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Background for Memory Hierarchy

◼ Main memory and registers are the

only storage CPU can access directly

◼ Register access in one CPU clock (or 

less)

◼ Main memory can take many cycles

◼ L1/L2/L3 Cache sits between main 

memory and CPU registers

◼ Protection of memory required to 

ensure correct operation

◼ Program must be brought into main 

memory and placed within a process 

for it to be run. 

CPU

L1

L2

L3

Main memory

VM

TLB

Regs
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◼ RAM(Random Access Memory) 的中文是随机存取存储器

◼ 为什么要强调随机存储呢？因为在此之前，大部分的存储器都是顺
序存储（Direct-Access)，比较常见的如硬盘，光碟，老式的磁带，
磁鼓存储器等等。随机存取存储器的特点是其访问数据的时间与数
据存放在存储器中的物理位置无关。

◼ RAM的另一个特点是易失性（Volatile)，断电则数据丢失。

◼ RAM主要分SRAM和DRAM两种类别

◼ SRAM是静态RAM (Static RAM) ，成
本高，存取速度比较快，用于高速缓存

◼ DRAM是动态RAM (Dynamic RAM) ，
成本低，存取速度比较慢，用于内存

◼ 本章的内存管理主要是DRAM资
源在进程内部和之间的分配算法

Operating System Concepts

什么是RAM?
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OS Commands to get CPU and

memory Information
◼ Linux

◆ cat /proc/cpuinfo

◆ cat /proc/meminfo

◼ MacOS

• system_profiler SPHardwareDataType

• vm_stat

% system_profiler SPHardwareDataType
Hardware Overview:
Model Name: MacBook Pro
Model Identifier: MacBookPro15,1
Processor Name: 6-Core Intel Core i7
Processor Speed: 2.2 GHz
Number of Processors: 1
Total Number of Cores: 6
L2 Cache (per Core): 256 KB
L3 Cache: 9 MB
Hyper-Threading Technology: Enabled
Memory: 16 GB
System Firmware Version: 1731.100.130.0.0
OS Loader Version: 540.100.7~23
Serial Number (system): C02XH3U4JG5L
Hardware UUID: AE627AB2-1D36-5908-BCB5-AE7E7E83D110
Provisioning UDID: AE627AB2-1D36-5908-BCB5-AE7E7E83D110
Activation Lock Status: Enabled

% vm_stat
Mach Virtual Memory Statistics: 
(page size of 4096 bytes)
Pages free: 96730.
Pages active: 1428706.
Pages inactive: 1262257.
Pages speculative: 168869.
Pages throttled: 0.
Pages wired down: 987490.
Pages purgeable: 84220.
"Translation faults":3533751188.
Pages copy-on-write:396805612.
Pages zero filled: 3188592824.
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Background on Multistep 

Processing of a User Program 

Compile time is the period when the 
programming code is converted to machine code.

Load time is the duration it takes for a computer 
program to be loaded into memory and become 
ready for execution.
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Binding of Instructions and Data 

to Physical Memory Addresses
◼Compile time

◆If memory location of running a program is known a 

priori, absolute code can be generated by compiler; 

must recompile code if starting location changes.

◼Load time

◆Must generate relocatable code if memory location 

is not known at compile time.

◼Run time

◆Binding delayed until run time if the process can be 

moved during its execution from one memory 

segment to another. Need hardware support for 

address mappings.

Most general-purpose operating systems 

use the execution-time address binding
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Logical Address Space vs. 

Physical Address Space
◼The concept of a logical address space that is 

bound to a separate physical address space is 

central to the proper memory management.

◆Logical address – generated by the CPU; also 

referred to as virtual address.

◆Physical address – address seen by main memory 

units. LOGI addr are runtime mapped to PHY addr.
P1 Applications

Hardware

Physical Memory

P2 Pn

MMU: OS memory 

management subsystem
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Logical Address Space vs. 

Physical Address Space (cont.)

◼ Logical and physical addresses are the same in 

compile-time and load-time address-binding 

schemes

◼ Logical and physical addresses differ in 

execution-time address-binding scheme.

