
Chapter 9: Virtual Memory

肖 卿 俊

办公室：九龙湖校区计算机楼212室

电邮：csqjxiao@seu.edu.cn

主页： https://csqjxiao.github.io/PersonalPage

电话：025-52091022

Southeast University9.2Operating System Concepts

Chapter 9: Virtual Memory

◼Background

◼Demand Paging

◼Copy-on-Write

◼Page Replacement within a Process

◼Allocation of Frames among Processes

◼Thrashing and Working Set Model

◼Memory-Mapped Files

◼Allocating Kernel Memory

◼Other Considerations

◼Operating-System Examples

Southeast University9.3Operating System Concepts

Background

◼Virtual memory is different from the idea of
memory virtualization. The former is to
abstract disk as memory. The later is to separate
memory address spaces of all user processes.

◼We previously talked about an entire process
swapping into or out of main memory

memory virtualization

virtual

memory

Southeast University9.4

process-level swapping page-level swapping

Operating System Concepts

Background

◼Virtual memory: Separation of logical memory
from physical memory by page-level swapping

◆Only part of the program needs to be kept in memory

for execution. Used pages can be swapped out.

◆Logical address space can therefore be much larger

than physical address space.

◆More programs can be run at the same time.

◆Less I/O is needed than loading or swapping.

Southeast University9.5Operating System Concepts

Two Kinds of Implementation

for Virtual Memory
◼Virtual memory can be implemented via:

◆Demand paging （按需调页）

◆Demand segmentation（按需调段）

Southeast University9.6

Hibernation, Page, Swap Files

on Windows
◼ hiberfil.sys 休眠文件是

Windows 休眠时用于向磁盘
写入内存内容的

◆mirror copy for physical

memory data on disk

◆same size as the physical

memory

◼ pagefile.sys 页面文件是用于
在操作系统内存不足时临时
交换数据的

◼ swapfile.sys 文件用于交换
Universal Apps 的相关数据

Operating System Concepts

Depending on the version of Windows

you’re using, you have several options

for conserving power when you’re not

using your PC. Obviously, you can just

shut it down. But, you can also send it

into a sleep or hibernate mode, where it

uses dramatically less power but is still

available quickly when you need it.

文件夹选项中取消隐藏
受保护的操作系统文件
并打开显示隐藏的文件
、文件夹和驱动器选项
https://www.sysgeek.cn/

swapfile-sys/

https://www.sysgeek.cn/swapfile-sys/

Southeast University9.7

Paging-based Virtual Memory

Operating System Concepts

Typically, SWAP = 2 * PHYMEM

Page fault

No

page

fault

Linux SWAP
Partition

◼Temporary storage for

physical memory data

on disk to provide more

“virtual” memory for

applications

◼On Windows, in the root

directory, C:/pagefile.sys

◼On Linux, SWAP partition

◼may be greater than the

size of physical memory

swap out

swap in

Southeast University9.8Operating System Concepts

Virtual Address Space

with Segmentation

ELF (Executable and Linkable

Format) on Linux System

malloc() allocates space

from here (dynamic

memory allocation)

Southeast University9.9

Shared Library Using Virtual

Memory with a Shared Segment

Operating System Concepts

ELF (Executable and Linkable

Format) on Linux System

Southeast University9.10Operating System Concepts

Chapter 9: Virtual Memory

◼Background

◼Demand Paging

◼Copy-on-Write

◼Page Replacement within a Process

◼Allocation of Frames among Processes

◼Thrashing and Working Set Model

◼Memory-Mapped Files

◼Allocating Kernel Memory

◼Other Considerations

◼Operating-System Examples

Southeast University9.11Operating System Concepts

Demand Paging

◼Bring a page into memory only when it is needed

◆Less I/O needed

◆Less memory needed

◆Faster response

◆More users

◼Page is needed  reference to it

◆invalid reference  abort

◆not-in-memory  bring to memory

◼Pure demand paging – never bring a page into

memory unless page will be needed

page-level swapping

Southeast University9.12Operating System Concepts

Valid-Invalid Bit

◼With each page table entry, a valid-invalid bit is

associated

◆1  in-memory, 0  not-in-memory

◼ Initially, valid-invalid bit is set to 0 on all entries.

◼During address translation,

if valid-invalid bit in page

table entry is 0

 page fault (缺页中断)

Southeast University9.13Operating System Concepts

Page Table When Some Pages

Are Not in Main Memory

Southeast University9.14Operating System Concepts

Steps in Handling a Page Fault

◼ If there is ever a reference to a page, first

reference will trap to OS kernel  page fault

◼OS looks at another table to decide:

◆Invalid reference  abort.

◆Just not in memory.

◼Get empty frame.

◼Swap page into frame

◼Reset tables,

validation bit = 1.

