Chapter 8: Memory
Management

SRR

A SRR X E 2125
. csgjxiao@seu.edu.cn

“ 1. https://csgjxiao.github.io/PersonalPage

L 1h: 025-52091022

e,dk_chapter 8: Memory Management

m Background

B Swapping

B Contiguous Allocation

B Segmentation

® Paging

B Advanced Page Table Structure
B Segmentation with Paging

Operating System Concepts 8.2 Southeast University l&_{&?
S

?»dBaCkground for Memory Hierarchy

B Main memory and registers are the
only storage CPU can access directly

B Register access in one CPU clock (or Regs
less) TLB

: L1
B Main memory can take many cycles

mL1/L2/L3 Cache sits between main
memory and CPU registers

L2

L3

m Protection of memory required to Main memory
ensure correct operation —
B Program must be brought into main

memory and placed within a process

o) er!t?l; s!e.lr:n Ecge E)e run. 8.3 Southeast University EHZQ

g%ﬂ ﬁ/é\ 7% RAM?
B RAM(Random Access Memory) i 32 BEA A7 BUAF i 25

I BRI BENAZEWE ? RUOATERL 2 B, REB 43 ATl 25 #1052 it
JyA7f# (Direct-Access), CRCH LI GnadERE, Sk, 2wk,
W AT T 2 5555 BEAIAZ AT i 2 T4 i L 05 A) 2cdis i 1] 5 4
PEAF ALt a5 R D ERAL B 656 .

RAM 5 — /M U 5 et (Volatile), 17 e I 500E 2%
B RAM I Z /> SRAMAIDRAMP Fili 2 5

SRAME##RAM (Static RAM) , J
ArEr, AFBURE LR, M T EiE g AT

DRAM ZZ#ARAM (Dynamic RAM) , f
AR, FRCEEZ NS, HTHAE

B AERNAEHFEZDRAMK
VEAE HERE PN BB A0 22 8] B 9 T Ay

Operating System Concepts 8.4

<
Ly
a
[
=
A,
e
o
o
Q0
T
o

onvolatile

OS Commands to get CPU and
memory Information

® Linux m MacOS
cat /proc/cpuinfo - system_profiler SPHardwareDataType
cat /proc/meminfo . vm stat
% system_profiler SPHardwareDataType % vm_stat
Hardware Overview: Mach Virtual Memory Statistics:
Model Name: MacBook Pro (page size of 4096 bytes)
Model Identifier: MacBookPro15,1 Pages free: 96730.
Processor Name: 6-Core Intel Core i7 Pages active: 1428706.
Processor Speed: 2.2 GHz Pages inactive: 1262257.
Number of Processors: 1 Pages speculative: 168869.
Total Number of Cores: 6 Pages throttled: 0.
L2 Cache (per Core): 256 KB Pages wired down: 987490.
L3 Cache: 9 MB Pages purgeable: 84220.
Hyper-Threading Technology: Enabled "Translation faults":3533751188.
Memory: 16 GB Pages copy-on-write:396805612.
System Firmware Version: 1731.100.130.0.0 Pages zero filled: 3188592824.

OS Loader Version: 540.100.7~23
Serial Number (system): C02XH3U4JG5L

Hardware UUID: AE627AB2-1D36-5908-BCB5-AE7E7E83D110 l}(}f(§
Southeast University 4 .3 \>

Provisioning UDID: AE627AB2-1D36-5908-BCB5-AE7E7E83D110

Reminder: A Typical Memory Hierarchy

+ Everything is a cache for something else

On the]
datapath Registers | cycle | KB Software/Compiler
Level | Cache 2-4 cycles 32 KB Hardware
Level 2 Cache 10 cycles 256 KB Hardware
57 et Level 3 Cache 40 cycles 10 MB Hardware
Main Memory 200 cycles 10 GB Software/OS
Other
chips IS 10-100us 100 GB Software/OS
Mechanical BEEREISHR |0ms | TB Software/OS

devices

other

object
modules

system
library

dynamically
loaded
system
library
dynarmic
linking

Background on Multistep
=Processing of a User Program

source
program

compiler or
assembler

object
module

linkage
editor

|

load
module

loader

'

in-memory
binary
memory
image

Compile time is the period when the
programming code is converted to machine code.

compile
time

printf

101100
scanf

— =

Compiler

| 1oad Load time is the duration it takes for a computer
"M program to be loaded into memory and become
ready for execution.
execution
= time (run
time)

8.7 Southeast University

Sy

& Binding of Instructions and Data

£ to Physical Memory Addresses
m Compile time

If memory location of running a program is known a
priori, absolute code can be generated by compiler,
must recompile code If starting location changes.

mLoad time

Must generate relocatable code If memory location

IS not known_at_ comnile time
i Most general-purpose operating systems
B Run time J purpose op g sy

use the execution-time address binding
Binding delayed until run time If the process can be

moved during its execution from one memory,
segment to another. Need hardware support %&)w} 9
operaing Bl RS S mappmgs_ 8.8 Southeast University

¥ Logical Address Space vs.
£ C%.. Physical Address Space
B The concept of a logical address space that is
bound to a separate physical address space Is
central to the proper memory management.

