Chapter 9: Virtual Memory

SRR

AT SRR TR ALk 2125
. csgjxiao@seu.edu.cn

S T1: https://csgjxiao.github.io/PersonalPage

L 1h: 025-52091022

e,_t‘—?L_., Chapter 9: Virtual Memory

m Background

® Demand Paging

m Copy-on-Write

B Page Replacement within a Process

m Allocation of Frames among Processes
® Thrashing and Working Set Model

® Memory-Mapped Files

m Allocating Kernel Memory

m Other Considerations

m Operating-System Examples

Operating System Concepts 9.2 Southeast University B}#{Q
S

et‘-?k Background

® Virtual memory is different from the idea of
memory virtualization. The former Is to
abstract disk as memory. The later is to separate
memory address spaces of all user processes.

Virtual memory Physical
{per process) memory

i L Virtual Memory Virtual Memory Physical Memory
et Process #1 Process #2

virtual
memory

memory virtualization

m We previously talked about an entire proc
swapplng Into or out of main memory e‘ing

Operating System Concepts 9.3 Southeast Uni

L-.’ "

, _ Background -
& operatin \\———// . \ - >
— process P, ' & | 4® 5 6é 7[]
k\ljswapout W J 8] o[J10[]1]
process P, ///) -l
@}swapin | g page in 16|:|T?1819
—— L C Sl 77/ e 20 (21 (22 (023
user - ____f,-/ : - »
space b cking ston //}[/ ‘;aac;tor;
" process-level swapping .. page-level swapping

eeeee

lvlrtual memory: Separation of logical memory
from physical memory by page-level swapping

Only part of the program needs to be kept in memor
for execution. Used pages can be swapped out.

Logical address space can therefore be much larger
than physical address space.

More programs can be run at the same time. 1
red @854/ O 1S Needed than loading er-swapping }#‘Q

Two Kinds of Implementation
$CTA for Virtual Memory
® Virtual memory can be implemented via:
¢Demand paging (F%7HT1)
¢ Demand segmentation (%7 HED

page 0

page 1

page 2 <
e e

E B A

\ | N mEm
e I S DE N

—ill H B

EEE
= -

page v physical
. memory

) virtual

Operating System Concepts memory

[\

- : - = XS x
)] S
‘e R HATE (AT S B) AL T e
= 3,
> q RIFREIAE(L)

on Windowsw%%w =
WL H PelB gzzess
m hiberfil.sys {REE X {42 2 AR Y F 28 55 S e

Windows {ABRAT A F mms /] ke
5 AREABH =
mirror copy for physical e =
memory data on disk C S e
same size as the physical |
memory L
m pagefile.sys J\EKFI:EJ - . -

Depending on the version of Windows

E* 1"5 ?%Wﬁ you're using, you have several options

Z~ A& for conserving power when you're not
X}ﬁyﬂjﬁ EI,] using your PC. Obviously, you can just

o~ shut it down. But, you can alsg,send i
m swapfile.sys X/ H T30 He ! *; '

into a sleep or hibernate mode \whe

Universal Apps Eﬁ*ﬁ?@é&?& uses dramatically less power {@&?

Operating System Concepts Southeast

available direkR™ ien vou needit.

https://www.sysgeek.cn/swapfile-sys/

edL,Pagmg based V|rtual Memory

B Temporary storage for
physical memory data

& Downloads

It's.Always.Sunay.in.
move controller
] []
Move controlier pic
OI l IS O prOVI e I I lore (((((e

@& OneDrive

“virtual® memory for

SRECYCLEBIN

rrrrrrrr

ProgramData

icati ‘Linux SWAP
applications parttion
m On Windows, in the root ™ W]
directory, C:/pagefile.sys \ T E
m On Linux, SWAP partition : — E =
Page fault EEE