◼Restart instruction

Southeast University9.15

More Details about

Restarting an Instruction

◼The restart will require fetching instruction

again, decoding it again, fetching the two

operands again, and applying it again

◼Restarting Instruction after Page Fault

(Worst-Case Example)

C ← A + B

1. Fetch and decode the instruction (ADD)

2. Fetch A to a register

3. Fetch B to another register

4. ADD A and B

5. Store the sum in C (Page fault)

Restart

Southeast University9.16

Restarting Instruction after Page

Fault (Block-Move Example)
◼Difficulty arises when an instruction may

modify multiple virtual pages

◆For example, block move operation

◆Restart the whole operation?
✓What if source and destination overlap?

✓The source may have been modified

◼Solution:

◼Access both ends of both blocks before execution

◼Using temporal registers to hold the values of
overwritten locationsOperating System Concepts

Source block

Destination block Move

Southeast University9.17Operating System Concepts

Performance of Demand Paging

◼Page Fault Rate 0  p  1.0

◆if p = 0, no page faults

◆if p = 1, every reference is a fault

Probability p

Probability 1-p

Southeast University9.18Operating System Concepts

Performance of Demand Paging
◼Effective Access Time (EAT)

EAT = (1 – p) x memory access

+ p x (page fault overhead

[+swap page out]+swap page in

+ instruction restart overhead)

Page fault cost + Page

swapping in/out cost

Memory access cost

Southeast University9.19Operating System Concepts

Example of Demand Paging Performance

◼Memory access time = 1 microsecond

◼Swap Page Time = 10 millisec = 10000 microsec

◼Assume 50% of the time the page that is being

replaced has been modified and therefore needs

to be swapped out.

◼ Ignore the cost of restarting an instruction.

◼EAT = (1 - p) x 1 + p x (10000*50%+20000*50%)

= (1 - p) x 1 + p x (15000)

= 1 + 14999 x p (in microsecond)

Southeast University9.20Operating System Concepts

Chapter 9: Virtual Memory

◼Background

◼Demand Paging

◼Copy-on-Write

◼Page Replacement within a Process

◼Allocation of Frames among Processes

◼Thrashing and Working Set Model

◼Memory-Mapped Files

◼Allocating Kernel Memory

◼Other Considerations

◼Operating-System Examples

Southeast University9.21

复习Linux fork系统调用

◼问题：Linux fork()系统调用实现了什么功能,

返回值含义是什么？请问下面的代码一共输
出多少个“_”？请解释原因。

Operating System Concepts

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int main(void) {

int i;

for(i=0; i<2; i++) {

fork();

printf("_\n");

}

wait(NULL);

wait(NULL);

}
What if we remove the \n symbol? Give your reason.

Southeast University9.22

Copy-on-Write
◼Copy-on-Write (COW) allows both parent

and child processes to initially share the

same pages in memory

◆If either process modifies a shared page, only

then is the page copied

◼COW allows more efficient process creation

as only modified pages are copied

◼Free pages are allocated from a pool of

zero-fill-on-demand pages

◆Why do we need to zero-out a page before

allocating it to a process?

◆The pool should always have free frames for fast

demand page executionOperating System Concepts

Southeast University9.23Operating System Concepts

Before Process 1 Modifies Page C

After Process 1 Modifies Page C

Southeast University9.24

fork() and vfork()
◼vfork(), a variation of fork() system call,

has the parent suspend and the child without

copying the page table of the parent

◆Useful in performance-sensitive applications

where a child is created which then immediately

issues an execve().

◼ 以前的fork很低效，它创建一个子进程时，将会创建一个新的
地址空间，并且拷贝父进程的资源，而往往在子进程中会执
行exec调用，这样，前面的拷贝工作就是白费了。于是，设
计者就想出了vfork，它产生的子进程刚开始暂时与父进程共
享地址空间（其实就是线程的概念了）。因为这时候子进程
在父进程的地址空间中运行，所以子进程不能进行写操作，

并且在儿子“霸占”着老子的房子时候，要委屈父亲一下了
，让他在外面歇着（阻塞），一旦儿子执行了execve 或者
exit 后，相于儿子买了自己的房子了，这时候就相于分家了。Operating System Concepts http://linux.die.net/man/2/vfork

Southeast University9.25

An Example of fork() and vfork()

Operating System Concepts

int main() {

pid_t pid;

int cnt = 3;

pid = fork();

if(pid<0)

printf("error in fork!\n");

else if(pid == 0) {

cnt++;

printf("Child process %d, ",getpid());

printf("cnt=%d\n",cnt);

} else {

cnt++;

printf"Parent process %d,",getpid());

printf("cnt=%d\n",cnt);

}

return 0;

}

Execution Result:

Child process 5077, cnt=4

Parent process 5076, cnt=4

If we replace line 4 by pid = vfork(), then

Execution Result:

Child process 5077, cnt=4

Parent process 5076, cnt=1

Segmentation fault: 11

Question: If the cnt variable on stack is

shared between parent and child

processes, why do we still see cnt =1?