◼ In this case, logical address is also referred to as 

virtual address. (Logical = Virtual in this course)
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Memory-Management Unit (MMU)

◼Hardware device that maps virtual to physical 

address.

◼ In MMU scheme, the value in the relocation 

register is added to every address generated by 

a user process at the time it is sent to memory.

◼The user program deals with logical addresses; 

it never sees the real physical addresses.
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Revisit the Simple Memory 

Management: Base + Limit Registers
◼A pair of base and limit registers can define 

the address space of each process
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Applications access memory units 

by physical addresses, when there 

is no separation between virtual

and physical addresses
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However, applications only know

logical addresses. So use a relocation 

register instead of a base register

A Simple MMU 
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Memory Protection

◼Relocation-register scheme used to protect 

user processes from each other, and from 

changing operating-system code and data.

◼Relocation register contains value of the 

smallest physical address

◼ Limit register contains range of logical 

addresses – each logical address must be 

less than the limit register. 
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Hardware Support for Relocation 

and Limit Registers
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◼A process can be swapped temporarily out of 
memory to a backing store, and then brought 
back into memory for continued execution.

◼Backing store – fast disk large enough to hold 
copies of all memory images for all users; must 
provide direct access to these memory images.

◼Roll out, roll in – swapping variant used for 
priority-based scheduling algorithms; lower-
priority process is swapped out so higher-priority 
process can 
be loaded and 
executed.

Operating System Concepts

Schematic View of Swapping

Backing store Main memory

Lower

priority 

Higher

priority 
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Major Time Overhead of Swapping

◼Main memory reference 100ns

◼Magnetic Disk track seek 10,000,000 ns

◼Major part of swap time is transfer time; total 
transfer time is directly proportional to the 
amount of memory swapped.
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Contiguous Allocation

◼Monoprogramming systems usually have two 

partitions:

◆Resident operating system, 

usually held in low memory 

with interrupt vector.

◆User processes then held 

in high memory.

◼Multiprogramming Systems:

◆Fixed partitions

◆Variable partitions
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Fixed Partitions

◼Main memory is divided into n partitions.

◼Partitioning can be done at the startup time and 

altered later on.

◼Each partition may have a job queue. Or, all 

partitions share the same job queue.
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Variable Partitions

◼Hole – block of available memory; holes of 
various size are scattered throughout memory.

◼When a process arrives, it is allocated memory 
from a hole large enough to accommodate it.

◼Thus, partition sizes are not fixed, The number 
of partitions also varies.

◼Operating system maintains information about:
a) allocated partitions  
b) free partitions(hole)
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List of Free Holes
◼ If the hole is larger than the requested size, it 

is cut into two. The one of the requested size 
is given to the process, the remaining one 
becomes a new hole.

◼When a process returns a memory block, it 
becomes a hole and must be merged with its 
neighbor. 

◼For finding the neighboring hole, the free holes 
are organized as a list and sorted by base 
addresses.
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Dynamic Storage-Allocation Problem

◼First-fit (首次适配): Allocate the first hole that is 

big enough.

◼Best-fit (最佳适配): Allocate the smallest hole 

that is big enough; must search entire list. 

Produces the smallest leftover hole.

◼Worst-fit (最差适配):  Allocate the largest hole; 

must also search entire list. Produces the 

largest leftover hole.

How to satisfy a request of size n from a list of free holes.
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External Fragmentation (外部内存碎片)

◼Processes are loaded and removed from 

memory. Eventually, the memory will be cut into 

small holes that are not large enough to run any 

incoming process.

◼Free memory holes 

between allocated 

ones are called 

external fragmentation.
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Internal Fragmentation (内部内存碎片)

◼ It is unwise to allocate exactly the requested 

amount of memory to a process, because of the 

minimum requirement for memory management.

◼Thus, memory that is allocated to a partition, but 

is not used, are called internal fragmentation.

internal fragmentation external fragmentation
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Compaction for Less External 

Fragmentation
◼Shuffle memory 

contents to place all 
free memory together 
in one large block.

◼Compaction is 
possible only if 
program relocation is 
dynamic and is done 
at execution time.

◼Runtime compaction 
scheme can be time-
consuming

Runtime Memory Compaction

OR illustrated as
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Segmentation
◼Memory-management scheme that supports 

user view of memory. 

