
Chapter 8: Memory

Management

肖 卿 俊

办公室：九龙湖校区计算机楼212室

电邮：csqjxiao@seu.edu.cn

主页： https://csqjxiao.github.io/PersonalPage

电话：025-52091022

Southeast University8.2Operating System Concepts

Chapter 8: Memory Management

◼Background

◼Swapping

◼Contiguous Allocation

◼Segmentation

◼Paging

◼Advanced Page Table Structure

◼Segmentation with Paging

Southeast University8.3Operating System Concepts

Background for Memory Hierarchy

◼ Main memory and registers are the

only storage CPU can access directly

◼ Register access in one CPU clock (or

less)

◼ Main memory can take many cycles

◼ L1/L2/L3 Cache sits between main

memory and CPU registers

◼ Protection of memory required to

ensure correct operation

◼ Program must be brought into main

memory and placed within a process

for it to be run.

CPU

L1

L2

L3

Main memory

VM

TLB

Regs

Southeast University8.4

◼ RAM(Random Access Memory) 的中文是随机存取存储器

◼ 为什么要强调随机存储呢？因为在此之前，大部分的存储器都是顺
序存储（Direct-Access)，比较常见的如硬盘，光碟，老式的磁带，
磁鼓存储器等等。随机存取存储器的特点是其访问数据的时间与数
据存放在存储器中的物理位置无关。

◼ RAM的另一个特点是易失性（Volatile)，断电则数据丢失。

◼ RAM主要分SRAM和DRAM两种类别

◼ SRAM是静态RAM (Static RAM) ，成
本高，存取速度比较快，用于高速缓存

◼ DRAM是动态RAM (Dynamic RAM) ，
成本低，存取速度比较慢，用于内存

◼ 本章的内存管理主要是DRAM资
源在进程内部和之间的分配算法

Operating System Concepts

什么是RAM?

Southeast University8.5

OS Commands to get CPU and

memory Information
◼ Linux

◆ cat /proc/cpuinfo

◆ cat /proc/meminfo

◼ MacOS

• system_profiler SPHardwareDataType

• vm_stat

% system_profiler SPHardwareDataType
Hardware Overview:
Model Name: MacBook Pro
Model Identifier: MacBookPro15,1
Processor Name: 6-Core Intel Core i7
Processor Speed: 2.2 GHz
Number of Processors: 1
Total Number of Cores: 6
L2 Cache (per Core): 256 KB
L3 Cache: 9 MB
Hyper-Threading Technology: Enabled
Memory: 16 GB
System Firmware Version: 1731.100.130.0.0
OS Loader Version: 540.100.7~23
Serial Number (system): C02XH3U4JG5L
Hardware UUID: AE627AB2-1D36-5908-BCB5-AE7E7E83D110
Provisioning UDID: AE627AB2-1D36-5908-BCB5-AE7E7E83D110
Activation Lock Status: Enabled

% vm_stat
Mach Virtual Memory Statistics:
(page size of 4096 bytes)
Pages free: 96730.
Pages active: 1428706.
Pages inactive: 1262257.
Pages speculative: 168869.
Pages throttled: 0.
Pages wired down: 987490.
Pages purgeable: 84220.
"Translation faults":3533751188.
Pages copy-on-write:396805612.
Pages zero filled: 3188592824.

Southeast University8.6Operating System Concepts

Southeast University8.7Operating System Concepts

Background on Multistep

Processing of a User Program

Compile time is the period when the
programming code is converted to machine code.

Load time is the duration it takes for a computer
program to be loaded into memory and become
ready for execution.

Southeast University8.8Operating System Concepts

Binding of Instructions and Data

to Physical Memory Addresses
◼Compile time

◆If memory location of running a program is known a

priori, absolute code can be generated by compiler;

must recompile code if starting location changes.

◼Load time

◆Must generate relocatable code if memory location

is not known at compile time.

◼Run time

◆Binding delayed until run time if the process can be

moved during its execution from one memory

segment to another. Need hardware support for

address mappings.

Most general-purpose operating systems

use the execution-time address binding

Southeast University8.9Operating System Concepts

Logical Address Space vs.