Answer: vfork() differs from fork() in

that the calling thread is suspended until

the child terminates (either normally by

exit() or abnormally after a fatal signal),

or it makes a call to execve(). Until that

point, the child shares all memory with

its parent, including the stack.

Question: What if we insert a command

exit(0) before the line “} else {” ?

http://blog.csdn.net/jianchi88/article/details/6985326

http://linux.die.net/man/2/fork
http://linux.die.net/man/2/_exit
http://linux.die.net/man/2/execve

Southeast University9.26Operating System Concepts

Chapter 9: Virtual Memory

◼Background

◼Demand Paging

◼Copy-on-Write

◼Page Replacement within a Process

◼Allocation of Frames among Processes

◼Thrashing and Working Set Model

◼Memory-Mapped Files

◼Allocating Kernel Memory

◼Other Considerations

◼Operating-System Examples

Southeast University9.27Operating System Concepts

What Happens if There are

no Free Frames?
◼Used up by process pages

◼Also in demand by the kernel, I/O buffers, …

◼How much to allocate to each?

◼Same page may be brought into memory

several times

◼Page replacement – find some page in

memory, but not really in use, swap it out

◆Algorithm: terminate? swap out? replace the page?

◆Performance: want an algorithm which will result in

minimum number of page faults

Southeast University9.28Operating System Concepts

Page Replacement

◼Prevent over-allocation of memory by

modifying page-fault service routine to

include page replacement.

◼Use modify (dirty) bit

to reduce the overhead

of page transfers – only

modified pages are written to disk.

◼Page replacement completes separation

between logical memory and physical

memory – large virtual memory can be

provided on a smaller physical memory.

Southeast University9.29Operating System Concepts

Need For Page Replacement

A

D

E

H

J

Southeast University9.30Operating System Concepts

Basic Page Replacement

1. Find the location of the desired page on disk.

2. Find a free frame:

➢ If there is a free frame, use it.

➢ If there is no free frame, use a page

replacement algorithm to select a victim frame

and swap it out

3. Read the desired page

into the free frame.

4. Update the page and

frame tables.

5. Restart the instruction.

Southeast University9.31Operating System Concepts

Page Replacement Algorithms
◼Key objective: Want the lowest page-fault rate

◼Evaluate algorithm by running it on a particular

string of memory references (reference string)

and computing the number of page faults.

◼ In all our examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

◼See program trace files on my course web page

◼Address sequence recorded for a certain program

Southeast University9.32Operating System Concepts

The Number of Page Faults

vs. The Number of Frames

Generally,

Southeast University9.33Operating System Concepts

First-In-First-Out (FIFO)

Page Replacement

3

◼Reference string: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3,

0, 3, 2, 1, 2, 0, 1, 7, 0, 1

◼ 3 frames (3 pages can be in memory at a

time per process)

7 7

0

7

0

1

Southeast University9.34Operating System Concepts

FIFO Page Replacement

3

Southeast University9.35Operating System Concepts

Belady’s Anomaly for

FIFO Algorithm
◼Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

◼ In all our examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

◼Where there are 3 frames (3 pages can be in

memory at a time per process), 9 page faults.

But when there are 4 frames, 10 page faults.

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

Southeast University9.36Operating System Concepts

Belady’s Anomaly for

FIFO Algorithm
◼FIFO Replacement – Belady’s Anomaly

◆Supposedly, more frames  less page faults

◆However, see the following illustration

Southeast University9.37Operating System Concepts

Optimal Algorithm

◼Replace the page that will not be used for the

longest period of time in future.

◼An example of allocating 4 frames

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

◼Need to know the pattern of future memory

accesses. So used only for measuring how well

your page replacement algorithm performs.

6 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

1

2

3

1

2

3

44

4

5

FIFO Algorithm Optimal Algorithm

Southeast University9.38Operating System Concepts

Optimal Page Replacement

◼Another example of allocating 3 frames

◼ Its idea is to replace the page that will not be

used for the longest period of time in future.

◼But how to know the future memory access

pattern? Only the past history is known.

3

Southeast University9.39

Least Recently Used (LRU) Algorithm

1

2

3

5

4

4 3

5

8 page faults,

better than FIFO (10 faults) and

worse than the optimal (6 faults)

6 page faults

1

2

3

1

2

3

44

4

5

Optimal Algorithm LRU Algorithm

Operating System Concepts
3

◼Replace the page that is the least recently used.

◼Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

◼Another Example of LRU

Southeast University9.40Operating System Concepts

LRU Algorithm Implementations

◼Counter implementation

◆Every page entry has a counter; every time

page is referenced through this entry, copy the

clock into the counter.