Logical address — generated by the CPU; also
referred to as virtual address.

Physical address — address seen by main memory
units. LOGI addr are runtime mapped to PHY addr.

Applications

7 —\ MMU: OS memory
N \ management subsystem

=5
BCD
VA

Physica

Logical Address Space vs.
eSSk hysical Address Space (cont.)

[ogical and physical addresses are the same In
compile-time and load-time address-binding
schemes

B Logical and physical addresses differ in
execution-time address-binding scheme.

® In this case, logical address Is also referred to as
virtual address. (Logical = Virtual in this course)

Operating System Concepts 8.10 Southeast University l&f&?
S

g,d\;l‘\,/lemory-l\/lanagement Unit (MMU)

m Hardware device that maps virtual to physical
address.

® In MMU scheme, the value In the relocation
register Is added to every address generated by
a user process at the time it is sent to memory.

B The user program deals with logical addresses;
It never sees the real physical addresses.

Operating System Concepts 8.11 Southeast University l&.{&?
S

Revisit the Simple Memory

| nagement: Base + Limit Registers

B A pair of base and limit registers can define
the address space of each process

e

0

operating
system
256000
process
300040 < 300040
process base
420940 y 120l
process limit
880000

1024000 EE : (,
Operating System Concepts 8.12 Southeast University > 1&

ﬁplications access memory units
e

“Pyphysical addresses, when there
IS NO separation between virtual
and physical addresses

base base + limit

address yes yes

no no

trap to operating system
monitor—addressing error memory

Operating System Concepts 8.13 Southeast University %{Q

‘"However, applications only know
“legieal addresses. So use a relocation
register instead of a base register

e

Operating System

CPU

A Simple MMU
relocation
register
14000
logical physical
address address
+
346 14346
MMU

>

memory

e,_ﬁk_., Memory Protection

B Relocation-register scheme used to protect
user processes from each other, and from
changing operating-system code and data.

B Relocation register contains value of the
smallest physical address

B Limit register contains range of logical
addresses — each logical address must be
less than the limit register.

Operating System Concepts 8.15 Southeast University E%‘Q

Hardware Support for Relocation
and Limit Registers

1o 4

limit relocation
register register
logical l physical
address yes address
CPU < / + » memory
no
v "
trap; addressing error

Operating System Concepts 8.16 Southeast University l&.{&?

—

EE—

e&{chapter 9: Memory Management

m Background

B Swapping

B Contiguous Allocation

B Segmentation

® Paging

B Advanced Page Table Structure
B Segmentation with Paging

Operating System Concepts 8.17 Southeast University l&f&?
S

Q.

e%} Schematic View of Swapping
B A"process can be swapped temporarily out of
memory to a backing store, and then brought

back into memory for continued execution.

B Backing store — fast disk large enough to hold
copies of all memory images for all users; must
provide direct access to these memory images.

® Roll out, roll in — swapping variant used for
oriority-based scheduling algorithms; lower-
oriority process is swapped out so higher-priorit

Main memory Backing store

process can LU -
L 4 rocess
be loaded and tower i | zmon > | ocess3
priority process 5 { swap in swap
executed . process 2 Higher space
priority file E f
space ‘_‘%-{6\2

Operating System Concepts

g;ﬁyl,ajor Time Overhead of Swapping

® Main memory reference 100ns
® Magnetic Disk track seek 10,000,000 ns

m Major part of swap time Is transfer time; total
transfer time Is directly proportional to the
amount of memory swapped.

operating
system

SSSSSS

process
P,

u
space backing store E‘ I (g
Operating System Concepts ersity v gd&j

main memory A

Q&{Chapter 9: Memory Management

m Background

B Swapping

m Contiguous Allocation

B Segmentation

m Paging

B Advanced Page Table Structure
B Segmentation with Paging

Operating System Concepts 8.20 Southeast University 1&{&?

—

EE—

s Contiguous Allocation

B Monoprogramming systems usually have two
partitions: e
Resident operating system,

usually held in low memory
with interrupt vector. user program

User processes then held
In hlgh memory operating system

job 1

® Multiprogramming Systems:
Fixed partitions
Variable partitions

job 2

job 3

job 4

Operating System Concepts 8.21 Southeast Univers512K

—

Q‘QL" Fixed Partitions

B Main memory Is divided into n partitions.

m Partitioning can be done at the startup time and
altered later on.