® may be greater than the o ey

size of physical memory ==
ey Typlcally SWAP 2 * ‘Pﬂxk

Virtual Address Space
with Segmentation

Max function parameters; ELF (Executable and Linkable
— |ocal variables: Format) on Linux System
. return addresses Kernel
. E -] Environment
Stack
¢ s] Arguments
} unused address space e
s Interpreter
// ¢ Memgry lib1
. " — mapping ibl.so
will be used whenever | [, ara .
needed ||
8! o
malloc() allocates space £ 2 e &
T~ __— from here (dynamic 2! 3 e
heap <« | I . E | Data section 1
memory allocation) e -
. — Data section 2
dgata T global data (variables) o
~— Code section 1
: N Code
code i »> Code section 2
0 Address 0x0 T Binary

Virtual memory
Operating System Concepts 9.8 Southeast University l" " .
S

stack

l

stack

shared library

shared
pages

1

shared library

heap

data

code

Operating System Concepts

heap

data

code

9.9

Shared Library Using Virtual
“Memory with a Shared Segment

ELF (Executable and Linkable

Format) on Linux System

Kernel
Environment
Stack
[Arguments
v
Memory Interpreter
5 mapping lib1.so
; area
: ’_; lib2.so0
3 : s
g- :) 4 I
> S Heap
€ B
o, QO
o' L Header
A
E\ Data section 1
\ '
; Data
' — Data section 2
~— Code section 1
\ Code
_____ » Code section 2

Address Ox0

Virtual memory

Southeast University

Binary

o

4‘,_“—1‘3 Chapter 9: Virtual Memory

B Background

B Demand Paging

m Copy-on-Write

B Page Replacement within a Process

m Allocation of Frames among Processes
®m Thrashing and Working Set Model

B Memory-Mapped Files

m Allocating Kernel Memory

B Other Considerations

B Operating-System Examples \r‘?‘ﬂ@j

Operating System Concepts 9.10 Southeast University

?'—1‘1 Demand Paging

B Bring a page into memory only when it is needed

_ess I/O needed = w{ T
_ess memory needed RN B
— W : g[] 9[w[dn]
Caster response i .o

More users Az J* PoeoeD)
: N/ eckingstore
m Page Is needed = reference to it “_
iInvalid reference = abort page-level swapping

not-in-memory = bring to memory

B Pure demand paging — never bring a page into
memory unless page will be needed

Operating System Concepts 9.11 Southeast University B}#{Q
S

u{’ Valid-Invalid Bit
m With each page table entry, a valid-invalid bit is

associated
¢1 = in-memory, 0 = not-in-memory

m |nitially, valid-invalid bit is set to O on all entries.

TLE
Time Since Last
Access
1 Dby 12 i
1 Ox7 d4 i

m During address translation,
if valid-invalid bit in page -

table entry is O T P e ok

= page fault (H* 73 H [#r)

Operating System Concepts 9.12

‘ Page Table When Some Pages
e Are Not in Main Memory

‘ Page 0 o —
1 jigg- e .
Page 1 ; } g -
Page 2 3~ Page0 | Page
Dage 3 | S— unavail " %
age — >
‘Page 4 move | |- o00% | TA083
) 1 unavalil /page/s Page 4
I Page 3
:f Page 1 lpage n-2 Page n-1
page table Physical memory

page n-2 / —_

page n-1 all pages of program sitting on physical Disk

Virtual memory
Operating System Concepts 9.13 Southeast University w

EE—

,,;Q'L"Steps in Handling a Page Fault

m |f there Is ever a reference to a page, first
reference will trap to OS kernel = page fault

® OS looks at another table to decide:
Invalid reference = abort.