◆When a page needs to be changed, look at the

counters to determine which are to change.

Southeast University9.41Operating System Concepts

Use A Stack to Record The

Most Recent Page References

访问特定页面号之
后，调整栈里面顺
序的计算复杂度是
多少？ 是O(1)还
是O(n)？假设n是
栈里的页面个数。

◼Stack implementation – keep a stack of

page numbers in a doubly linked list:

◆When a page is referenced:

✓move it to the top

✓requires 6 pointers to be changed

◆No search for page replacement

Southeast University9.42

设计和实现O(1)计算复杂度的
LRU 缓存机制的数据结构

Operating System Concepts

◼问题：设计和实现一个 LRU（最近最少使用）的键值
对缓存结构，支持 get 和 put 操作，要求O(1)复杂度

◆get(key) - 如果 key 存在于缓存中，则获取 key 的 value（总
是正数），否则返回 -1。

◆put(key, value) - 如果 key

不存在，请设置或插入value。
当缓存达到容量时，它应该
在插入新项目之前使最近
最少使用的项目作废

◼分析：
◆需要使用的数据结构是哈希表（Hash Table）。基础的哈希表虽具备读写

key-value 数据的功能，但是 key 的存储是无序的。

◆而本题中当 LRU 存满且存储新key时，需要删除掉最久未使用的旧key。

◆所以，用哈希表和链表两个数据结构。当进行 set & get 操作时，只需把
当前节点调整到链表头部，而需要 pop 操作的时候，将链表尾部弹出。

Southeast University9.43

关于LRU算法的动手小实验

◼该O(1)复杂度的LRU问题来自于leetcode：
https://leetcode.com/problems/lru-cache

◼一个可能解法来自Github网站
https://github.com/lamerman/cpp-lru-cache

◼请用git clone同步该项目到本地，并把该代码
仓库编译运行起来。

◼提示：该代码需要gcc和cmake工具链编译。由
于引用了单元测试框架googletest，需要命令行
下的梯子代理才能解决googletest的下载问题。

Operating System Concepts

https://leetcode.com/problems/lru-cache
https://github.com/lamerman/cpp-lru-cache

Southeast University9.44

◼请问这段代
码中这个
iterator是什
么作用？

◼分析get和
put方法的
算法复杂度

Operating System Concepts

Southeast University9.45Operating System Concepts

◼ 这段代码中的put

方法任何情况都
首先push_front。

◼ 最后的if语句中再
判断是或否缓存
溢出；如果是，
则移除lru项目。

◼ 尝试将put代码逻
辑修改：首先判
断key是否存在；
存在则更新其val

并返回。下一步
插入新的<key,

val>对。先判断
缓存是否已满；
如果是，则移除
lru项目腾出空间
给新的键值对。

Southeast University9.46

LRU代码的改进方法
◼如果map中找不到的key，代码不用改变；如果

map中找到该key，首先将结点的value赋予新
值，然后使用splice函数将结点移动到链表头。

Operating System Concepts

Southeast University9.47

Problems of Previous LRU

Implementations

Operating System Concepts

◼As to the previous two LRU implementations,

◆Clock: Every page entry has a counter; every

time page is referenced through this entry, copy

the clock into the counter.

◆Stack: Whenever a page is referenced, it is

removed from the stack and put on the top.

◼The updating of the clock fields or stack must

be done for every memory reference

◼Would slow every memory access by a factor

of at least ten

Southeast University9.48Operating System Concepts

LRU Approximation Algorithms

◼Reference bit per page (Hardware maintained)

◆Each page is associated with a bit in the page table

◆Initially 0; When page is referenced, set the bit to 1.

◆Replace the one which is 0 (if one exists)

◼However, we do not know the order of use.

◼This information is the basis for many page-

replacement algorithms that approximate LRU

replacement

Southeast University9.49Operating System Concepts

LRU Approximation Algorithms
◼ Idea: Gain additional ordering information by

recording the reference bits at regular intervals

◼Additional-Reference-Bits Algorithm

◆Keep an 8-bit bytes for each page in main memory

◆At regular intervals, shifts the bits right 1 bit, shift

the reference bit into the lower-order bit

◆Interpret these 8-bit bytes as unsigned integers, the

page with lowest number is the LRU page

Southeast University9.50

An Example of Additional-

Reference-Bits Algorithm (1)

◼Assume the following page reference string,

where T marks the end of each time interval:

3, 2, 3, T, 8, 0, 3, T, 3, 0, 2, T, 6, 3, 4, 7

◼Assume there are 5 frames in memory, and

each frame has a Page field (P) and 4 used

bits (U3, U2, U1, and U0).