Physical Address Space
◼The concept of a logical address space that is

bound to a separate physical address space is

central to the proper memory management.

◆Logical address – generated by the CPU; also

referred to as virtual address.

◆Physical address – address seen by main memory

units. LOGI addr are runtime mapped to PHY addr.
P1 Applications

Hardware

Physical Memory

P2 Pn

MMU: OS memory

management subsystem

Southeast University8.10Operating System Concepts

Logical Address Space vs.

Physical Address Space (cont.)

◼ Logical and physical addresses are the same in

compile-time and load-time address-binding

schemes

◼ Logical and physical addresses differ in

execution-time address-binding scheme.

◼ In this case, logical address is also referred to as

virtual address. (Logical = Virtual in this course)

Southeast University8.11Operating System Concepts

Memory-Management Unit (MMU)

◼Hardware device that maps virtual to physical

address.

◼ In MMU scheme, the value in the relocation

register is added to every address generated by

a user process at the time it is sent to memory.

◼The user program deals with logical addresses;

it never sees the real physical addresses.

Southeast University8.12Operating System Concepts

Revisit the Simple Memory

Management: Base + Limit Registers
◼A pair of base and limit registers can define

the address space of each process

Southeast University8.13Operating System Concepts

Applications access memory units

by physical addresses, when there

is no separation between virtual

and physical addresses

Southeast University8.14Operating System Concepts

However, applications only know

logical addresses. So use a relocation

register instead of a base register

A Simple MMU

Southeast University8.15Operating System Concepts

Memory Protection

◼Relocation-register scheme used to protect

user processes from each other, and from

changing operating-system code and data.

◼Relocation register contains value of the

smallest physical address

◼ Limit register contains range of logical

addresses – each logical address must be

less than the limit register.

Southeast University8.16Operating System Concepts

Hardware Support for Relocation

and Limit Registers

Southeast University8.17Operating System Concepts

Chapter 9: Memory Management

◼Background

◼Swapping

◼Contiguous Allocation

◼Segmentation

◼Paging

◼Advanced Page Table Structure

◼Segmentation with Paging

Southeast University8.18

◼A process can be swapped temporarily out of
memory to a backing store, and then brought
back into memory for continued execution.

◼Backing store – fast disk large enough to hold
copies of all memory images for all users; must
provide direct access to these memory images.

◼Roll out, roll in – swapping variant used for
priority-based scheduling algorithms; lower-
priority process is swapped out so higher-priority
process can
be loaded and
executed.

Operating System Concepts

Schematic View of Swapping

Backing store Main memory

Lower

priority

Higher

priority

Southeast University8.19Operating System Concepts

Major Time Overhead of Swapping

◼Main memory reference 100ns

◼Magnetic Disk track seek 10,000,000 ns

◼Major part of swap time is transfer time; total
transfer time is directly proportional to the
amount of memory swapped.

Southeast University8.20Operating System Concepts

Chapter 9: Memory Management

◼Background

◼Swapping

◼Contiguous Allocation

◼Segmentation

◼Paging

◼Advanced Page Table Structure

◼Segmentation with Paging

Southeast University8.21Operating System Concepts

Contiguous Allocation

◼Monoprogramming systems usually have two

partitions:

◆Resident operating system,

usually held in low memory

with interrupt vector.

◆User processes then held

in high memory.

◼Multiprogramming Systems:

◆Fixed partitions

◆Variable partitions

Southeast University8.22Operating System Concepts

Fixed Partitions

◼Main memory is divided into n partitions.

◼Partitioning can be done at the startup time and

altered later on.

◼Each partition may have a job queue. Or, all

partitions share the same job queue.

Southeast University8.23Operating System Concepts

Variable Partitions

◼Hole – block of available memory; holes of
various size are scattered throughout memory.

◼When a process arrives, it is allocated memory
from a hole large enough to accommodate it.

◼Thus, partition sizes are not fixed, The number
of partitions also varies.

◼Operating system maintains information about:
a) allocated partitions
b) free partitions(hole)

Southeast University8.24Operating System Concepts

List of Free Holes
◼ If the hole is larger than the requested size, it

is cut into two. The one of the requested size
is given to the process, the remaining one
becomes a new hole.