◼A program is a collection of segments.  

◼A segment is a logical unit such as:

main program,

procedure or function, 

method,

object,

local variables, 

global variables,

common block,

stack,

symbol table, arrays

User’s View of a Program
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A Previously Used Example

Operating System Concepts

//main.cpp 
int a = 0; 
char *p1; 
main() 
{   int b; 

char s[] = "abc"; 
char *p2; 
char *p3 = "123456"; 
p1 = (char *)malloc(10); 
p2 = (char *)malloc(20); 

} 

数据段，全局变量

栈段，局部变量

栈段，局部变量

栈段，局部变量

栈段，局部变量

堆段

堆段

数据段，全局变量
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Background on Multistep 

Processing of a User Program 

Compile time is the period when the 
programming code is converted to machine code.

Load time is the duration it takes for a computer 
program to be loaded into memory and become 
ready for execution.
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Loading an ELF (Executable and 

Linkable Format) binary on Linux

Operating System Concepts
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Mapping Segments to 

Physical Memory

1

3

2

4

1

4

2

3

user space physical memory space

◼Each segment occupies a contiguous memory 
space in the physical memory
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Segmentation Architecture 

◼ Logical address consists of a two tuple:

<segment-number, offset>,

◼Segment table – maps two-dimensional 

physical addresses; each table entry has:

◆base – contains the starting physical address 

where the segments reside in memory.

◆limit – specifies the length of the segment.
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Segmentation Hardware
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Segmentation Architecture (Cont.)

◼Segment-table base register (STBR) points to 

the segment table’s location in memory.

◼Segment-table length register (STLR) indicates 

the number of segments used by a program;

segment number s is legal if s < STLR.
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Segmentation Architecture (Cont.)

◼Protection.  With each entry in segment table, 

associate:

◆validation bit = 0  illegal segment

◆read/write/execute privileges

◼Protection bits associated with segments; 

code sharing occurs at segment level.

◼Since segments vary in length, memory 

allocation is a dynamic storage-allocation 

problem.

◼A segmentation example is shown in the 

following diagram
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Example of Segmentation
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Paging

◼Contiguous memory allocation method suffers 

from the external fragmentation problem

◼Paging method allows logical address space of 

a process to be noncontiguous; a process is 

allocated physical memory whenever the latter 

is available

◼How?

◆Divide physical memory into fixed-sized blocks 

called frames (帧) (size is power of 2, between 512 

bytes and 8192 bytes).

◆Divide logical memory into blocks of same size 

called pages (页).
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Paging (Cont.)

◼Keep track of all free frames.

◼To run a program of size n pages, need to find 

n free frames and load program.

◼Set up a page table to translate logical to 

physical addresses. 

◼ Internal fragmentation.
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Address Translation Scheme

◼Address generated by CPU is divided into:

◆Page number (p) – used as an index into a 

page table which contains base address of each 

page in physical memory.

◆Page offset (d) – combined with base address 

to define the physical memory address that is 

sent to the memory unit.
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Address Translation Architecture 
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Paging Example 
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Paging Example
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Free Frames

Before allocation After allocation
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Implementation of Page Table
◼Page table must be kept in main memory.

◼Question: Why is a page table hard to entirely 

fit into L2 cache? What will be the size of a page 

table, if assuming 32 bits virtual address, 4GB 

physical memory and 4KB page/frame size?

◆32 bits required to locate a byte in physical mem

✓4 GB of Physical Memory = 232 bytes.

◆20 bits required for frame number.

✓232 bytes of memory/212 bytes per frame = 220 frames

20 bits 12 bits

Page # In-page offset

32-bit Virtual Address 32-bit Physical Address

In-frame offset

20 bits 12 bits

Frame #
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Implementation of Page Table
◼Page table must be kept in main memory.

◼Question: Why is a page table hard to entirely 

fit into L2 cache? What will be the size of a page 

table, if assuming 32 bits virtual address, 4GB 

physical memory and 4KB page/frame size?

20 bits 12 bits

Page # In-page offset

32-bit Virtual Address 32-bit Physical Address

In-frame offset

20 bits 12 bits

Frame #

Frame # Control

0

1

…

220-1

24 bits 8 bits

◆So each page table entry 

is approximately 4 bytes. 