◼ Initial State

Operating System Concepts

P U3 U2 U1 U0

̶ 0 0 0 0

̶ 0 0 0 0

̶ 0 0 0 0

̶ 0 0 0 0

̶ 0 0 0 0

Southeast University9.51

An Example of Additional-

Reference-Bits Algorithm (2)

◼Assume the following page reference string:

3, 2, 3, T, 8, 0, 3, T, 3, 0, 2, T, 6, 3, 4, 7

◼During the first time interval, pages 3, 2, and

3 are referenced.

◼At the end of the first time interval, all U bits

are shifted right one position.Operating System Concepts

P U3 U2 U1 U0

3 1 0 0 0

2 1 0 0 0

̶ 0 0 0 0

̶ 0 0 0 0

̶ 0 0 0 0

P U3 U2 U1 U0

3 0 1 0 0

2 0 1 0 0

̶ 0 0 0 0

̶ 0 0 0 0

̶ 0 0 0 0

Southeast University9.52

An Example of Additional-

Reference-Bits Algorithm (3)

◼Assume the following page reference string:

3, 2, 3, T, 8, 0, 3, T, 3, 0, 2, T, 6, 3, 4, 7

◼During the second time interval, pages 8, 0,

and 3 are referenced.

◼At the end of the second time interval, all U

bits are shifted right one position.Operating System Concepts

P U3 U2 U1 U0

3 1 1 0 0

2 0 1 0 0

8 1 0 0 0

0 1 0 0 0

̶ 0 0 0 0

P U3 U2 U1 U0

3 0 1 1 0

2 0 0 1 0

8 0 1 0 0

0 0 1 0 0

̶ 0 0 0 0

Southeast University9.53

An Example of Additional-

Reference-Bits Algorithm (4)

◼Assume the following page reference string:

3, 2, 3, T, 8, 0, 3, T, 3, 0, 2, T, 6, 3, 4, 7

◼During the third time interval, pages 3, 0,

and 2 are referenced.

◼At the end of the third time interval, all U bits

are shifted right one position.Operating System Concepts

P U3 U2 U1 U0

3 1 1 1 0

2 1 0 1 0

8 0 1 0 0

0 1 1 0 0

̶ 0 0 0 0

P U3 U2 U1 U0

3 0 1 1 1

2 0 1 0 1

8 0 0 1 0

0 0 1 1 0

̶ 0 0 0 0

Southeast University9.54

An Example of Additional-

Reference-Bits Algorithm (5)

◼Assume the following page reference string:

3, 2, 3, T, 8, 0, 3, T, 3, 0, 2, T, 6, 3, 4, 7

◼During the fourth time interval, pages 6, 3, 4,

and 7 are referenced.

Operating System Concepts

P U3 U2 U1 U0

3 1 1 1 1

2 0 1 0 1

4 1 0 0 0

0 0 1 1 0

6 1 0 0 0

After pages 6, 3, 4 are referenced,

page 8 has been replaced by 4

http://www2.cs.uregina.ca/~hamilton/courses/330/notes/memory/page_replacement.html

P U3 U2 U1 U0

3 1 1 1 1

2 0 1 0 1

8 0 0 1 0

0 0 1 1 0

6 1 0 0 0

Southeast University9.55

An Example of Additional-

Reference-Bits Algorithm (6)

◼Assume the following page reference string:

3, 2, 3, T, 8, 0, 3, T, 3, 0, 2, T, 6, 3, 4, 7

◼During the fourth time interval, pages 6, 3, 4,

and 7 are referenced.

Operating System Concepts

P U3 U2 U1 U0

3 1 1 1 1

2 0 1 0 1

4 1 0 0 0

0 0 1 1 0

6 1 0 0 0

P U3 U2 U1 U0

3 1 1 1 1

7 1 0 0 0

4 1 0 0 0

0 0 1 1 0

6 1 0 0 0

After page 7 is referenced, page

2 has been replaced by 7

http://www2.cs.uregina.ca/~hamilton/courses/330/notes/memory/page_replacement.html

Southeast University9.56Operating System Concepts

LRU Approximation Algorithms
◼Second-Chance Algorithm (FIFO+reference bit)

◆When a page has been selected for replacement, we

inspect its reference bit.

◆If the value is 0, we proceed to replace this page;

◆If the reference bit is set to 1, give the page a second

chance and move on to pick the next FIFO page.

◆When a page gets a second chance, its reference bit

is cleared, and its arrival time is reset to current time.

Southeast University9.57Operating System Concepts

LRU Approximation Algorithms

◼Second-Chance Algorithm (clock+reference bit)

◆Given a circular queue, called clock

◆If page to be replaced (in clock order) has

reference bit = 1, then:

✓set reference bit 0.

✓leave page in memory.

✓replace next page (in

clock order), subject

to same rules.

Southeast University9.58Operating System Concepts

Counting Algorithms

◼Keep a counter of the number of references

that have been made to each page.