◼When a process returns a memory block, it
becomes a hole and must be merged with its
neighbor.

◼For finding the neighboring hole, the free holes
are organized as a list and sorted by base
addresses.

Southeast University8.25Operating System Concepts

Dynamic Storage-Allocation Problem

◼First-fit (首次适配): Allocate the first hole that is

big enough.

◼Best-fit (最佳适配): Allocate the smallest hole

that is big enough; must search entire list.

Produces the smallest leftover hole.

◼Worst-fit (最差适配): Allocate the largest hole;

must also search entire list. Produces the

largest leftover hole.

How to satisfy a request of size n from a list of free holes.

Southeast University8.26Operating System Concepts

External Fragmentation (外部内存碎片)

◼Processes are loaded and removed from

memory. Eventually, the memory will be cut into

small holes that are not large enough to run any

incoming process.

◼Free memory holes

between allocated

ones are called

external fragmentation.

Southeast University8.27Operating System Concepts

Internal Fragmentation (内部内存碎片)

◼ It is unwise to allocate exactly the requested

amount of memory to a process, because of the

minimum requirement for memory management.

◼Thus, memory that is allocated to a partition, but

is not used, are called internal fragmentation.

internal fragmentation external fragmentation

Southeast University8.28Operating System Concepts

Compaction for Less External

Fragmentation
◼Shuffle memory

contents to place all
free memory together
in one large block.

◼Compaction is
possible only if
program relocation is
dynamic and is done
at execution time.

◼Runtime compaction
scheme can be time-
consuming

Runtime Memory Compaction

OR illustrated as

Southeast University8.29Operating System Concepts

Chapter 9: Memory Management

◼Background

◼Swapping

◼Contiguous Allocation

◼Segmentation

◼Paging

◼Advanced Page Table Structure

◼Segmentation with Paging

Southeast University8.30Operating System Concepts

Segmentation
◼Memory-management scheme that supports

user view of memory.

◼A program is a collection of segments.

◼A segment is a logical unit such as:

main program,

procedure or function,

method,

object,

local variables,

global variables,

common block,

stack,

symbol table, arrays

User’s View of a Program

Southeast University8.31

A Previously Used Example

Operating System Concepts

//main.cpp
int a = 0;
char *p1;
main()
{ int b;

char s[] = "abc";
char *p2;
char *p3 = "123456";
p1 = (char *)malloc(10);
p2 = (char *)malloc(20);

}

数据段，全局变量

栈段，局部变量

栈段，局部变量

栈段，局部变量

栈段，局部变量

堆段

堆段

数据段，全局变量

Southeast University8.32Operating System Concepts

Background on Multistep

Processing of a User Program

Compile time is the period when the
programming code is converted to machine code.

Load time is the duration it takes for a computer
program to be loaded into memory and become
ready for execution.

Southeast University8.33

Loading an ELF (Executable and

Linkable Format) binary on Linux

Operating System Concepts

Southeast University8.34Operating System Concepts

Mapping Segments to

Physical Memory

1

3

2

4

1

4

2

3

user space physical memory space

◼Each segment occupies a contiguous memory
space in the physical memory

Southeast University8.35Operating System Concepts

Segmentation Architecture

◼ Logical address consists of a two tuple:

<segment-number, offset>,

◼Segment table – maps two-dimensional

physical addresses; each table entry has:

◆base – contains the starting physical address

where the segments reside in memory.

◆limit – specifies the length of the segment.

Southeast University8.36Operating System Concepts

Segmentation Hardware

Southeast University8.37Operating System Concepts

Segmentation Architecture (Cont.)

◼Segment-table base register (STBR) points to

the segment table’s location in memory.

◼Segment-table length register (STLR) indicates

the number of segments used by a program;

segment number s is legal if s < STLR.

Southeast University8.38Operating System Concepts

Segmentation Architecture (Cont.)

◼Protection. With each entry in segment table,

associate:

◆validation bit = 0 illegal segment

◆read/write/execute privileges

◼Protection bits associated with segments;

code sharing occurs at segment level.