B Each partition may have a job queue. Or, all
partitions share the same job queue.

OS OS

300k 300k

partition 1 partition 1

—
200k _._.

200k

partition 2 partition 2

150k} partition 3 150x| partition 3

100kl partition 4 — 100k partition 4 BX}; ‘) g
Operating System Concepts 8.22 Southeast University > ..16\2

& . .
s P Variable Partitions
m Hole — block of available memory; holes of
various size are scattered throughout memory.

® When a process arrives, it is allocated memory
from a hole large enough to accommodate it.

® Thus, partition sizes are not fixed, The number
of partitions also varies.

B Operating system maintains information about:
a) allocated partitions _______________ N
b) free partitions(hole)os 0s 0s 0s

8.25

Operating System Concepts

N
s P List of Free Holes
m If the hole is larger than the requested size, it
IS cut Into two. The one of the requested size
IS given to the process, the remaining one
becomes a new hole.

B When a process returns a memory block, it
becomes a hole and must be merged with its
neighbor.

B For finding the neiahborina hole. the free holes

. before X is freed after X is freed
are organizedas[5[x [& | "B |
addresses.

[« T x [
. EaER

B s

Operating System Concepts

gernamlc Storage-Allocation Problem

How to satisfy a request of size n from a list of free holes.

m First-fit (B ¥ERLD): Allocate the first hole that is
big enough.

m Best-fit (& =E=ERL): Allocate the smallest hole
that Is big enough; must search entire list.
Produces the smallest leftover hole.

m Worst-fit (s ZEERL): Allocate the largest hole;

must also search entire list. Produces the
largest leftover hole. __'IIEETE EE

Worst Fit .
Best Fit

Operating System Concepts Needed

N ernal Fragmentation (4NN FEREH)

- Processes are loaded and removed from
memory. Eventually, the memory will be cut into
small holes that are not large enough to run any
Incoming process.

B Free memory holes
between allocated
ones are called
external fragmentation.

external
fragmentation

iri

N
Operating System Concepts 8.26 Southeast University l’ ’.l%
S

e.ﬂdégrnal Fragmentation (W¥NFF#ER)

B [t IS unwise to allocate exactly the requested
amount of memory to a process, because of the
minimum requirement for memory management.

B Thus, memory that is allocated to a partition, but
IS not used, are called internal fragmentation.

r Y

. docated partiien. . assigned Fragment Fragment
on | : Space
used I gsed AssignedI
Y pace Space
Assigned
Space

Assigned
Used
I Space Space I

internal fragmentation external fragmey

Operating System Concepts 8.27 Southeast University

internal fragmentation

¥ Fragment

-

¥ Compaction for Less External
e 0P

Fragmentation
[] Sthﬂe memory Runtime Memory Compaction
contents to place all used used
free memory together e :
In one large block.]
m Compaction is =
possible only if
program relocation Is el used
dynamic and is dONe e s
at execution time. [§ % § §

B Runtime compaction
SCheme Can be time- Memory After Compaction

consuming

Operating System Con 8.28 [

_

Q&{Chapter 9: Memory Management

m Background

B Swapping

m Contiguous Allocation

B Segmentation

m Paging

B Advanced Page Table Structure
B Segmentation with Paging

Operating System Concepts 8.29 Southeast University ‘BH{Q

—

EE—

e#‘- Segmentation

® Memory-management scheme that supports
user view of memory.

m A program is a collection of segments.

B A segment is a logical unit such as:
main program, User’s View of a Program
procedure or function,
method,
object,
local variables,
global variables,
common block,

stack, R
Operating System Concepts S mbol table aérfiea S Southeast University 84 ..16\\14

-e.;‘é. A Previously Used Example

//main.cpp
inta =0, «e— ¥R, 2ETE

char *pl; «—— #iEg, 4R%E
main()

{ intb;, < %, RHRR
char s[] = "abc" «— B, RPTE

char *p2; «—— BB, RuSE
char *p3 = "123456"; «<— kB, R¥EE

pl = (char *)malloc(10); <—— #:E:
p2 = (char *)malloc(20); «— g

h

Operating System Concepts 8.31 Southeast University

other

object
modules

system
library

dynamically
loaded
system
library
dynarmic
linking

Background on Multistep
=Processing of a User Program

source
program

compiler or
assembler

object
module

linkage
editor

|

load
module

loader

'

in-meamory
binary
memory
image

Compile time is the period when the
programming code is converted to machine code.