Just not in memory. = N
m Get empty frame. ® \E
B Swap page into frame % ull
B Reset tables, i [
validation bit = 1. o 1o
B Restart instruction

Operating System Concepts

”QL-‘* Restarting an Instruction
® The restart will require fetching instruction
again, decoding it again, fetching the two
operands again, and applying it again

m Restarting Instruction after Page Fault
(Worst-Case Example)

-etc
~-etc
~-etc

More Detalls about

C—A+B
n and decode the instruction (ADD)
N A to a register

N B to another register Restart

ADD A and B B
Store the sum in G:(Page faut) s Sy

R %Restarting Instruction after Page

“Fault (Block-Move Example)
m Difficulty arises when an instruction may

modify multiple virtual pages pestination block_—ove
For example, block move operation

Restart the whole operation?
v"What if source and destination overlap?

v"The source may have been modified Source block
Page 3 ~ Page4

MVS: move up to 256 |
characters from source | |A|B|C| D| E| H ...

to target «—— source ——

® Solution: e target —

Access both ends of both blocks before exegutio

Using temporal registers to hold the values 5%, §
Operating Systemm@rwritten Iocation816 Southeast University 4 ..1&4

g,g{’Performance of Demand Paging

mPage Fault Rate 0<p <1.0
©¢if p =0, no page faults
©if p = 1, every reference is a fault

: Swap space of Process
Logical Address

Page No. | Offset

N Probability p
Physical Memory
Page Table 2.7 &Eﬂv o WM
V/i |Frameno.| Pese r 1] w2
1* P

Tablf; — 2 w3
Z\L
3| © B >| mmu
Probability 1-p
2ss| 1 250 55| Wi00

Valid Bit Page
Operating Sy« Frame

94 Performance of Demand Paging
m Effective Access Time (EAT)

EAT = (1 — p) X memory access
+ p X (page fault overhead
[+swap page out]+swap page In
+ instruction restart overhead)

Swap space of Process

Logical Address

PagaNo. | Offset Page fault cost + Page
N swapping in/out cost
Physical Memory
Page Table - X;EY o) Wi
V/i |Frameno.| Pese Mai\ager 1] wa
Table 2 w3
1 2 —tipdating= Page Fault
2 [N
3| O 3 F >| mmu
Memory access cost
255 1 250 -.5| wioo

Valid Bit Page
Operating Sy Frame

Eﬁh;ple of Demand Paging Performance

® Memory access time = 1 microsecond
m Swap Page Time = 10 millisec = 10000 microsec

® Assume 50% of the time the page that is being
replaced has been modified and therefore needs
to be swapped out.

m |gnhore the cost of restarting an instruction.

BEAT=(1-p)x1+px(10000*50%+20000*50%
=(1-p)x1+px(15000)
=1+14999xp (In mlcrosecond)

Operating System Concepts 9.19 Southeast Uni 1}#‘/@\?

?’Q'L,, Chapter 9: Virtual Memory

m Background

® Demand Paging

m Copy-on-Write

B Page Replacement within a Process

m Allocation of Frames among Processes
® Thrashing and Working Set Model

® Memory-Mapped Files

m Allocating Kernel Memory

m Other Considerations

m Operating-System Examples

Operating System Concepts 9.20 Southeast University B}#.{Q
S

QQL £ JJLinux forkR4tiE H

mo)&&: Linux fork()%%y& ISCIN T 24 jJHl:.,
REEES N 214 2150 T EAeE—HiE
HZ 04" 72 1|%ﬁ=|=5F=|=Jﬁ'ﬂ % o

#include <stdio.h>
finclude <stdlib.h> e
#include <unistd.h>

parent child
int main (void) {
' . /1i=0; //i=0;
int l ! . . printf(“_\n"); printf(“_\n”);
for (1=0; 1<2; i++) { i++; //i=1; i++; //i=1;
fork(); fork(); fork();
printf (" \1’1 ") . parent child l parent child
} //i=1; //i=1; //i=1; //i=1;
: . printf(“_\n"); printf(“_\n"); printf(“_\n"); printf(“_\n");
VVEi?_t: (NULL) ; i++; //i=2; i++; //i=2; i++; //i=2; i++; //i=2;
walt (NULL) ’ return; return; return; return;
} What if we remove the \n symbol? Give your reason. &}iﬂ@
Operating System Concepts 9.21 Southeast University 4 3)

Q.

