instances) and C (6 instances).

◼Snapshot at time T0:
Allocation Request Available

A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

◼Sequence <P0, P2, P3, P1, P4> will result in

Finish[i] = true for all i. So, no deadlock.

Southeast University7.69

Allocation Available

A B C A B C

0 1 0 0 0 0

2 0 0

3 0 3

2 1 1

0 0 2

Operating System Concepts

◼P2 requests an additional instance of type C.

Request

A B C

P0 0 0 0

P1 2 0 1

P2 0 0 1

P3 1 0 0

P4 0 0 2

◼What is the state of system? Deadlock or no

deadlock?

An Example of Detection Algorithm

Southeast University7.70Operating System Concepts

Detection-Algorithm Usage

◼When, and how often, to invoke depends on:

◆How often a deadlock is likely to occur?

◆How many processes will be affected by

deadlock when it happens?

◼ Imagine: if detection algorithm is invoked

arbitrarily, there may be many cycles in the

resource graph and so we would not be able

to tell which of the many deadlocked

processes “caused” the deadlock.

Southeast University7.71Operating System Concepts

Chapter 7: Deadlocks

◼System Model

◼Deadlock Characterization

◼Methods for Handling Deadlocks

◼Deadlock Prevention (死锁预防)

◼Deadlock Avoidance (死锁避免)

◼Deadlock Detection (死锁检测)

◼Recovery from Deadlock (死锁恢复)

Southeast University7.72Operating System Concepts

Recovery from Deadlock:

Process Termination
◼Abort all deadlocked processes.

◼Abort one process at a time until the deadlock
cycle is eliminated.

◼ In which order should we choose to abort?

◆Priority of the process.

◆How long process has computed, and how much
longer to completion.

◆Resources the process has used.

◆Resources process needs to complete.

◆How many processes will need to be terminated.

◆Is process interactive or batch?

Southeast University7.73Operating System Concepts

Recovery from Deadlock:

Resource Preemption

◼Selecting a victim – minimize cost.

◼Rollback – return to some safe state, restart

process for that state.

◼Starvation – same process may always be

picked as victim, include the number of

rollbacks when calculating the cost factor for

victim selection.

Southeast University7.74

Concluding Notes

◼ In general, deadlock detection or avoidance is

expensive, consuming much system resources

◼ Real systems must evaluate cost and frequency of

deadlock against costs of detection or avoidance

◼ Deadlock avoidance and recovery may cause

indefinite postponement (starvation)

◼ Unix, Windows use Ostrich Algorithm (do nothing)

◼ Typical apps use deadlock prevention (order locks)

◼ Database transaction processing systems (e.g.,

credit card systems) need to use deadlock

detection/recovery/avoidance/prevention (why?)
Operating System Concepts