compile
time

printf

101100
scanf

— =

Compiler

| 1oad Load time is the duration it takes for a computer
"M program to be loaded into memory and become
ready for execution.
execution
= time (run
time)

8.32 Southeast University

Sy

Loading an ELF (Executable and
_Inkable Format) binary on Linux

Kernel
' Environment
Stack
l SN Arguments
S ro— Interpreter
, ,—» mapping libl.so
2 area
; (_(: lib2.s0
3 T
8.: -
B8 ey
5: 8| ¢ .
' 8 Header
Q! o
€. Data section 1
-~ |
y Data
:] Data section 2
N~ Code section 1
oo\ Code
;T > Code section 2
Address 0x0 Binary

Operating System Concepts 1east University

Virtual memory

et% Mapping Segments to
— Physical Memory
B Each segment occupies a contiguous memory

space In the physical memory

user space physical memory space 815 V ,
Operating System Concepts 8.34 Southeast University > 1&

e,_ﬁk_., Segmentation Architecture

B Logical address consists of a two tuple:
| <segment-number, offset>,

B Segment table — maps two-dimensional
physical addresses; each table entry has:

base — contains the starting physical address
where the segments reside in memory.

limit — specifies the length of the segment.

Operating System Concepts 8.35 Southeast University lﬁ.{@\?
S

Q,QLA Segmentation Hardware

N

limit | base
segment
table
CPU = s d

yes < >

< /

no

\ 4

trap; addressing error physical memory

Operating System Concepts 8.36 Southeast University &g.{&?
S

g,d‘@egmentation Architecture (Cont.)

B Segment-table base register (STBR) points to
the segment table’s location in memory.

B Segment-table length register (STLR) indicates
the number of segments used by a program,;

segment number s is legal iIf s < STLR.

Operating System Concepts 8.37 Southeast University lﬁ.{&?
S

g,d'@_egmentation Architecture (Cont.)

m Protection. With each entry in segment table,
associate:

validation bit = 0 = illegal segment
read/write/execute privileges

B Protection bits associated with segments;
code sharing occurs at segment level.

B Since segments vary in length, memory
allocation is a dynamic storage-allocation
problem.

B A segmentation example Is shown In the
Oper ftogslylgn\cl\llpg dlag ram 8.38 Southeast University ‘B&Q

Example of Segmentation

subroutine stack
1400
2400
symbol
segment 0O table
limit | base
Sqrt segment 4 0| 1000 | 1400
1| 400 | 6300 3200
main 2| 400 | 4300
program 3| 1100 | 3200 segment 3
4| 1000 | 4700
segment table
segment 1 segment 2 9 4300 segment 2
4700
logical address space segment 4
5700
6300
segment 1

6700

physical memory EE; V ,
Operating System Concepts 8.39 Southeast University > 1&

e&{chapter 9: Memory Management

m Background

B Swapping

B Contiguous Allocation

B Segmentation

m Paging

B Advanced Page Table Structure
B Segmentation with Paging

Operating System Concepts 8.40 Southeast University l&f&?
S

qu Paging

m Contiguous memory allocation method suffers
from the external fragmentation problem

B Paging method allows logical address space of
a process to be noncontiguous; a process Is
allocated physical memory whenever the latter
IS available

®m How?

Divide physical memory into fixed-sized blocks
called frames () (size is power of 2, between 512
bytes and 8192 bytes).

Divide logical memory into blocks of same si

Z
waeCalled pages (). .. s e E‘N@j

1‘»41_., Paging (Cont.)

m Keep track of all free frames.

B To run a program of size n pages, need to find
n free frames and load program.

B Set up a page table to translate logical to
physical addresses.

® [nternal fragmentation.

Operating System Concepts 8.42 Southeast University lﬁ.{g\?
S

*‘»d%. Address Translation Scheme

m Address generated by CPU Is divided into:

Page number (p) — used as an index into a
page table which contains base address of each
page in physical memory.

Page offset (d) — combined with base address
to define the physical memory address that is
sent to the memory unit.