(20 bits frame number is 

roughly 3 bytes and access 

control contributes 1 byte)
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Frame # Control

0

1

…

220-1
Operating System Concepts

Implementation of Page Table
◼Page table must be kept in main memory.

◼Question: What is the size of a page table, if 

assuming 32 bits virtual address, 4GB physical 

memory and 4KB page/frame size? Why is a 

page table hard to entirely fit into CPU cache? 

20 bits 12 bits

Page # In-page offset

32-bit Virtual Address 32-bit Physical Address

In-frame offset

20 bits 12 bits

Frame #

24 bits 8 bits

◆Page table = 232 bytes /

4KB per page = 220 entries

◆Page table size = 

220entries * 4B/entry = 4MB
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A Quiz

◼Q1: What will be the size of a page table, if 

assuming 32 bits virtual address, 8GB physical 

memory, 8KB page size, and 4KB frame size?

Frame # Control

0

1

…

219-1

19 bits 13 bits

Page # In-page offset

32-bit Virtual Address 33-bit Physical Address

In-frame offset

21 bits 12 bits

Frame #

24 bits 8 bits

Translated Address

= Frame # * 212 + In-page offset (13 bits)

Page table size = 219 * 4B = 221 Bytes = 2MB
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A Quiz

◼Q2: What will be the size of a page table, if 

assuming 32 bits virtual address, 8GB physical 

memory, 2MB page size, and 4KB frame size?

◼Q3: What are the pros & cons of larger page size

Frame # Control

0

1

…

211-1

11 bits 21 bits

Page # In-page offset

32-bit Virtual Address 33-bit Physical Address

In-frame offset

21 bits 12 bits

Frame #

24 bits 8 bits

Translated Address

= Frame # * 212 + In-page offset (21 bits)

Page table size = 211 * 4B = 213 Bytes = 8KB
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Implementation of Page Table

◼Page-table base register (PTBR、页表基址寄存
器) points to page table existing in main memory

◼ In this scheme every data/instruction access 

requires two memory accesses: 

One for the page table and 

one for the data/instruction.

◼The two-memory-access problem can be solved 

by the use of a special fast-lookup hardware 

cache called associative memory or translation 

look-aside buffers (TLBs)

TLB 页表缓存：
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Paging Hardware With TLB (页表缓存)

◼ Translation of virtual address (p, d)

◆If an entry with the key p can be found in the TLB or 

associative memory, returns the value of frame # 

◆Otherwise, get the frame # value from the page table that 

exists in main memory
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TLB based on Associative Memory

Page # Frame #

KEY VALUEMAPPING from

Entry 1

Entry 2

Entry 3

Entry 4

Parallel Search 

◼Associative memory关联存储器–parallel search

◼An Example
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Effective Access Time

◼Associative Lookup =  time unit

◼Assume memory cycle time is 1 time unit

◼Hit ratio – percentage of times that a page 

number is found in the associative registers

◼Hit ratio is related to the number of associative 

registers.

◼Hit ratio = 

◼Effective Access Time (EAT)

EAT = (1 + )  +  (2 + )(1 – )

= 2 +  – 

 time unit

1 time unit 

1 time unit



1-
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Memory Protection

◼Memory protection implemented by 

associating protection bit with each frame.

◼Valid-invalid bit attached to each entry in the 

page table:

◆“valid” indicates that the associated page is in 

the process’ logical address space and is thus

a legal page.

◆“invalid” indicates that 

the page is not in the 

process’ logical 

address space.
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Memory Protection (Cont.)

◼We can use a page table length register 

(PTLR) that stores the length of a process’s 

page table. In this way, a process cannot 

access the memory beyond its region. 

Compare this with the base/limit register 

pair.

◼We can also add read-only, read-write, or 

execute bits in page table to enforce r-w-e

permission.
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Advantage of Paging Method: 

Shared Pages
◼Shared code

◆One copy of read-only (reentrant) code shared 

among processes (i.e., text editors, compilers, 

window systems). 

◼Private code and data 

◆Each process keeps a 

separate copy of the 

code and data.

