Chapter 7: Deadlocks

S
AT MHIRIR HSHLE212%

. csgjxiao@seu.edu.cn

S T1:  https://csgjxiao.github.io/PersonalPage
FH1E: 025-52091022




T Chapter 7: Deadlocks

B System Model

m Deadlock Characterization

B Methods for Handling Deadlocks

m Deadlock Prevention (L4 TRER)

m Deadlock Avoidance (B4 %)

m Deadlock Detection (FE4£6 )

m Recovery from Deadlock (FE41% &)

Operating System Concepts 7.2 Southeast University l&.{&?

-

EE—



?fd%. What Is a Deadlock?

m Deadlock (#b81) is a special phenomenon of
resource scarcity among a group of
processes (or threads)

B A set of blocked processes each holding a
resource and waiting to acquire a resource
held by another process in the set.

m A Simple Example

System has 2 tape drives.

P, and P, each hold one tape drive and each
needs another one.

Operating System Concepts 7.3 Southeast University E%‘Q




u{ Formalize the Simple
S Example of Deadlock

B A simple example of deadlock between two
P1 and P2

Processes
¢ P1 holds
¢ P2 holds

Operating System Concepts

R1 and needs R2

R2 and needs R1

R

@@

R1 R2

R

1

Requested Allocated Deadlocked

7.4

Southeast University %{Q




vt

Operating System Concepts

Deadlock can be
of a much larger scale

M DI DaToa@e | ---

))

DL

7.5

o

Southeast University

358




s System Model

B Resource types R, R,, . . ., R,
CPU cycles, memory space, I/O devices, etc.

m Each resource type R, has W, instances.

B Each process utilizes a resource as follows:
Request
Use
Release

Operating System Concepts 7.6 Southeast University lﬁ.{&?
S




1o 4 System Model
B System resources are used in the following way:

Request: If a process makes a request to use
a system resource which cannot be granted
Immediately, then the requesting process
must block until it can acquire the resource.

Use: The process can operate on the
resource.

Release: The process releases the resource.

B Deadlock: A set of process is in a deadlock
state when every process In the set is waiting
for an event that can only be caused by anothe
process in the set.

Operating System Concepts 7.7 Southeast University %.{Q
S




T Chapter 7: Deadlocks

m System Model

B Deadlock Characterization

B Methods for Handling Deadlocks

m Deadlock Prevention (L4 TRER)

m Deadlock Avoidance (B4 %)

m Deadlock Detection (FE4£6 )

m Recovery from Deadlock (FE41% &)

Operating System Concepts 7.8 Southeast University l&_{g\?

-

EE—



etﬁ Four Necessary Conditions
T for a Deadlock Situation

B For a deadlock to occur, each of the
following four conditions must hold.

Mutual exclusion: only one process at a time can
use a resource.

Hold and wait: A process must be holding a
resource and waiting for another.

No preemption: A resource can be released only
voluntarily by the process holding it, after that
process has completed its task.

Circular wait: A waits for B, B waits for C, C

waits for A. \"
Southeast University }4{&?

Operating System Concepts 7.9




n{[\/lany real-world phenomenon can
T be modelled as a graph

m Social Networks B Communication Ntwk
¥ Scientific interaction © P2P system

P2P SYSTEM TOPOLOGY

Operating



dLMOdeI process resource request &

allocation relations as a graph
A set of vertices V and a set of edges E.
m Vertices V Is partitioned into two types:

P={P, P, ..., P}, the set consisting of all the
processes Iin the system.

R ={R;, Ry, ..., Ry}, the set consisting of all
resource types in the system.
B Edges E is also partitioned into two types:

Resource request edge
— directed edge P;—> R;

Resource assignment edge

— directed edge R; — P, \EWQ

Operating System Concepts 7.11




?’%esource-Allocation Graph (Cont.)
B Process Q

m Resource Type with 4 instances

oo
oo

- I:)i requeStS Instance of Rj How to draw a directed
_» 0o graph using latex tikz?

o0

m P, Is holding instance of R;

L OO
oo

R

B There can be Weigjyﬂts on directed edges
© P, requests/holds w; instances of R, m
o M
wearlll-x@ the graph have edge naudtiplicity? E: Q



http://www.texample.net/tikz/examples/graph/

A Simple Example of Resource

Ak 4 Allocation Graph
R, R,

oA

\¢

® ®
°
R o

2

R

| E"»
Operating System Concepts 7.13 Southeast University > {Q
S




ﬁ Resource Allocation Graph
Xy A With A Deadlock

R, R,

Problem: Detection of a Cycle in an Directed
Graph.