& Copy-on-Write
mpy-on-Write (COW) allows both parent

and child processes to Initially share the
same pages in memory
If either process modifies a shared page, only
then is the page copied
B COW allows more efficient process creation
as only modified pages are copied

B Free pages are allocated from a pool of
zero-fill-on-demand pages

Why do we need to zero-out a page before
allocating it to a process?

The pool should always have free frames for}@?

Southeast Uni

R sity - - ~
getffana paade execution - TN

Operating Sy

{%ﬂrore Process 1 Modifies Page C

physical
process, memory process,

_,—> page A (<

[— pageB — |
» page C —1

After Process 1 Modifies Page C

physical
process; memory process,

_,—» page A <

~ L——> pageB e B

page C —]

> Copy of page C

Operating System Conce

Operatingé)ssﬁrf a-, Ejts E N4 E a iﬁ LY ’//l Sk

Q.
-

fork() and vfork()
fexk (), avariation of fork () system call,

has the parent suspend and the child without
copying the page table of the parent

Useful In performance-sensitive applications
where a child Is created which then immediately

ISSues an execve () .

CLET BIforkiRAERYL, EEIE— TN, BSalE—1 0 n
k28], I HE DACHMAER IR, MR EE R S
iTexectH, XF, WIEME N T/ERLEATRT. T2, &
T AT T vfork, AT RENIT IR E B S A EERE S
FEHHE A E] (LS SRS T jjﬁﬁﬂlﬁ%?ﬂiﬁh
EAC AR bk 23 (e R iz AT, AL RE A Re b T 5 #1E,

FFHAELT B LTI TR, BRER T
, ARBAESNIRRE (PR3 ~ajuﬁmrexecve%%‘,@j

s,“.h i}i&'%j liE; 2 “

gg% An Example of fork() and vfork()

iInt main() {
pid_t pid;
Int cnt = 3;
pid = fork();
if(pid<0)
printf("error in fork\n");
else if(pid == 0) {
cnt++;

printf("Child process %d, ",getpid());

printf("cnt=%d\n",cnt);
} else {
cnt++;

printf"Parent process %d,",getpid());

printf("cnt=%d\n",cnt);
}

return O;

}

Execution Result:
Child process 5077, cnt=4
Parenispeacesss5076, cnt=4

9.25

If we replace line 4 by pid = vfork(), then
Execution Result:

Child process 5077, cnt=4

Parent process 5076, cnt=1
Segmentation fault: 11

Question: If the cnt variable on stack is
shared between parent and child
processes, why do we still see cnt =17
Answer: vfork() differs from () in
that the calling thread is suspended until
the child terminates (either normally by
() or abnormally after a fatal signal),
or it makes a call to (). Until that
point, the child shares all memory with
its parent, including the stack.

Question: What if we insert a ‘inm

exit(0) before the line “} else {" 2 ?%Q

Southeast University

http://linux.die.net/man/2/fork
http://linux.die.net/man/2/_exit
http://linux.die.net/man/2/execve

?‘4‘3 Chapter 9: Virtual Memory

m Background

® Demand Paging

m Copy-on-Write

B Page Replacement within a Process

m Allocation of Frames among Processes
® Thrashing and Working Set Model

® Memory-Mapped Files

m Allocating Kernel Memory

m Other Considerations

m Operating-System Examples

Operating System Concepts 9.26 Southeast University BH.{Q
S

edl What Happens if There are
— no Free Frames?

B Used up by process pages

® Also in demand by the kernel, I/O buffers, ...
B How much to allocate to each?

B Same page may be brought into memory
several times

m Page replacement — find some page In
memory, but not really in use, swap It out
Algorithm: terminate? swap out? replace the page?

Performance: want an algorithm which will result |
minimum number of page faults

Operating System Concepts 9.27 Southeast Univ 1}#‘/@\?

Q,QL,, Page Replacement

m Prevent over-allocation of memory by
modifying page-fault service routine to
iInclude page replacement.

LB Page Table Physical Memory
8 Page Frames

m Use modify (dirty) bit ==+ . o o
to reduce the overhead
of page transfers — only
modified pages are written to disk.