◼Least Frequently Used (LFU) Algorithm:

replaces page with the smallest count.

◼Most Frequently Used (MFU) Algorithm:

based on the argument that the page with

the smallest count was probably just brought

in and has yet to be used.

Southeast University9.59Operating System Concepts

Chapter 9: Virtual Memory

◼Background

◼Demand Paging

◼Copy-on-Write

◼Page Replacement within a Process

◼Allocation of Frames among Processes

◼Thrashing and Working Set Model

◼Memory-Mapped Files

◼Allocating Kernel Memory

◼Other Considerations

◼Operating-System Examples

Southeast University9.60Operating System Concepts

Allocation of Frames among Processes
◼Each process needs a minimum number of

pages.

◼Example: IBM 370 – 6 pages to handle SS
MOVE instruction:

◆instruction is 6 bytes, might span 2 pages.

◆2 pages to handle from.

◆2 pages to handle to.

◼ If n-level indirect addressing is allowed

◆n+1 frame needed

Southeast University9.61Operating System Concepts

Fixed Allocation

◼Two major allocation schemes.

◆fixed allocation

◆priority allocation

◼Equal allocation – e.g., if 100 frames and 5
processes, give each process 20 pages.

◼Proportional allocation – Allocate pages to a
process according to the size of the process.

m
S

s
pa

m

sS

ps

i
ii

i

ii

==

=

=

=

 for allocation

frames of number total

 process of size

Southeast University9.62Operating System Concepts

Priority Allocation

◼Use a proportional allocation scheme using
priorities rather than size.

◼ If process Pi generates a page fault,

◆select for replacement one of its frames.

◆select for replacement a frame from a process

with lower priority number.

Southeast University9.63Operating System Concepts

Global vs. Local Allocation

◼Global replacement – process selects a
replacement frame from the set of all
frames; one process can take a frame from
another.

◼Local replacement – each process selects
from only its own set of allocated frames.

Southeast University9.64Operating System Concepts

Chapter 9: Virtual Memory

◼Background

◼Demand Paging

◼Copy-on-Write

◼Page Replacement

◼Allocation of Frames among Processes

◼Thrashing and Working Set Model

◼Memory-Mapped Files

◼Allocating Kernel Memory

◼Other Considerations

◼Operating-System Examples

Southeast University9.65Operating System Concepts

Thrashing
◼ If a process does not have “enough” frames,

the page-fault rate is very high. This leads to:

◆low CPU utilization.

◆operating system thinks that it needs to increase

the degree of multiprogramming.

◆another process added to the system.

◼Thrashing  a process is busy swapping pages

in and out.

Southeast University9.66Operating System Concepts

◼Why does paging work?
Locality model

◆Process migrates from one locality to another.

◆Localities may overlap.

◼Why does thrashing occur?
 size of locality > total physical memory size

Thrashing

Southeast University9.67Operating System Concepts

Locality In Memory-Reference Pattern

Locality in

a memory-

reference

pattern

Southeast University9.68Operating System Concepts

Working-Set Model

◼The pages used by a process within a window
of time are called its working set

◼  size of working-set window  a fixed number
of page references. Example: 10000 instructions

◼The working-set model is based on the
assumption of locality

◼Changes continuously - hard to maintain an
accurate number

◼How can the system use this number to give
optimum memory to the process?

…2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 3 4 4 4 1 3 2 3 4

WS(t1) = {1,2,5,6,7} WS(t2) = {3,4}

Southeast University9.69Operating System Concepts

Working-Set Model (cont.)

◼ defines the size of working set window

◼If a page is in active use, it will be in the working set

◼If it is not in the use, it will be dropped from the
working set

◼Working-set is the approximation of the
program’s locality

◼The accuracy of the working set depends on
the selection of the 

…2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 3 4 4 4 1 3 2 3 4

WS(t1) = {1,2,5,6,7} WS(t2) = {3,4}

Southeast University9.70Operating System Concepts

Working-Set Model (cont.)
◼ Important property of the working set is the size

◼Compute working set size for each process Pi

in the system, i.e., WSSi

◼WSSi (working set of process Pi) =
total number of pages referenced in the most
recent  (varies in time)

◆if  = , the window will cover the entire program.

◆if  too small, it will not encompass entire locality.

◆if  too large, it will encompass several localities.

…2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 3 4 4 4 1 3 2 3 4

WS(t1) = {1,2,5,6,7} WS(t2) = {3,4}

Southeast University9.71Operating System Concepts

Working-Set Model (cont.)
◼The operating system monitors the working-

set WSSi of each process Pi, and allocates
them enough frames

◼ if D > m  Thrashing.

◼D =  WSSi  total demand
in number of frames

◼m  total physical memory size

◼Policy: if D>m, suspend one of the processes.