Operating System Concepts 8.43 Southeast University lﬁ.{g\?
S

N
1o S

P d 0
page # offset within the page

FrEC-Fre UIJ

logical
memory
0 page table
0
1y d 1
5 2
3
3

logical address <I, d> franslates to
physical address <2,d>

Operating System Concepts 8.44 Southeast University ‘)H.{Q
S

#‘%‘Address Translation Architecture

~
> f
logical physical ol
address address fO000 . .. 0000
CPU = p d f d pP—»
A
f1111 ... 1111

{| =

— i

_— physical
memory

page table }ii{ (g
Operating System Concepts 8.45 Southeast University l’ 4&)

Paging Example

frame
number
page O 0
Of 1
page 1 1l 4 1| pageO
page 2 23 2
37
page 3 page table 3| page 2
|Ogical 4 page 1
memory
5
6
7| page 3

physical

memory 3 } i I (,
Operating System Concepts 8.46 Southeast University v ..1&2

Paging Example

0 a 0
1 b
2 c
3 d
4 e 4 i
5 f j
6 g 015 k
7 h 1.6 |
8 i 2|1 8 m
9 n
10 k 312 o
11 | page table p
12 m 12
13 n
14 o
15 p
logical memory 16
20 a
b
c
d
24 e
f
g
h
28

physical memory
Operating System Concepts 8.47 Southeast University

free-frame list
14
13
18
20
15

new process

Operating System Concepts

13

14

15

16

17

18

19

20

21

Free Frames

free-frame list

15

new process

14

0

1(13
2|18
3[29]

(a) Before allocation

8.48 Southeast University

new-process page table

13

14

15

16

17

18

19

20

21

page 1

page O

page 2

page 3

(b) After allocation

Q.

ﬁ;‘ Implementation of Page Table
getable must be kept in main memory.

B Question: Why Is a page table hard to entirely
fit Into L2 cache? What will be the size of a page
table, if assuming 32 bits virtual address, 4GB

physical memory and 4KB page/frame size?
32-bit Virtual Address 32-bit Physical Address -

A V%
20 bits 12 bits 20 bits 12 bits LEEIEHE)
Page # In-page offset Frame # In-frame offset

32 bits required to locate a byte in physical mem
4 GB of Physical Memory = 232 bytes.

20 bits required for frame number.
232 bytes of memory/21? bytes per frame = 220 frar%s

Operating System Concepts 8.49 Southeast University %.{Q

EE—

<.

. Implementation of Page Table
%@ table must be kept in main memory.

B Question: Why Is a page table hard to entirely
fit Into L2 cache? What will be the size of a page
table, if assuming 32 bits virtual address, 4GB

physical memory and 4KB page/frame size?
32-bit Virtual Address 32-bit Physical Address

20 bits 12 bits 20 bits 12 bits &

Page # In-page offset Frame # In-frame offs
24 bits 8 bits
Frame # Control So each page table entry
0 IS approximately 4 bytes.

-l ——(20bitsframe number is

roughly 3 bytes and acges
220 . |
«CONtrol contributes 1 bytel

'

EE—

|

ﬁ} Implementation of Page Table
getable must be kept in main memory.

®m Question: What Is the size of a page table, If
assuming 32 bits virtual address, 4GB physical
memory and 4KB page/frame size? Why is a
page table hard to entirely fit into CPU cache?

32-bit Virtual Address 32-bit Physical Address
:.:} 20 bits 12 bits 20 bits 12 bits 42

Page # In-page offset Frame # In-frame offset
24 bits 8 bits
Frame # Control page table = 232 byteS /

0

4KB per page = 220 entries

Page table size =
220.1 22%entries * 4B/entry =gl $

Operating System Concepts 8.5 Southeast Universi ty

]

—

EE—

g%ﬂ A Quiz

m Ql:_What will be the size of a page table, if
assuming 32 bits virtual address, 8GB physical

memory, 8KB page size, and 4KB frame size?
32-bit Virtual Address 33-bit Physical Address

:I:} 19 bits 13 bits 21bits 12 bits £ty
Page # In-page offset Frame # In-frame offset
24 bits 8 bits |

Frame # Control

Page table size =|21° * 4B = 2! Bytes = 2MB

0
]
Translated Address
219_1 = Frame # * 212 + In-page offset (13 bits)

Operating System Concepts 8.52 Southeast University l&.{&?
S

Qc% A Quiz

B Q2: What will be the size of a page table, if
assuming 32 bits virtual address, 8GB physical

memory, 2MB page size, and 4KB frame size?
32-bit Virtual Address 33-bit Physical Address

=0F 11bits 21 bits 21 bits 12 bits £
Page # In-page offset Frame # In-frame offset
24 bits 8 bits |

Frame # Control
0

Page table size =|2!1 * 4B = 213 Bytes = 8KB

]

Translated Address

211' 1 = Frame # * 212 + In-page offset (21 bits)

B Q3: What are the pros & cons of larger pa%

Operating System Concepts 8.53 Southeast University

—

gdl’ Implementation of Page Table

B Page-table base register (PTBR.