®
\ \
Two Methods to solve this
@ ® @D -
« Kahn's Algorithm (BFS):
/

\e

Time Complexity: O(V + E),

F|’2 °

4 k"»’f $
Southeast University = 1&

Operating System Concepts 7.14



https://www.geeksforgeeks.org/detect-cycle-in-a-graph/
https://www.geeksforgeeks.org/detect-cycle-in-a-directed-graph-using-bfs/

Resource Allocation Graph With
S A Cycle But No Deadlock

I

Operating System Concepts 7.15 Southeast University k{&?




. 4 Resource-Allocation Graph
— and Wait-for Graph (1)
® When there Is only one instance per
resource type, a resource allocation graph
can be easlily transformed to a process-wait-

for graph (’i)

A,

R

3 R

4

t &sfo& m e
P B @ o‘e'e
@ Vg
R, | R, X){Q

Operating System -Raspource-Allocation Graph -~ Process Waﬂ for Graph




. di Resource-Allocation Graph
— and Wait-for Graph (2)
B The transformation is difficult, when there are

muLtip e Instances per resource type

1 HS

®
\ \
e e transform
/

\0 Directed hyperedge
®

°
®
F|’2 °

Operating System Concepts R4 7.17 Southeast University lﬁ.{&?




Q& Basic Facts about
ew \ =
P— Deadlock Detection

m |f a resource allocation graph contains no
cycles = no deadlock.

m |f a resource allocation graph contains a
cycle =

If only one instance per resource type, then
deadlock.

If several instances per resource type,
possibility of deadlock.

Operating System Concepts 7.18 Southeast University lﬁ.{&?
S




T Chapter 7: Deadlocks

m System Model

B Deadlock Characterization

B Methods for Handling Deadlocks

m Deadlock Prevention (L4 TRER)

m Deadlock Avoidance (FE813E %)

m Deadlock Detection (FE4£6 )

m Recovery from Deadlock (FE41% &)

Operating System Concepts 7.19 Southeast University lﬁ.{&?

-

EE—



g,d';‘l,\./lethods for Handling Deadlocks

1. Ignore the problem and pretend that deadlocks
never occur in the system.

2. Allow the system to enter a deadlock state, (5
J5) detect it, and recover from it, typically by
killing the processes that hold popular resource:

3. (5+7%) Ensure that the system will never enter &
deadlock state.

Prevention (Fif5) : Ensure one of the four
necessary conditions fails.

Avoidance (%) : The OS needs more .
Information so that it can determine if the curr%%‘) ‘
orercins f@CIUIEST CaN be satisfied or delayeds vesw iRe

EE—



T Chapter 7: Deadlocks

m System Model

m Deadlock Characterization

B Methods for Handling Deadlocks

m Deadlock Prevention (BE4V )

m Deadlock Avoidance (FE813E %)

m Deadlock Detection (FE4£6 )

m Recovery from Deadlock (FE41% &)

Operating System Concepts 7.21 Southeast University lﬁ.{&?

-

EE—



: t‘ Deadlock Prevention (FE&iTHH):
L - Mutual Exclusion

B By ensuring that at least one of the four
conditions cannot hold, we can prevent the
occurrence of a deadlock.

B Mutual Exclusion: Some sharable resources
must be accessed exclusively (e.g., printer),
which means we cannot deny the mutual
exclusion condition.

B Some OS mechanisms may bring inspiration
e.g., CPU time sharing and reader wnte}zﬁ

Operating System Concepts 7.22 Southeast University

—




eﬁk Deadlock Prevention (FE8i k5 ):

m Strictly forbid

and then request for other resources.

B Two strategies are possible:
A process must acquire all resources before It runs.

When a process requests for resources, it must
hold none (i.e., return all resources before
requesting for more).

B Resource utilization may be low, since many

resources wil
B Starvation Is

some popular resources may have to wait

iIndefinitely.

Operating System Concepts

Hold and Walit
a process to hold some resources

be held and unused for long time

nossible. A process that needs




> Deadlock Prevention (FE8iHEH):

Ak 4 Hold and Wait

m Strictly forbid a process to hold some resources
and then request for other resources.

B Two strategies are possible:
A process must acquire all resources before It runs.