◆The pages for the 

private code and data 

can appear anywhere 

in the logical address space.
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Advanced Page Table Structure

◼Hierarchical Paging

◼Hashed Page Tables

◼ Inverted Page Tables
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Hierarchical Page Tables

◼Why the multiple-level page table is needed?

◼Answer: A single-level page table may 

become too big to fit into the physical 

memory of a commodity machine.

◆Assume a 64-bit computer (which means 64-bit 

virtual address space), which has 4KB 

frames/pages and 4GB of physical memory

◆In the single-level page 

table, 264 addressable 

bytes / 212 bytes per 

page = 252 page entries

264 Bytes 

252 entries 
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Hierarchical Page Tables
◆One page table entry contains: Access control 

bits (like Page present, RW) + Physical page #

◆20 bits required for physical page number.

✓4 GB of Physical Memory = 232 bytes.

✓232 bytes of memory/212 bytes per page 

= 220 physical pages

◆So each page table entry is approximately 4 

bytes. (20 bits physical page number is roughly 

3 bytes and access control contributes 1 byte)

◆Now page table size = 252 * 4 bytes = 254 bytes

◼Hence, the size of single-level page table is 

254 bytes (16 petabytes) per process, 

which is a very huge amount of memory.
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Hierarchical Page Tables

◼A Solution: Break up the logical address space 

into multiple page tables.

◼ If we page the page table too, we can magically 

bring down the memory required

◆The first-level page table contains 252 page entries

◆If we page the first-level page table, then one page

contains 4KB / 4 bytes per entry = 1024=210 entries

◆So the first-level page table is divided into 242 pages

◆So the second-level page table needs 242 entries

◆……

◆The fifth-level page table only needs 212 page 

entries, as low as four pages, just 16 KB memory



Southeast University8.66Operating System Concepts

1st-Level Page-Table: Page the Page Table

Page 0

...

Page 252-1

Logical

Memory

page number

p

page offset

d

1252

252

pages

Physical Memory

Frame # Control

0

1

…

210-1

…

…

…

…

…

…

…

…

252-1

24 bits 8 bits

210 entries

252

entries

Page 0

Page 1

Page 242-1
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Two-Level Page-Table Scheme

http://en.wikipedia.org/wiki/Pag

e_table#Multilevel_page_table

Page 0

...

...

...

Outer Page

Table

Logical

Memory

...

...

Page Table

...

page number

p1

page offset

d

10 12

p2

42

210 entries

242

entries
252

pages

Physical Memory

Page 252-1

http://en.wikipedia.org/wiki/Page_table#Multilevel_page_table
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Two-Level Paging Example 

for 32-bit Operating Systems
◼ A logical address (on a 32-bit machine with 4K page 

size) is divided into:
◆a page number consisting of 20 bits, and

◆a page offset consisting of 12 bits.

◼ Since the page table itself is also paged, the page 
number is further divided into:
◆a 10-bit page number, and

◆a 10-bit page offset.

◼ Thus, a logical address is as follows:

where p1 is an index into the outer page table, and p2 is 
the displacement within the page of outer page table.

page number page offset

p1 p2 d

10 10 12
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Address-Translation Scheme

◼Address-translation scheme for a two-level 

32-bit paging architecture
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Quiz for Two-level Page Table
◼某计算机采用二级页表的分页存储管理方式，
按字节编制，页大小为210字节，页表项大小为
2字节。逻辑地址结构为：页目录号、页号、页
内偏移量，逻辑地址空间大小为216页，则表示
整个逻辑地址空间的页目录表中包含表项的个
数是（ ）
A、64       B、128       C、256          D、512

◼答案：B

216 / (210 bytes/2 bytes) = 27=128

◼页内偏移d占10bits；共216页，p1+p2=16bits；
页表也分页了，每页有29页表项，所以p2=9bits

页目录号 页内偏移

p1 p2 d

7 9 10

页号
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Three-level Paging Scheme

for 64-bit Operating System

◼ The 2nd outer page table still needs 16GB 

memory, since 232 number of table entries ✕

4 bytes per table entry = 234 bytes memory
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Intel x86-64

◼Current generation Intel x86 architecture: 

Neon on server, 酷睿 on PC

◼ 64 bits address space is ginormous (> 16 

exabytes)

◼ In practice only implement 48 bit addressing

◆Four levels of paging hierarchy: 4KB page by 

default, so 12 bits in-page offset; 8B page table 

entry, so 512 entries per page; 4-level page table

◆Multiple page sizes of 4 KB, 2 MB, 1 GB

9 bits 9 bits 9 bits 9 bits 12 bits
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Hashed Page Tables
◼Common in address spaces > 32 bits.