I

~N

RN F AT

#%) points to page table existing in main memory

m [n this scheme every data/instruction access
requires two memory accesses:

One for the page table andmms- . -' s m
one for the data/instruction. |

TLB J

1REAT

Memory

[}/'

s

all al

addres: v

lati

e

o

—

B The two-memory-access problem can
by the use of a special fast-lookup hardware

cache called associative memory or transl‘atlo

addre

w‘PASL 7

—
.
- ~

~ R
I

-
\\

— N-1
I —_— \\"\\\ ——

Page Map

ne solved

.Jook-aside buffers (TLBS) [crv |- Cik

-

' MMU

.| Main |
memory

gﬂ_aglng Hardware With TLB ((TREF)

B Translation of virtual address (p, d)

If an entry with the key p can be found in the TLB or
associative memory, returns the value of frame #

Otherwise, get the frame # value from the page table that
exists in main memory

logical

address
CPU —>| p d |

page frame
number number

TLB hit

E physical

address

TLB

p {
TLB miss

> f

physical

memory S éi I (s
Operating System Concepts page table ey y

gtﬁ’L_B based on Associative Memory

B Associative memory < BX 17 i #5—parallel search
MAPPING from KEY —> VALUE

— Entry 1
Entry 2
Entry 3

_ Entry 4

Parallel Search =

m An Example 4\

Page #

Frame #

page # frame #

1Y 123 79

Y| 374 199

p(page#) N| 906 3
P A4 Y| 767 100

N| 222 999

Y 23 946

Operating System Concepts

if page # =767,
Ouitput frame # = 100

I\

Qdk Effective Access Time
m Assoclative Lookup = ¢ time unit

B Assume memory cycle time is 1 time unit
® Hit ratio — percentage of times that a page

number Is found In the associative registers
m Hit ratio Is related to the number of associative

registers.

m Hit ratio = o

m Effective Access Time (EAT)

EAT=(1+¢)a + (2+¢)(1-a)
=2+e—a

Operating System Concepts 8.57

e time unit
age frame

pppppppp

1 time unit

1 time unit

aaaaaaaaa

AN

& :
Yo 4 Memory Protection
® Memory protection implemented by
associating protection bit with each frame.

m Valid-invalid bit attached to each entry in the
page table:

“valid” indicates that the associated page is in
the process’ logical address space and is thus

a legal page.
00000 frame number \ / valid—invalid bit

“invalid” indicates that | =
the page is notinthe —;
process’ logical
address space.

10,468 | La0e5
12,287 page table

page 0

page 1

page 2

page 3

2
3
4
7|v
8
9
0
0

~N o O b~ W NN = O

page 4

page 5

Operating System Concepts

2e®.. Memory Protection (Cont.)

®m \We can use a page table length register
(PTLR) that stores the length of a process’s
page table. In this way, a process cannot
access the memory beyond its region.
Compare this with the base/limit register
pair.

® We can also add read-only, read-write, or
execute bits in page table to enforce r-w-e
permission.

Operating System Concepts 8.59 Southeast University l&.{&?
S

¥ Advantage of Paging Method:

= Shared Pages

B Shared code
One copy of read-only (reentrant) code shared

among processes (l.e., text editors, compilers,
window systems).

ed 1

'
B Private code and data = [
Each process keeps a L« | mow

separate copy of the :
code and data. j
The pages for the ” — 8
private code and data | = i
can appear anywhere .. %

In the logical address space.

Operating System Concepts 8.60 Southeast University

data 1

data 3

ed1

ed 2

Q&{Chapter 9: Memory Management

m Background

B Swapping

m Contiguous Allocation

B Segmentation

m Paging

B Advanced Page Table Structure
B Segmentation with Paging

Operating System Concepts 8.61 Southeast University %{Q

—

EE—

?&{.,Advanced Page Table Structure

m Hierarchical Paging
® Hashed Page Tables

m [nverted Page Tables

Operating System Concepts 8.62 Southeast University k{&?

gd\. Hierarchical Page Tables
® Why the multiple-level page table is needed?

B Answer: A single-level page table may
become too big to fit into the physical
memory of a commodity machine.

Assume a 64-bit computer (which means 64-bit
virtual address space), which has 4KB

nnnnnn

bytes [212 bytes per
page = 2°2 page entries

Operating System Concepts 8.63

3 . .
sc®._ Hierarchical Page Tables
One page table entry contains: Access control
bits (like Page present, RW) + Physical page #
» 20 bits required for physical page number.
4 GB of Physical Memory = 232 bytes.

232 pytes of memory/21? bytes per page
= 2?0 physical pages

So each page table entry is approximately 4
bytes. (20 bits physical page number is roughly
3 bytes and access control contributes 1 byte)

Now page table size = 2°2 * 4 bytes = 2°4 bytes
m Hence, the size of single-level page table Is

2°4 bytes (16 petabytes) per process, \r‘ I
e EGH 1S @ Very huge-amountset-=memory. Wﬁﬁ

Q,Q‘La Hierarchical Page Tables
B A Solution: Break up the logical address space
iInto multiple page tables.