ALl

The dining phllosopher problem can be
solved, if we wrap the taking of left
chopstick and the taking of right chopstick
as an atomic operation. WHY?

— —

mER
re

B Starvation Is possible. A process that needs
some popular resources may have to wal

OperaltiDSydstg I)!]Q)t!te |y 7.24 Southeast Univ 3&(&?

ne




, '»QL - Deadlock Prevention (FE8t 7BH):

No Preemption
B |[f a process that Is holding some resources

requests another resource that cannot be
Immediately allocated to It, then all resources
currently being held are released.

m |f the requested resources are not available:

If they are being held by processes that are waiting
for additional resources, these resources are

preempted and given to the requesting process.

Otherwise, the requesting process waits until the
requested resources become available. While it is
waiting, Its resources may be preempted

Operating System Concepts 7.25 Southeast Univ E%Q




, dL - Deadlock Prevention (FE8t 7BH):

S Circular Wait

B To break the circular waliting condition, we
order all resource types (e.g., tapes, printers)

B A process can only request resources higher
than the resource types it holds.

B Suppose the ordering of tapes, disks, and
printers are 1, 4, and 8. If a process holds a
disk (4), it can only ask a printer (8) and
cannot request a tape (1). A process must
release some higher order resources to
request a lower order resource. To get tapes
(1), a process must release its disk (4). -

_mn this way, there will be ng cycle. Whlﬂ{@j




O A T oy 5

BRI AENTER, K= KA L itHm %R+,
HATR " T

B ET ERE G, 8 ALy

B AN UV A3 B 4 P I PRI
A
m oA

WEZINW TR, F2E A2

M% ETOEMAT E, Wz
SR AIZSE R A REE BT

E*ﬁ%%fﬁaﬁaﬁﬁi KT AT, AR

/ﬁ:r":“

HCFHRIEET

B A HE S BRIz A A RS, 2 BﬁﬁE%ﬁT

Operating System Concepts

7.27

Southeast University Aa&?




Q.
=1 R BT AITUE BT SRR IR Rl — 1 S
THEE (RASEABETEZERIN, AR imutex)
semaphore mutex =1 ;
semaphore chopstick[5]={1, 1, 1, 1, 1}
void philosopher(int i)
{
do {
think();
walit(mutex);
wait(chopstick][(i+1)%5]);
wait(chopstick]i]);
signal(mutex);
eat();
signal(chopstick|[(i+1)%?5]);
signal(chopstickK][i]);
} while(true);

Operating System Concepts 7.28 Southeast University EHQ
S

e




e’_dk'f‘! A QUiZ

BZRER I . — NIRRT
N AZ TV AN AL B A TR
SR S oK A I AR

tban, H2EZE PN K P3REAT A AEAR, %B/

AT A AT T anRPLIAMPIEL AL T 1%
IRZS, 3 BUARE N = S8 1P LRTP3 [A) i 22k 4

iGN N E Y s - £H EH
A—NMNET%FKE (Pl IEFE L-%%, [F] B 5

— AL AESRRE & X HFEPIRE VI, HE
%ﬁﬁﬂ%ﬂﬁ/ﬂxﬁé, Bﬁﬁﬁ*ﬁ%ﬁpl Brin:

Operating Systém i:o-e
N S




—

152: B'Eﬁ'%ftﬁ) g M%I‘J iy it , A PRAE 22 /D
D PR B R R B S R
b fef ‘EI’JW\ES'Z ? NI @E%E’J e $is &

semaphore chopstick[5]={1, 1, 1, 1, 1}
semaphore room=4;
void philosopher(int i)
{
do {
think():
wait(room); /BRI AR
wait(chopstick[i]); /EREFURETF
wait(chopstick[(i+1)%5]); /ERAFIAHET
eat();
signal(chopstick[(i+1)%5]); //BEHAFIHKETF
signal(chopstick[i]); /MEBAEF AT
signal(room); //iBH FEBEHAE 5 &room
} while(true);

Operating ?(stem Concepts 7.30 Southeast University




;@ﬁg L5 B
BT T 5 5%
A e i R
T, REHEE

mELmM¥mi

BET M 55K
M A /2
WA K PHE
Jahold-and-wait
()5 W) N s

\

(RS dR= S U]
T, FrBA Rl

W T TR

semaphore chopstick[5]
void philosopher(int i) {
do {
think();
iIf(1%2 == 0) {

} else {

}

} while(true);