B Page replacement completes separation
between logical memory and physical
memory — large virtual memory can be \P)

~provided on a smaller-physicakmemory. Wﬁi

i Need For Page Replacement

valid—invalid

PC —_— 3 |v

2| J 4 |v 2| D
5 1V
3 M i 3 H B D
logical memory ~ Page table 4| load M
for user 1 for user 1
5/ J E
6| A A
; ; H M
valid—invalid 7 E
0 A bit
frame % ¥ physical J
1 B 6 |v memory w
2| D |
2 |v
3 E 7 v

logical memory page table
for user 2 for user 2

Operating System Concepts 9.29 Southeast University

ecfi Basic Page Replacement
d “4,
1. Find the location of the desired page on disk.

2. Find a free frame:
> If there Is a free frame, use It.

» If there Is no free frame, use a page
replacement algorithm to select a victim frame

and Swap |t OUt frame\valid/—invalidbit o
. . = 00 4
3. Read the desired page — w
into the free frame. oo =T
4.Update the page and == =5 ‘@\\\D
frame tables.
] . - i
5. Restart the instruction.

Operating System Concepts 9.3 memory

Q.
'

&¥e.Page Replacement Algorithms

m Key objective: Want the lowest page-fault rate

m Evaluate algorithm by running it on a particular
string of memory references (reference string)
and computing the number of page faults.

® |n all our examples, the reference string Is
1,2,3,4,1,2,5,1, 2, 3, 4,5.
B See program trace files on my course web page

Address sequence recorded for a certain program
- 0100, 0432, 0101, 0612, 0102, 0103, 0104, 0611, 0102,
0103, 0601, 0102, 0104, 0609, 0100, 0105

- Page size = 100 = reference string 1,4, 1, 6,1, 6, 1, \é
6,1,6,1 }gﬁé\f

The Number of Page Faults
vSs. The Number of Frames

16

n 14 \
E 1
3 12 Generally,
() \
& 10
a
S 8 \\
g " \\
g -— .
C4 e ——
2
1 2 3 4 5 6

number of frames

Operating System Concepts 9.32 Southeast University

(% First-In-First-Out (FIFO)
Ak 4 Page Replacement
m Reference string: 7,0, 1, 2,0, 3,0, 4, 2, 3,
0,321,20170,1
m 3 frames (3 pages can be in memory at a
time per process)

reference string
7 01 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

1|77
0((0

3 page frames

Operating System Concepts 9.33 Southeast University ‘)2:#.{&\?
S

FIFO Page Replacement

reference string
7 01 2 0 3 0 4 2 3 06 3 2 1 2 0 1

7 |7| |7| |2 2(|2| |4 |4| |4| |O 0 |0
0| |0| (O 3| [3] [3] [2] [2] [2 1| |1
1 |1 1 |0 |Of |Of |8] |8 3| |2

3 page frames

Operating System Concepts 9.34 Southeast University

3 Belady’s Anomaly for

s A FIFO Algorithm

B Reference string: 1, 2,3,4,1,2,5,1,2,3,4,5

® |n all our examples, the reference string Is
1,2,3,4,1,2,5,1, 2, 3, 4,5.

B Where there are 3 frames (3 pages can be in
memory at a time per process), 9 page faults.
But when there are 4 frames, 10 page faults.

1114 5 4

21211 3 9page faults 5 10 page faults

332 4

Operating System Concepts 9.35 Southeast University B}/#_{Q
S

A W N P
A TWOON |
w N O

& Belady’s Anomaly for
T FIFO Algorithm

B FIFO Replacement — Belady’s Anomaly
¥ Supposedly, more frames = less page faults
¥ However, see the following illustration

16 -
14
12
3

o
]

number of page faults

N A OO @
1

| | i] | | >
1 2 3 4 S 6 7
number of frames ‘/ ,
Operating System Concepts 9.36 Southeast University “ 43)

ec?L Optimal Algorithm
B Replace the page that will not be used for the
longest period of time In future.