B [f we page the page table too, we can magically
bring down the memory required
The first-level page table contains 2°2 page entries

If we page the first-level page table, then one page
contains 4KB / 4 bytes per entry = 1024=210 entries

So the first-level page table is divided into 24% pages
So the second-level page table needs 24% entries

The fifth-level page table only needs 212 page?ié I
oreains @AtFERS, AS lOW as fourpages, just-16-KB memory>y

——

. pagenumber page offset
d
P 24 bits 8 bit‘s
52 12 Frame # Control
0
_ 1
7~ Page O
Page O / 210-1
252 252
pages entries ™| page 1
Page 2°2-1
Logical
Memory
252-1

Operating System Concepts

42_
PRy 2 Physicétl\/f oLy
Jtheast University > 1&

10 entrie

#evel Page-Table: Page the Page Table

—

EE—

" - Two-Level Page-Table Scheme

: page number page offset
pl p2 d

12

42 10

Page O

252 _
pages

\>4

Page 2>2-1

Logical
Memory Outer Page
Table

210 entries

v

— Physics

Operating System Concepts 8.67 P age Tam@east University

http://en.wikipedia.org/wiki/Page_table#Multilevel_page_table

¥ Two-Level Paging Example
= Cmafor 32-bit Operating Systems

m A logical address (on a 32-bit machine with 4K page
size) Is divided into:
a page number consisting of 20 bits, and
a page offset consisting of 12 bits.
B Since the page table itself is also paged, the page
number is further divided into:
a 10-bit page number, and
a 10-bit page offset.

B Thus, a logical address is as follows:
page number | page offset

Py P2 d

10 10 12
where p, Is an index into the outer page table, ana\!é 2
the displacement within the.page of auter.page talot Q

?»,‘{a Address-Translation Scheme

B Address-translation scheme for a two-level
32-bit paging architecture

logical address
Py | P | d

.

P

X

outer-page d
table
page of
page table
Logical Address [Physical Address l
=,

A
N

=11

Outer Page Table Inner Page Table Ey(,
Operating System Conci ersity “ 45 VY

e? Quiz for Two-level Page Table

BT EHUR A R R A TR T R,
B], TR/ N210TT, TR IR/ N
27 . WHEHNEM N THEXS. 5. I
NAmA% &, EHEHIEZ R RN y216T, RN
AT B HLIE 2 (8] 1) 1 H RS R

e ()
A. 64 B. 128 C. 256 D. 512
MHS e | HHkE
P1 P2 d

mEZE: B B
216 [(210 bytes/2 bytes) = 27=128
m 7N mFEd 5 10bits; L2671, pl+p2=160jts.

TR T T, 45T 29018 oo 7 LA p2 250186}

EE—

10

edi Three-level Paging Scheme
T for 64-bit Operating System

outer page Inner page offset
P1 p> d
42 10 12
2nd outer page , outer page | innerpage b offset
P1 P> P3 d
32 10 10 12

B The 2" outer page table still needs 16GB
memory, since 232 number of table entries x
4 bytes per table entry = 234 bytes mem‘iry

Operating System Concepts 8.71 Southeast University

@dg Intel x86-64

m Current generation Intel x86 architecture:
Neon on server, fii % on PC

B 64 bits address space Is ginormous (> 16
exabytes)

B |[n practice only implement 48 bit addressing

Four levels of paging hierarchy: 4KB page by
default, so 12 bits in-page offset; 8B page table

er\fr\l cn BE19 antrine nar nano: A_levial nana tahla
ILI'yé E)JU W UL |V\J|9'~E)ﬂl?¥\/’ =T 1V Ui PDLU\/ LCANIL

its 9 bits 9 bits 12 bits

page map page directory page page
| unused | level4 | pointertable | directory | table | offset
63 48 47 39 38 30 29 2120 12 11

oreaing s MILUTIPlE page sizes of 4 KB, 2.MB,..1,GB EWQ

e%‘_ Hashed Page Tables
“m'Common In address spaces > 32 bits.

® Motivation

©On a 64-bit operating system, the third-level
page table is still too large to fit in main memory

In a 32-bit or 64-bit address space of a process,
most part of it Is unused

m Solution base on Chained Hash Table

The virtual page number is hashed into a page
table. This page table contains a chain of
elements hashing to the same location.