◼Since segments vary in length, memory

allocation is a dynamic storage-allocation

problem.

◼A segmentation example is shown in the

following diagram

Southeast University8.39Operating System Concepts

Example of Segmentation

Southeast University8.40Operating System Concepts

Chapter 9: Memory Management

◼Background

◼Swapping

◼Contiguous Allocation

◼Segmentation

◼Paging

◼Advanced Page Table Structure

◼Segmentation with Paging

Southeast University8.41Operating System Concepts

Paging

◼Contiguous memory allocation method suffers

from the external fragmentation problem

◼Paging method allows logical address space of

a process to be noncontiguous; a process is

allocated physical memory whenever the latter

is available

◼How?

◆Divide physical memory into fixed-sized blocks

called frames (帧) (size is power of 2, between 512

bytes and 8192 bytes).

◆Divide logical memory into blocks of same size

called pages (页).

Southeast University8.42Operating System Concepts

Paging (Cont.)

◼Keep track of all free frames.

◼To run a program of size n pages, need to find

n free frames and load program.

◼Set up a page table to translate logical to

physical addresses.

◼ Internal fragmentation.

Southeast University8.43Operating System Concepts

Address Translation Scheme

◼Address generated by CPU is divided into:

◆Page number (p) – used as an index into a

page table which contains base address of each

page in physical memory.

◆Page offset (d) – combined with base address

to define the physical memory address that is

sent to the memory unit.

Southeast University8.44Operating System Concepts

Southeast University8.45Operating System Concepts

Address Translation Architecture

Southeast University8.46Operating System Concepts

Paging Example

Southeast University8.47Operating System Concepts

Paging Example

Southeast University8.48Operating System Concepts

Free Frames

Before allocation After allocation

Southeast University8.49Operating System Concepts

Implementation of Page Table
◼Page table must be kept in main memory.

◼Question: Why is a page table hard to entirely

fit into L2 cache? What will be the size of a page

table, if assuming 32 bits virtual address, 4GB

physical memory and 4KB page/frame size?

◆32 bits required to locate a byte in physical mem

✓4 GB of Physical Memory = 232 bytes.

◆20 bits required for frame number.

✓232 bytes of memory/212 bytes per frame = 220 frames

20 bits 12 bits

Page # In-page offset

32-bit Virtual Address 32-bit Physical Address

In-frame offset

20 bits 12 bits

Frame #

Southeast University8.50Operating System Concepts

Implementation of Page Table
◼Page table must be kept in main memory.

◼Question: Why is a page table hard to entirely

fit into L2 cache? What will be the size of a page

table, if assuming 32 bits virtual address, 4GB

physical memory and 4KB page/frame size?

20 bits 12 bits

Page # In-page offset

32-bit Virtual Address 32-bit Physical Address

In-frame offset

20 bits 12 bits

Frame #

Frame # Control

0

1

…

220-1

24 bits 8 bits

◆So each page table entry

is approximately 4 bytes.

(20 bits frame number is

roughly 3 bytes and access

control contributes 1 byte)

Southeast University8.51

Frame # Control

0

1

…

220-1
Operating System Concepts

Implementation of Page Table
◼Page table must be kept in main memory.

◼Question: What is the size of a page table, if

assuming 32 bits virtual address, 4GB physical

memory and 4KB page/frame size? Why is a

page table hard to entirely fit into CPU cache?

20 bits 12 bits

Page # In-page offset

32-bit Virtual Address 32-bit Physical Address

In-frame offset

20 bits 12 bits

Frame #

24 bits 8 bits

◆Page table = 232 bytes /

4KB per page = 220 entries

◆Page table size =

220entries * 4B/entry = 4MB

Southeast University8.52Operating System Concepts

A Quiz

◼Q1: What will be the size of a page table, if

assuming 32 bits virtual address, 8GB physical

memory, 8KB page size, and 4KB frame size?

Frame # Control

0

1

…

219-1

19 bits 13 bits

Page # In-page offset

32-bit Virtual Address 33-bit Physical Address

In-frame offset

21 bits 12 bits

Frame #

24 bits 8 bits

Translated Address

= Frame # * 212 + In-page offset (13 bits)

Page table size = 219 * 4B = 221 Bytes = 2MB

Southeast University8.53Operating System Concepts

A Quiz

◼Q2: What will be the size of a page table, if

assuming 32 bits virtual address, 8GB physical

memory, 2MB page size, and 4KB frame size?