◼Motivation

◆On a 64-bit operating system, the third-level 

page table is still too large to fit in main memory

◆In a 32-bit or 64-bit address space of a process, 

most part of it is unused

◼Solution base on Chained Hash Table

◆The virtual page number is hashed into a page 

table. This page table contains a chain of 

elements hashing to the same location.

◆Virtual page numbers are compared in this 

chain searching for a match. If a match is found, 

the corresponding physical frame is extracted.
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Hashed Page Tables
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Inverted Page Table

◼Motivation: All the previous schemes need to 

maintain a page table for each process.

◼One entry for each real page of memory (frame)

◼Entry consists of the virtual address of the page 

stored in that real memory location, with 

information about the process owning that page

◼Decreases memory needed to store each page 

table, but increases time needed to search the 

table when a page reference occurs.

◼Use hash table to limit the search to one — or 

at most a few — page-table entries.
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Inverted Page Table Architecture
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Chapter 9:  Memory Management

◼Background

◼Swapping 

◼Contiguous Allocation

◼Segmentation

◼Paging

◼Advanced Page Table Structure

◼Segmentation with Paging
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Example: The Intel Pentium

◼Dominant industry chips

◼Pentium CPUs are 32-bit and called IA-32 

architecture

◼Current Intel CPUs are 64-bit and called IA-

64 architecture

◼Many variations in the chips, cover the main 

ideas here
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The Intel IA-32 Architecture

◼Supports segmentation with paging

◼CPU generates logical address

◆Selector given to segmentation unit

✓Which produces linear addresses

✓Up to 16K segments per process 

◆Linear address given to paging unit

✓Which generates physical address in main memory

✓Paging units form equivalent of MMU
http://en.wikipedia.org/wiki/Memory_segmentation#Segmentation_with_paging

s: segment number

g: whether in GDT or LDT

p: protection bits
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Intel IA-32 Segmentation with Paging

Support two-level

page table
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Intel IA-32 Architecture

Supports Multiple Page Size

Pages sizes can be 

either 4 KB or 4 MB

4 KB

4 MB
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Intel x86-64

◼Current generation Intel x86 architecture

◼ 64 bits is ginormous (> 16 exabytes)

◼ In practice only implement 48 bit addressing

◆Page sizes of 4 KB, 2 MB, 1 GB

◆Four levels of paging hierarchy

◼Can also use PAE (page address extension) 

so virtual addresses are 48 bits and physical 

addresses are 52 bits
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Example: ARM Architecture

◼Dominant mobile platform chip (Apple iOS 

and Google Android devices for example)

◼Modern, energy efficient, 32-bit CPU

◼ 4 KB and 16 KB pages

◼ 1 MB and 16 MB pages (termed sections)

◼One-level paging for sections, two-level for 

smaller pages
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Example: ARM Architecture (Cont.)

◼ Two levels of TLBs

◆Outer level has two micro TLBs (one data, one instruction)

◆ Inner is single main TLB

◆Firstly, inner is checked, on miss outers are checked, and on miss 

page table walk performed by CPUOperating System Concepts

outer page inner page offset

4-KB

or

16-KB

page

1-MB

or

16-MB 

section

32 bits
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Concluding Marks
◼OS creates, for each process, an illusion of 

continuous memory address space, based 

on the paging/segmentation mechanism

◼Question: Why the mainstream CPU chips 

organize the page#-to-frame# mapping table 

in a hierarchical way, instead of using 

hashed page table or inverted page table?Operating System Concepts

P1 Applications

Hardware

Physical Memory

P2 Pn

OS memory 

management subsystem
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附加内容

End of Lecture

Operating System Concepts