Virtual page numbers are compared in this,
chain searching for a match. If a match is fg}}%
operating syseriftf}@sCOrresponding physical frameis-extractéd?-

'

eﬁ{, Hashed Page Tables

physical
logical address 1 address

p d r d -

physical
— |a] s | |h|p|r|_|T‘“ memory

hash table

Operating System Concepts 8.74 Southeast University EA.{Q
S

qu Inverted Page Table

® Motivation: All the previous schemes need to
maintain a page table for each process.

B One entry for each real page of memory (frame)

B Entry consists of the virtual address of the page
stored in that real memory location, with
Information about the process owning that page

B Decreases memory needed to store each page
table, but increases time needed to search the
table when a page reference occurs.

B Use hash table to limit the search to one
..al. most a few — page-table entries.., a@j

verted Page Table Architecture

logical :
address v physical
address
pid | p d i d

e | S

search l

=

—
o}
©

page table

Operating System Concepts 8.76 Southeast University

Q&{Chapter 9: Memory Management

m Background

B Swapping

m Contiguous Allocation

B Segmentation

m Paging

B Advanced Page Table Structure
B Segmentation with Paging

Operating System Concepts 8.77 Southeast University %{Q

—

EE—

e,_dk_., Example: The Intel Pentium

B Dominant industry chips

m Pentium CPUs are 32-bit and called 1A-32
architecture

m Current Intel CPUs are 64-bit and called IA-
64 architecture

® Many variations in the chips, cover the main
iIdeas here

Operating System Concepts 8.78 Southeast University lﬁ.{&?
S

94‘4 The Intel IA-32 Architecture
B Supports segmentation with paging

logical linear physical

address R segmentation address R paging address N physical

unit unit memory

CPU

B CPU generates logical address

Selector given to segmentation unit
v"Which produces linear addresses

v'Up to 16K segments per process

~s:segment number
s g p g: whether in GDT or LDT
13 . 2 p: protection bits

Linear address given to paging unit
v"Which generates physical address in main memgry

v"Paging units form equivalent of MMU 28 §
operatirB el encikipedia.org/wiki/Memory _segmentation#Segaentation with_p jﬁd%lv

g,;ﬁqj;el |A-32 Segmentation with Paging

logical address | selector offset

descriptor table

—» segment descriptor

32-bit linear address

page number page offset
Support two-level 5 = 7
page table 10 10 19

Operating System Concepts 8.80 Southeast University

Intel 1A-32 Architecture

S8 %.. Supports Multiple Page Size

(logical address) 4 KB
. Ppage directory | page table | offset
31 22 21 12 11
o J B
page 4-KB
¥ table » page
Pages sizes can be s B
either 4 KB or 4 MB directory .
CR3 —» X 4-MB
register page
| 4 MB |
. Ppage directory | offset
31 22 21

Operating System Concepts o.oL SuuuITast UInverai y —

@dg Intel x86-64

B Current generation Intel x86 architecture
B 64 bits is ginormous (> 16 exabytes)

B |[n practice only implement 48 bit addressing
Page sizes of 4 KB, 2 MB, 1 GB
—our levels of paging hierarchy

page map page directory page page
| unused | level4 | pointertable | directory | table | offset
63 48 47 39 38 30 29 2120 12 11 0

B Can also use PAE (page address extension)
so virtual addresses are 48 bits and physical
addresses are 52 bits ?‘W@j

Operating System Concepts 8.82 Southeast University

e Example: ARM Architecture

® Dominant mobile platform chip (Apple 10S
and Google Android devices for example)

® Modern, energy efficient, 32-bit CPU

m 4 KB and 16 KB pages
m1 MB and 16 MB pages (termed sections)

B One-level paging for sections, two-level for
smaller pages

Operating System Concepts 8.83 Southeast University lﬁ.{&?
S

g,dﬁ;(xample: ARM Architecture (Cont.)

32 bits

outer page | inner page | offset

4-KB
or

16-KB

) page

A\ 4

v

\ 4

\ 4

A

L, 1-MB
or
16-MB
section

® Two levels of TLBs
Outer level has two micro TLBs (one data, one instruction)
Inner is single main TLB

Firstly, inner is checked, on miss outers are checked, and on}}%} g
Operating Systemga]g@’s table Walk performed by4CPU Southeast University 4 ..16\4

gc,QL Concluding Marks

B OS creates, for each process, an illusion of
continuous memory address space, based
on the paging/segmentation mechanism

Applications

7 Y \ OS memory
X \ management subsystem

Hardware

_ _ sical Memory
®m Question: Why the mainstream CD{J chips

organize the page#-to-frame# mapping table
In a hierarchical way, instead of using O
o fy@SREd page table or iInvertedpage tablé= /ﬁv

End of Lecture
B o

Southeast University