◼Q3: What are the pros & cons of larger page size

Frame # Control

0

1

…

211-1

11 bits 21 bits

Page # In-page offset

32-bit Virtual Address 33-bit Physical Address

In-frame offset

21 bits 12 bits

Frame #

24 bits 8 bits

Translated Address

= Frame # * 212 + In-page offset (21 bits)

Page table size = 211 * 4B = 213 Bytes = 8KB

Southeast University8.54Operating System Concepts

Implementation of Page Table

◼Page-table base register (PTBR、页表基址寄存
器) points to page table existing in main memory

◼ In this scheme every data/instruction access

requires two memory accesses:

One for the page table and

one for the data/instruction.

◼The two-memory-access problem can be solved

by the use of a special fast-lookup hardware

cache called associative memory or translation

look-aside buffers (TLBs)

TLB 页表缓存：

Southeast University8.55Operating System Concepts

Paging Hardware With TLB (页表缓存)

◼ Translation of virtual address (p, d)

◆If an entry with the key p can be found in the TLB or

associative memory, returns the value of frame #

◆Otherwise, get the frame # value from the page table that

exists in main memory

Southeast University8.56Operating System Concepts

TLB based on Associative Memory

Page # Frame #

KEY VALUEMAPPING from

Entry 1

Entry 2

Entry 3

Entry 4

Parallel Search

◼Associative memory关联存储器–parallel search

◼An Example

Southeast University8.57Operating System Concepts

Effective Access Time

◼Associative Lookup = time unit

◼Assume memory cycle time is 1 time unit

◼Hit ratio – percentage of times that a page

number is found in the associative registers

◼Hit ratio is related to the number of associative

registers.

◼Hit ratio =

◼Effective Access Time (EAT)

EAT = (1 +) + (2 +)(1 –)

= 2 + –

 time unit

1 time unit

1 time unit

1-

Southeast University8.58Operating System Concepts

Memory Protection

◼Memory protection implemented by

associating protection bit with each frame.

◼Valid-invalid bit attached to each entry in the

page table:

◆“valid” indicates that the associated page is in

the process’ logical address space and is thus

a legal page.

◆“invalid” indicates that

the page is not in the

process’ logical

address space.

Southeast University8.59Operating System Concepts

Memory Protection (Cont.)

◼We can use a page table length register

(PTLR) that stores the length of a process’s

page table. In this way, a process cannot

access the memory beyond its region.

Compare this with the base/limit register

pair.

◼We can also add read-only, read-write, or

execute bits in page table to enforce r-w-e

permission.

Southeast University8.60Operating System Concepts

Advantage of Paging Method:

Shared Pages
◼Shared code

◆One copy of read-only (reentrant) code shared

among processes (i.e., text editors, compilers,

window systems).

◼Private code and data

◆Each process keeps a

separate copy of the

code and data.

◆The pages for the

private code and data

can appear anywhere

in the logical address space.

Southeast University8.61Operating System Concepts

Chapter 9: Memory Management

◼Background

◼Swapping

◼Contiguous Allocation

◼Segmentation

◼Paging

◼Advanced Page Table Structure

◼Segmentation with Paging

Southeast University8.62Operating System Concepts

Advanced Page Table Structure

◼Hierarchical Paging

◼Hashed Page Tables

◼ Inverted Page Tables

Southeast University8.63Operating System Concepts

Hierarchical Page Tables

◼Why the multiple-level page table is needed?

◼Answer: A single-level page table may

become too big to fit into the physical

memory of a commodity machine.

◆Assume a 64-bit computer (which means 64-bit

virtual address space), which has 4KB

frames/pages and 4GB of physical memory

◆In the single-level page

table, 264 addressable

bytes / 212 bytes per

page = 252 page entries

264 Bytes

252 entries

Southeast University8.64Operating System Concepts

Hierarchical Page Tables
◆One page table entry contains: Access control

bits (like Page present, RW) + Physical page #

◆20 bits required for physical page number.