D > m

so many processes in memory

that not enough page frames are

allocated to each process to hold

their current working set of pages

Southeast University9.72Operating System Concepts

Keeping Track of the Working Set WSSi

◼Approximate with interval timer + a reference bit

◼Example:  = 10,000

◆Timer interrupts after every T=5,000 time units.

◆Keep in memory /T=2 bits for each page.

◆Whenever a timer interrupts,

copy and set the values of

reference bits of all pages to 0.

◆If any one of the bits in memory

= 1  page in working set.

◼ Improvement: interrupt every

T=1,000 time units, and keep

/T=10 bits for each page

Southeast University9.73Operating System Concepts

Page-Fault Frequency Scheme

◼Establish “acceptable” page-fault rate.

◆If actual rate is too low, process loses frame.

◆If actual rate is too high, process gains frame.

Directly measure and control the page-fault rate to prevent thrashing

Southeast University9.74

Working Sets and Page Fault Rates

Operating System Concepts

◼Direct relationship between working set of a

process and its page-fault rate

◼Working set changes over time

◼Peaks and valleys over time

Transition from one working set to another

Southeast University9.75Operating System Concepts

Chapter 9: Virtual Memory

◼Background

◼Demand Paging

◼Copy-on-Write

◼Page Replacement

◼Allocation of Frames

◼Thrashing and Working Set Model

◼Memory-Mapped Files

◼Allocating Kernel Memory

◼Other Considerations

◼Operating-System Examples

Southeast University9.76Operating System Concepts

Memory-Mapped Files

◼Memory-mapped file I/O allows a part of virtual

address space to be logically associate with a file

◼File I/O to be treated as routine memory access by

mapping a disk block to a page in memory.

Southeast University9.77Operating System Concepts

Memory-Mapped Files

◼ A file is initially read using demand paging.

◼A page-sized portion of the file is read from the file

system into a physical page.

◼Subsequent reads/writes to/from the file are treated as

ordinary memory accesses.

◼ Simplifies file access

by treating file I/O

through memory

rather than read()

write() system calls.

Southeast University9.78Operating System Concepts

Memory-Mapped Files

◼ Also allows several processes to map the same

file allowing the pages in memory to be shared.

Southeast University9.79Operating System Concepts

Memory-Mapped Shared Memory

◼ Processes request the shared segment

◼OS maintains the shared segment

◼ Processes can attach/detach the segment

◼ Can mark segment for deletion on last detach

Southeast University9.80Operating System Concepts

Chapter 9: Virtual Memory

◼Background

◼Demand Paging

◼Copy-on-Write

◼Page Replacement

◼Allocation of Frames

◼Thrashing and Working Set Model

◼Memory-Mapped Files

◼Allocating Kernel Memory

◼Other Considerations

◼Operating-System Examples

Southeast University9.81Operating System Concepts

Allocating Kernel Memory

◼Treated differently from user memory

◼Often allocated from a free-memory pool

◆Kernel requests memory for structures of

varying sizes

◆Some kernel memory needs to be contiguous

◼Question: Can kernel memory management

adopt contiguous memory allocation

methods, similar to user-space memory

management?

Southeast University9.82Operating System Concepts

Buddy System
◼Allocates memory from fixed-size segment

consisting of physically-contiguous pages

◼Memory allocated using power-of-2 allocator

◆Satisfies requests in units sized as power of 2

◆Request rounded up to next highest power of 2

Southeast University9.83Operating System Concepts

Buddy System
◆This algorithm is used to give best fit

✓Example – If the request of 25Kb is made then block of size

32Kb is allocated.

◆When smaller allocation needed than available, current

chunk split into two buddies of next-lower power of 2

✓Continue until appropriate sized chunk available

Southeast University9.84

Example

Operating System Concepts

Southeast University9.85Operating System Concepts

Advantages of Buddy System
◼ In comparison to other simpler techniques such

as dynamic allocation, the buddy memory

system has little external fragmentation.

◼ The buddy memory allocation system is

implemented with the use of a binary tree to

represent used or unused split memory blocks.

◼ The buddy system is very fast to allocate or

deallocate memory.

◼ In buddy systems, the cost to allocate and free a

block of memory is low compared to that of

best-fit or first-fit algorithms.
https://www.geeksforgeeks.org/operating-system-allocating-kernel-memory-

buddy-system-slab-system/

Southeast University9.86Operating System Concepts

Buddy System Allocator

Southeast University9.87Operating System Concepts

◼Alternate strategy: With kernel, a considerable

amount of memory is allocated for a finite set of

object types, such as process descriptors, file

descriptors and other common objects.