:{17 17 17 17 1},

IMEEE 75K,
wait (chopstick[(i+1)%5]) ;
wait (chopstick(i]) ;

eat();

signhal (chopstick][(i+1)%5]) ;
signal (chopstick]i]) ;

Il w8 e K
wait (chopstick[i]) ;

wait (chopstick[(i+1)%5]) ;
eat();

signal (chopstick]i]) ;
signhal (chopstick][(i+1)%5]) ;

Southeast University E%Q

et JE /e

, SRR JEH

7.31




T Chapter 7: Deadlocks

m System Model

B Deadlock Characterization

B Methods for Handling Deadlocks

m Deadlock Prevention (L4 TRER)

m Deadlock Avoidance (B4 )

m Deadlock Detection (FE4£6 )

m Recovery from Deadlock (FE41% &)

Operating System Concepts 7.32 Southeast University lﬁ.{&?

-

EE—



Q’J;’Deadlock Avoidance (FEELEE5)

B \When only one instance per resource type,
deadlock-avoidance algorithm can examine the
resource-allocation state dynamically to ensure
that there will never be a circular-wait condition.

m Otherwise, simplest and most useful model
requires that each process declares the
maximum number of resources of each type

that it may need Requires that the system has some
' additional a priori information available.

B Resource-allocation state Is defined by the
number of available and allocated resources,
and the maximum demands of the processg Q




Q.

N Safe State

% a process requests an available resource,
system must decide if immediate allocation leaves
the system in a safe state.

B System Is In safe state If there exists a safe
sequence of all processes to run to the end.

m Sequence <P,, P, ..., P> is safe if for each P, the
resources that P; can still request can be satisfied
by currently available resources + resources held
by all the P;, with |<I.

If P, resource needs are not immediately available, then
P; can wait until all P;have finished.

When P IS finished, P can obtain needed resources,
execute return allocated resources, and terminate.

When P; terminates, P;,, can obtain its needed O
Operating Srs@rS:@HtFCES’ and SO On. 7.34 Southeast University ‘ 1&4




id%. Basic Facts

B |f a system Is In safe state = definitely not in
deadlock states.

m |f a system Is In unsafe state = possibility of
deadlock.

B Avoidance = ensure that a system will
never enter an unsafe state.

Operating System Concepts 7.35 Southeast University lﬁ.{&?
S




id% Safe, Unsafe , Deadlock State

unsafe
deadlock

/

Operating System Concepts 7.36 Southeast University lﬁ.{&?
S




(ﬁingle Instance per Resource Type:
S Résource-Allocation Graph Algorithm

m Claim edge P; — R; indicated that process P;
may request resource R;; represented by a
dashed line.

m Claim edge converts to request edge when
a process reguests a resource.

B \When a resource Is released by a process,
assignment edge reconverts to a claim
edge.

®m Resources must be claimed apriori in the
system.

Operating System Concepts 7.37 Southeast University lﬁ.{&?
S




Resource-Allocation Graph

£S5 or Deadlock Avoidance: Example 1
H1
Deadlock?
o & L
Unsafe? ' ,
deadlock o ~“ "' Answer: Safe
R,
7.38 Southeast University 4}24{&?




Resource-Allocation Graph

S5 %8 or Deadlock Avoidance: Example 2
R1
Deadlock?
Safe? 0 e
Unsafe?
T Answer: Unsafe
/ r,  UnsafeDeadlock
7.39 Southeast University 1}4{&?




Resource-Allocation Graph

$S % or Deadlock Avoidance: Example 3

R,

Deadlock?

Safe? 0 e

Unsafe? . ,’

deadlock \ " An SWE r: Sa.fe

7.40 Southeast University ‘BH.{Q




Resource-Allocation Graph

$S % or Deadlock Avoidance: Example 4
H1
Deadlock?
ot &) L
Unsafe? *\ ,
deadlock o ~“ "' Answer: Sa.fe
R,
7.41 Southeast University 4}24{&?




ed'k Multiple Instances per Resource

=g

~ Type: Banker’s Algorithm
B Three Assumptions of Banker’s Algorithm

Each process must apriori claim Its
maximum use of each resource type.

When a process requests for a particular
amount of resources, it may have to wait,
even If the system has the resources
avallable.

When a process gets all its needed
resources, it must return them in a finite

amount of time. 1‘ ;
operaiing System conceps NEER://EN.Wikipedia.org/wiki/Banker%27g, algorithm X}ZQ




Data Structures for

5
A 4 the Banker’s Algorithm
N = number of processes, m = number of resources types

m Available: Vector of length m. If Avallable[j] =
there are k instances of resource type R;
available.