✓4 GB of Physical Memory = 232 bytes.

✓232 bytes of memory/212 bytes per page

= 220 physical pages

◆So each page table entry is approximately 4

bytes. (20 bits physical page number is roughly

3 bytes and access control contributes 1 byte)

◆Now page table size = 252 * 4 bytes = 254 bytes

◼Hence, the size of single-level page table is

254 bytes (16 petabytes) per process,

which is a very huge amount of memory.

Southeast University8.65Operating System Concepts

Hierarchical Page Tables

◼A Solution: Break up the logical address space

into multiple page tables.

◼ If we page the page table too, we can magically

bring down the memory required

◆The first-level page table contains 252 page entries

◆If we page the first-level page table, then one page

contains 4KB / 4 bytes per entry = 1024=210 entries

◆So the first-level page table is divided into 242 pages

◆So the second-level page table needs 242 entries

◆……

◆The fifth-level page table only needs 212 page

entries, as low as four pages, just 16 KB memory

Southeast University8.66Operating System Concepts

1st-Level Page-Table: Page the Page Table

Page 0

...

Page 252-1

Logical

Memory

page number

p

page offset

d

1252

252

pages

Physical Memory

Frame # Control

0

1

…

210-1

…

…

…

…

…

…

…

…

252-1

24 bits 8 bits

210 entries

252

entries

Page 0

Page 1

Page 242-1

Southeast University8.67Operating System Concepts

Two-Level Page-Table Scheme

http://en.wikipedia.org/wiki/Pag

e_table#Multilevel_page_table

Page 0

...

...

...

Outer Page

Table

Logical

Memory

...

...

Page Table

...

page number

p1

page offset

d

10 12

p2

42

210 entries

242

entries
252

pages

Physical Memory

Page 252-1

http://en.wikipedia.org/wiki/Page_table#Multilevel_page_table

Southeast University8.68Operating System Concepts

Two-Level Paging Example

for 32-bit Operating Systems
◼ A logical address (on a 32-bit machine with 4K page

size) is divided into:
◆a page number consisting of 20 bits, and

◆a page offset consisting of 12 bits.

◼ Since the page table itself is also paged, the page
number is further divided into:
◆a 10-bit page number, and

◆a 10-bit page offset.

◼ Thus, a logical address is as follows:

where p1 is an index into the outer page table, and p2 is
the displacement within the page of outer page table.

page number page offset

p1 p2 d

10 10 12

Southeast University8.69Operating System Concepts

Address-Translation Scheme

◼Address-translation scheme for a two-level

32-bit paging architecture

Southeast University8.70

Quiz for Two-level Page Table
◼某计算机采用二级页表的分页存储管理方式，
按字节编制，页大小为210字节，页表项大小为
2字节。逻辑地址结构为：页目录号、页号、页
内偏移量，逻辑地址空间大小为216页，则表示
整个逻辑地址空间的页目录表中包含表项的个
数是（ ）
A、64 B、128 C、256 D、512

◼答案：B

216 / (210 bytes/2 bytes) = 27=128

◼页内偏移d占10bits；共216页，p1+p2=16bits；
页表也分页了，每页有29页表项，所以p2=9bits

页目录号 页内偏移

p1 p2 d

7 9 10

页号

Southeast University8.71Operating System Concepts

Three-level Paging Scheme

for 64-bit Operating System

◼ The 2nd outer page table still needs 16GB

memory, since 232 number of table entries ✕

4 bytes per table entry = 234 bytes memory

Southeast University8.72Operating System Concepts

Intel x86-64

◼Current generation Intel x86 architecture:

Neon on server, 酷睿 on PC

◼ 64 bits address space is ginormous (> 16

exabytes)

◼ In practice only implement 48 bit addressing

◆Four levels of paging hierarchy: 4KB page by

default, so 12 bits in-page offset; 8B page table

entry, so 512 entries per page; 4-level page table

◆Multiple page sizes of 4 KB, 2 MB, 1 GB

9 bits 9 bits 9 bits 9 bits 12 bits

Southeast University8.73Operating System Concepts

Hashed Page Tables
◼Common in address spaces > 32 bits.