◼Slab is one or more physically contiguous pages

◼Cache consists of one or more slabs

◼Single cache for each unique kernel data structure

◆Each cache filled with objects – instantiations of the

data structure

Slab Allocator

Southeast University9.88

Slabs and Caches

Operating System Concepts

Southeast University9.89Operating System Concepts

Slab Allocator

◼When cache created, filled with objects marked

as free; When structures stored, objects

marked as used

◼ If slab is full of used objects, next object

allocated from

empty slab

◆If no empty slabs,

new slab allocated

◼Benefits include

no fragmentation,

fast memory

request satisfaction

Southeast University9.90Operating System Concepts

Chapter 9: Virtual Memory

◼Background

◼Demand Paging

◼Copy-on-Write

◼Page Replacement

◼Allocation of Frames

◼Thrashing and Working Set Model

◼Memory-Mapped Files

◼Allocating Kernel Memory

◼Other Considerations

◼Operating-System Examples

Southeast University9.91Operating System Concepts

Other Issues -- Prepaging

◼Prepaging (预调页)

◆To reduce the large number of page faults that

occur at process startup

◆Prepage all or some of the pages a process will

need, before they are referenced

◆But if prepaged pages are unused, I/O and memory

was wasted

◆Assume s pages are prepaged and α of the pages

is used

✓Is the benefit of s * α save pages faults larger or smaller

than the cost of prepaging s * (1- α) unnecessary pages?

✓α near zero  prepaging loses

Southeast University9.92Operating System Concepts

Other Issues – Page Size
◼Continue: Windows Prefetch

◆introduced in Windows XP and used in Windows 10

◆stores specific data about the applications you run in

order to help them start faster

◆.pf files in Windows/Prefetch

◼Page size selection must take into consideration

◆fragmentation

◆table size

◆I/O overhead

◆locality

Southeast University9.93Operating System Concepts

Other Issues – TLB Reach

◼TLB Reach - The amount of memory accessible

from the TLB

◼TLB Reach = (TLB Size) X (Page Size)

◼ Ideally, the working set of each process is

stored in main memory and its corresponding

page table items is in TLB. Otherwise, a high

degree of two-memory accesses

◼ Increase the Page Size

◼Provide Multiple Page Sizes

◆This allows applications that require larger page

sizes the opportunity to use them without a

significant increase in fragmentation

Southeast University9.94Operating System Concepts

Other Issues – Program Structure
◼Program structure：
◆int A[][] = new int[2048][1024];

◆Each row is stored in one page

◆Program 1 for (int j = 0; j < A.length; j++)

for (int i = 0; i < A.length; i++)

sum += A[i,j];

Assume only one page can be held in mem,

2048 x 1024 page faults

◆Program 2 for (int i = 0; i < A.length; i++)

for (int j = 0; j < A.length; j++)

sum += A[i,j];

◆Assume only one page can be held in mem,

2048 page faults

Southeast University9.95Operating System Concepts

Other Issues – I/O interlock
◼ I/O Interlock – Pages must sometimes be

locked into memory

◼Consider I/O - Pages that are used for

copying a file from a device must be locked

from being selected for eviction by a page

replacement algorithm

Why Frames Used For I/O

Must Be Kept in Memory?

Southeast University9.96Operating System Concepts

Chapter 9: Virtual Memory

◼Background

◼Demand Paging

◼Copy-on-Write

◼Page Replacement

◼Allocation of Frames

◼Thrashing and Working Set Model

◼Memory-Mapped Files

◼Allocating Kernel Memory

◼Other Considerations

◼Operating-System Examples

Southeast University9.97Operating System Concepts

Operating System Examples

◼Windows XP

◼Solaris

Southeast University9.98Operating System Concepts

Windows XP

◼Uses demand paging with clustering.

Clustering brings in pages surrounding the

faulting page.

◼Processes are assigned working set minimum

and working set maximum

◼Working set minimum is the minimum number

of pages the process is guaranteed to have in

memory

Southeast University9.99Operating System Concepts

Windows XP (Cont.)

◼A process may be assigned as many pages up

to its working set maximum

◼When the amount of free memory in the system

falls below a threshold, automatic working set

trimming is performed to restore the amount of

free memory

◼Working set trimming removes pages from

processes that have pages in excess of their

working set minimum

Southeast University9.100Operating System Concepts

Solaris

◼Maintains a list of free pages to assign faulting

processes

◼ Lotsfree – threshold parameter (amount of free

memory) to begin paging

◼Desfree – threshold parameter to increasing

paging

◼Minfree – threshold parameter to being

swapping

Southeast University9.101Operating System Concepts

Solaris (Cont.)

◼Paging is performed by pageout process

◼Pageout scans pages using modified clock

algorithm

◼Scanrate is the rate at which pages are

scanned. This ranges from slowscan to

fastscan

◼Pageout is called more frequently depending

upon the amount of free memory available

Southeast University9.102Operating System Concepts

Solaris 2 Page Scanner