B Max: n x m matrix. If Max [i, |] = k, then process
P. may request at most k instances of resource
type R;.

m Allocation: nx m matrix. If Allocation[i, J] =k
then P; is currently allocated k instances of R;

® Need: nx m matrix. If Need][i, ]] =k, then®; m
need k more instances of R;10 TINish Its tagkséq$

Operating System Con 7.43




!-_J:. Inspiration

Operating System Concepts 7.44 Southeast University




\&f.  Playing Pickup Sticks with

| Processes
m Pickup

¢ Find a stick on top
= Find a process that can finish
with what it has plus what'’s free

O Remove a stick
= Process releases Its
resources

B Repeat

¥ Until all processes have
finished, Answer:

© Or we get stuck,
wssenASWEr: unsafe ersi : VQ
Operating Syste . 7.45 Southeast University < VY




g,ﬂn Example of Banker’s Algorithm

B 5 processes: P,through P,

B 3 resource types: A (10 instances), B (5
Instances), and C (7 instances).

B System snapshot at the time T

Allocation Max Available

ABC ABC ABC
P, 010 753 332
200 322
302 902
211 222
002 433

Operating System Concepts 7.46 Southeast University l&.{&?

=

U U U T
W N

D




t&n Example of Banker’s Algorithm
¢ (Cont.)

B The content of the matrix. Need is defined to
be Max — Allocation.

Need

ABC
P, 743
122
600
011
431

—

U U U T
w DN

N

Operating System Concepts 7.47 Southeast University %{Q
S




Resource-Request Algorithm

¢CT A for Process P,
Request = request vector for process P..

If Request, []] = k, then the process P, wants k
Instances of resource type R;

Three-Step Algorithm

Step 1. If Request; < Need, , then go to step 2.
Otherwise, raise error condition, since the process
P, has exceeded its maximum claim.

o

Step 2. If Request; < Avallable, then go to step 3.
Otherwise, the process P; must walt, since the
requested resources are not available.

Step 3. Pretend to allocate requested resour
_....P; by simulating the resource allocation: }%Q




¥ Resource-Request Algorithm
et for Process P,

Explain the Step 3 in More Detalls

Step 3. Pretend to allocate requested
resources to process P; by modifying the
state as follows:

For each ji type of resource with 0<j<m,
Avallable; = Avallable; - Requesti[j];
Allocation, [j]= Allocation;[j] + Requesti[j];
Need[j] = Need|]] — Requestj[j] ;
f safe = the resources are allocated to process
2., and P; goes to Ready state

f unsafe = process P, must wait, and the @E
resource-allocation state IS restored
oy

Operating System Concepts 7.49 Southeast Unive




2P Safety Algorithm

B Purpose: Differentiate the safe and unsafe
states

B Pessimistic Assumption: all processes will
eventually attempt to acquire their stated
maximum resources and terminate soon
afterward

If a process terminates without acquiring Its

maximum resource, it only makes it easier on
the system |

Operating System Concepts 7.50 Southeast University lﬁ.{@\?
S




T o Safety Algorithm (cont.)

®m How to differentiate between safe and
unsafe system states?

Determines if a state is safe by trying to find a
hypothetical sequence of requests by the
processes that would allow each to acquire its
maximum resources and then terminate
(returning its resources to the system).

Any state where no such seguence exists Is
an unsafe state.

Operating System Concepts 7.51 Southeast University lﬁ‘)@\?




, f Safety Algorithm (cont.)

Step 1. Let Work and Finish be vectors of length
m and n, respectively. Initialize them as

Work = Available (copy the array of available resources)
Finish [i] = false, foreachi =0, 1, ..., n-1.

Step 2. Find an | such that both conditions satis
(a) Finish [i] = false
(b) Need, < Work
If no such I exists, go to step 4.

Step 3. Finish[i] = true;
Work = Work +Allocation; // reclaim resources
go to step 2.

Step 4. If Finish [i] == true for all i, \Pt
—nden.the system is in,a safe state.., Wﬁi




e,_di_, Notes for Safety Algorithm

B These requests and acquisitions are
hypothetical. The algorithm generates them
to check the safety of the state, but no
resources are actually given and no
processes actually terminate.