◼Motivation

◆On a 64-bit operating system, the third-level

page table is still too large to fit in main memory

◆In a 32-bit or 64-bit address space of a process,

most part of it is unused

◼Solution base on Chained Hash Table

◆The virtual page number is hashed into a page

table. This page table contains a chain of

elements hashing to the same location.

◆Virtual page numbers are compared in this

chain searching for a match. If a match is found,

the corresponding physical frame is extracted.

Southeast University8.74Operating System Concepts

Hashed Page Tables

Southeast University8.75Operating System Concepts

Inverted Page Table

◼Motivation: All the previous schemes need to

maintain a page table for each process.

◼One entry for each real page of memory (frame)

◼Entry consists of the virtual address of the page

stored in that real memory location, with

information about the process owning that page

◼Decreases memory needed to store each page

table, but increases time needed to search the

table when a page reference occurs.

◼Use hash table to limit the search to one — or

at most a few — page-table entries.

Southeast University8.76Operating System Concepts

Inverted Page Table Architecture

Southeast University8.77Operating System Concepts

Chapter 9: Memory Management

◼Background

◼Swapping

◼Contiguous Allocation

◼Segmentation

◼Paging

◼Advanced Page Table Structure

◼Segmentation with Paging

Southeast University8.78Operating System Concepts

Example: The Intel Pentium

◼Dominant industry chips

◼Pentium CPUs are 32-bit and called IA-32

architecture

◼Current Intel CPUs are 64-bit and called IA-

64 architecture

◼Many variations in the chips, cover the main

ideas here

Southeast University8.79Operating System Concepts

The Intel IA-32 Architecture

◼Supports segmentation with paging

◼CPU generates logical address

◆Selector given to segmentation unit

✓Which produces linear addresses

✓Up to 16K segments per process

◆Linear address given to paging unit

✓Which generates physical address in main memory

✓Paging units form equivalent of MMU
http://en.wikipedia.org/wiki/Memory_segmentation#Segmentation_with_paging

s: segment number

g: whether in GDT or LDT

p: protection bits

Southeast University8.80Operating System Concepts

Intel IA-32 Segmentation with Paging

Support two-level

page table

Southeast University8.81Operating System Concepts

Intel IA-32 Architecture

Supports Multiple Page Size

Pages sizes can be

either 4 KB or 4 MB

4 KB

4 MB

Southeast University8.82Operating System Concepts

Intel x86-64

◼Current generation Intel x86 architecture

◼ 64 bits is ginormous (> 16 exabytes)

◼ In practice only implement 48 bit addressing

◆Page sizes of 4 KB, 2 MB, 1 GB

◆Four levels of paging hierarchy

◼Can also use PAE (page address extension)

so virtual addresses are 48 bits and physical

addresses are 52 bits

Southeast University8.83Operating System Concepts

Example: ARM Architecture

◼Dominant mobile platform chip (Apple iOS

and Google Android devices for example)

◼Modern, energy efficient, 32-bit CPU

◼ 4 KB and 16 KB pages

◼ 1 MB and 16 MB pages (termed sections)

◼One-level paging for sections, two-level for

smaller pages

Southeast University8.84

Example: ARM Architecture (Cont.)

◼ Two levels of TLBs

◆Outer level has two micro TLBs (one data, one instruction)

◆ Inner is single main TLB

◆Firstly, inner is checked, on miss outers are checked, and on miss

page table walk performed by CPUOperating System Concepts

outer page inner page offset

4-KB

or

16-KB

page

1-MB

or

16-MB

section

32 bits

Southeast University8.85

Concluding Marks
◼OS creates, for each process, an illusion of

continuous memory address space, based

on the paging/segmentation mechanism

◼Question: Why the mainstream CPU chips

organize the page#-to-frame# mapping table

in a hierarchical way, instead of using

hashed page table or inverted page table?Operating System Concepts

P1 Applications

Hardware

Physical Memory

P2 Pn

OS memory

management subsystem

Southeast University8.86

附加内容

End of Lecture

Operating System Concepts