B The order in which these requests are
generated — If several can be fulfilled —
doesn't matter, since safety is checked for
each resource request

Operating System Concepts 7.53 Southeast University E%Q




?d%.n Example: P, Request for (1,0,2)
B Snapshot at time T,
Allocation Max  Available Need

ABC ABC ABC ABC
P,010 753 332 743

P,200 322 122
P,302 902 600
P, 211222 011
P, 002 433 431

m Firstly, check that Request < Need1.
That s, (1,0,2) < (1,2 2) = true. \rw%




?d%.n Example: P, Request for (1,0,2)
m Secondly, check that Request < Available.
That is, (1,0,2) <(3,3,2) = true.

m Thirdly, simulate the resource allocation
Allocation Need Available

ABC ABC ABC
b, 010 743 230
b 302 020

b, 302 600
D
D

s 211 011 ﬂ
P, 002 431 \.t%»@j




e cPan Example: P, Request for (1,0,2)

B More detalls about the third step:
Executing the safety algorithm shows that there
exists an execution sequence <P,, P3, P,, P,
P.> that can satisfy the safety requirement.

m Further Questions:
Can the request for (3,3,0) by P, be granted?

Can the request for (0,2,0) by P, be granted
Operating System Concepts 7.56 Southeast University ‘HZQ




?d%.n Example: P, Request for (3,3,0)
B Snapshot at time T,
Allocation Max  Available Need

ABC ABC ABC ABC
P,010 753 332 743

P,200 322 122
P,302 902 600
P, 211222 011
P, 002 433 431

m Firstly, check that Request < Need,.
That s, (3,3,0) < (4,3 1) = true. \'WQ




?d%.n Example: P, Request for (3,3,0)
m Secondly, check that Request < Available.
That Is, (3,3,0) <(3,3,2) = true.

m Thirdly, simulate the resource allocation
Allocation Need Available

ABC ABC ABC

b, 010 743 002

>, 200 122 Safe?

P, 302 600 Unsafe?

b, 211 011 |
gt 332 101 \-WQ




?d%.n Example: P, Request for (0,2,0)
B Snapshot at time T,
Allocation Max  Available Need

ABC ABC ABC ABC
P,010 753 332 743

P,200 322 122
P,302 902 600
P, 211222 011
P, 002 433 431

m Firstly, check that Request < Need,.
That s, (0,2,0) < (7,4 3) = true. \'WQ




i‘% Example: P, Request for (0,2,0)
m Secondly, check that Request < Available.
That is, (0,2,0) <(3,3,2) = true.

m Thirdly, simulate the resource allocation
Allocation Need Available

ABC ABC ABC Safe?
> 030 723 312 Unsafe?
b 200 122 —
b 302 600 =
b, 211 011
P, 002 431 |




T Chapter 7: Deadlocks

m System Model

B Deadlock Characterization

B Methods for Handling Deadlocks

m Deadlock Prevention (L4 TRER)

m Deadlock Avoidance (FE813E %)

m Deadlock Detection (FE4£6 )

m Recovery from Deadlock (FE41% &)

Operating System Concepts 7.61 Southeast University lﬁ.{&?

-

EE—



e,_dfk,, Deadlock Detection (FE& M)

B Deadlock avoidance requires every process
to apriori claim its maximum number of
resources needed for each resource type

® However, sometimes such knowledge Is not
avallable in real systems

m Alternatively, we may adopt the deadlock
detection mechanism

Allow the system to enter deadlock state
Run deadlock detection algorithm periodically
Recovery scheme upon the detection of

deadlocks \r% ‘Q




3 A Simpler Situation: Single
“nstance for Each Resource Type

B Maintain wait-for graph
Nodes are processes.
P; — P; if P; Is waliting for P;.

e

® Periodically invoke a deadlock detection
algorithm that searches for a cycle in the graph.

B An algorithm to detect a cycle in a graph needs
an order of n*e operations, where n (e) Is the
number of vertices (edges) in the graph

Operating System Concepts 7.63 Southeast Univ E%Q




Resource-Allocation Graph

e :
P— and Wait-for Graph
Py m resource types
N Processes
R, R, R,

(a)

Resource-Allocation Graph Correspondlng Wait-for Graph r
Operating System Concepts 7.64 Southeast Uni &?




: *‘* A More Difficult Situation: Multiple
‘ “*=|nstances for a Resource Type

m Available: A vector of length m indicates the
number of available resources of each type

m Allocation: An n x m matrix defines the
number of resources of each type currently

allocated to each process. ,
Need matrix (pessimistic) - = ;; ‘,.___
Request matrix (realistic) "",\\‘\*
B Request: An n X m matrix indicates the
current request of each process. If Request
[1,]] = K, then process P; Is requesting kK m

.Instances of reso“rcei}’ PeR;. ... G&%%}




Q.
8

&% Deadlock Detection Algorithm

Step 1. Let Work and Finish be vectors of
length m and n, respectively. Initialize:

Work = Available

Fori=1,2, ..., n, if Allocation; # O, then
Finish[i] = false; otherwise, Finish[i] = true.

Step 2. Find an index i such that both:
Finish[i] == false
Request, < Work

If no such I exists, go to step 4.

Operating System Concepts 7.66 Southeast University lﬁ.{g\?
S




?‘d‘a Detection Algorithm (Cont.)

Step 3.  Finish[i] = true
Work = Work + Allocation; // reclaim resource
go to step 2.

Step 4. If Finish[i] == false, forsome |, 1 <<
n, then the system is in deadlock state.
Moreover, If Finish[i] == false, then P; Is
deadlocked.

Algorithm requires an order of O(m x n x n)
operations to detect whether the system is in
deadlocked states.

Operating System Concepts 7.67 Southeast Univ lﬁ(&?




dAn Example of Detection Algorithm

m Five processes P,_,. Three resource types A (7
Instances), B (2 instances) and C (6 instances).

B Snapshot at time T,
Allocation Request Available
ABC ABC ABC

N

P, 010 000 000
P, 200 202

P, 303 000

P

, 211 100
P, 002 002

B Sequence <P, P,, P4, Py, P,> will result ir

Finish[i] = true for all 1. So, no deadlock 11‘}%3

Operating System Concepts 7.68 Southeast Uni




e’d"én Example of Detection Algorithm

B P, requests an additional instance of type C.

Request Allocation Available

ABC

000
201
001
100
002

o

-

U U U U T
w N

N

® What is the state of system? Deadlock or no

Southeast University 13(6\?

deadlock?

Operating System Concepts

ABC

010
200
303
211
002

ABC

000




Qﬁ_dk_., Detection-Algorithm Usage

® When, and how often, to invoke depends on:
How often a deadlock is likely to occur?

How many processes will be affected by
deadlock when it happens?

B Imagine: If detection algorithm iIs invoked
arbitrarily, there may be many cycles in the
resource graph and so we would not be able
to tell which of the many deadlocked
processes “caused” the deadlock.

Operating System Concepts 7.70 Southeast University lﬁ.{@\?
S




T Chapter 7: Deadlocks

m System Model

m Deadlock Characterization

B Methods for Handling Deadlocks

m Deadlock Prevention (L4 TRER)

m Deadlock Avoidance (FE813E %)

m Deadlock Detection (FE4£6 )

m Recovery from Deadlock (BE4) 1K &)

Operating System Concepts 7.71 Southeast University lﬁ.{&?

-

EE—



¥ Recovery from Deadlock:
1 4

Process Termination
m Abort all deadlocked processes.

m Abort one process at a time until the deadlock
cycle is eliminated.

® |n which order should we choose to abort?
Priority of the process.

How long process has computed, and how much
longer to completion.

Resources the process has used.

Resources process needs to complete.

How many processes will need to be terminated.
S process interactive or batch?

Operating System Concepts 7.72 Southeast University lﬁ.{@\?
S




. d"L Recovery from Deadlock:
— Resource Preemption

B Selecting a victim — minimize cost.

B Rollback — return to some safe state, restart
process for that state.

B Starvation — same process may always be
picked as victim, include the number of
rollbacks when calculating the cost factor for
victim selection.

Operating System Concepts 7.73 Southeast University lﬁ.{&?
S




g;{q Concluding Notes

® In general, deadlock detection or avoidance is
expensive, consuming much system resources

B Real systems must evaluate cost and frequency of
deadlock against costs of detection or avoidance

m Deadlock avoidance and recovery may cause
Indefinite postponement (starvation)

® Unix, Windows use Ostrich Algorithm (do nothing)
B Typical apps use deadlock prevention (order locks)

m Database transaction processing systems (e.g.,
credit card systems) need to use deadlock .
detectlon/recovery/av0|dance/prevent|on (wh&%)(@

Operating System Concepts 7.74 Southeast Uni