® An example of allocating 4 frames
1,2,3,4,1,2,5,1,2,3,4,5

FIFO Algorithm Optimal Algorithm
111 |5 4 111 |4
21 2|1 5 10 page faults 2| 2 6 page faults
313 |2 3|3
4|4 |3 41 4|5

®m Need to know the pattern of future memory
accesses. So used only for measuring hoﬁ
.your.page replacement algorithm.performsg3a¥

Yo 4 Optimal Page Replacement

B Another example of allocating 3 frames

reference string
7 O 1 2 0 3 O 4 2 3 0 3 2 1 2 0 1 7 0 1

G P 2 2 2 2 7
0| 0] (O 0 4 0 0 0
i 3 3 3 1 1

3 page frames

H |ts idea Is to replace the page that will not be
used for the longest period of time In future.

®m But how to know the future memory acc
pattern? Only the past history Is known e}%ﬂ ‘Q

Operating System Concepts 9.38 Southeast Uni

scseast Recently Used (LRU) Algorithm
m Replace the page that Is the least recently used.

m Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
Optimal Algorithm LRU Algorithm
)

4 1 8 page faults,

3 | 5 4 worse than the optimal (6 faults)

1
2 6 page faults 2 better than FIFO (10 faults) and
3

4 |5 4| 3

® Another Example of LRU

reference string

7 01 2 0 3 0 4 2 3 0 3 2 1

2| |4 |4] 4
0o |0 |Of |3
o B 3 3| 12| |2] |2 2 2 V

b2

tﬁ LRU Algorithm Implementations

B Counter implementation

® Every page entry has a counter; every time
page Is referenced through this entry, copy the
clock into the counter.

When a page needs to be changed, look at the
counters to determine which are to change.

fraﬁie# QO_L;I.hter
frame# | counter

— " [frame# [counter | PTE
clock

Page Table

Operating System Concepts 9.40 Southeast University lw.{&?
S

reference string

2
1
0
7

4 7 0 7 1 0 1 2

Use A Stack to Record The

£E T ost Recent Page References
B Stack implementation — keep a stack of

page numbers in a doubly linked list:
¥ When a page is referenced:

v'move it to the top
v'requires 6 pointers to be changed

¥ No search for page replacement

5)45 € T TH 5 22
Jei, YE SRR LT I
P EE R
Z/0?7 FOQ)ik
RO(n)? fRBin/2

AL LTS 2

struct Node {
int data;
struct Node* next;
struct Node®* prev;

};

S 1
boo | = %c.ui

___.>{
< |

&°°| F

4 W AISEIMO()THREERER
= | RU %ﬁ'—mﬁﬁﬂﬁﬁ%ﬁﬁ%ﬂ

i@@ Wit ALl —4 LRU (&irs/MEH) 8 E
XNFRATEEM, SCRF get A put #24E, ﬁ;kO(l)E%}_p

get(key) - TNk key fFAE T 2474, WIFREL key [value (i

%IE§&> ’ @}E“Ji}glﬁl '10 Hashtable<Integer, node> for O(1) access
put(key, value) - 1% key eyd | Koyl | Keyd | Keys | Key2

ANEAE, 5 B B Avalue.
HEAFE BT ER, ENZ
EEI:EE)\ %ﬁ: Iﬁ E Zﬁﬁ{ﬁﬂ%j& VZT:e11 : Vilejezz : VZT:eSB : Va(leze4 i Va:eS

s /D FH T H AR PR | |

Head Doubly linked list for O(1) removal Tail

. éj*ﬁ‘ Most recent and update of cache data Least recent
FAYFH BB £ ﬁmﬂ 7% (Hash Table) . ZAlifm AR ALK RS
key -value IR K168, 1H & key HIAEA# /2 TCF /I
MA@ Y LRU 123 HAE G Hrkey st 75 B g Fa i A A A1 FH FR) 1S key

FITEL, G RANBER NI 45 8 . AT set & get #AFIT, /\ i
oeraing S Vi1 8 B BE 22 Sk, T 988 pop #A'E F Reffits w22 2 210 1

edt F%FLRUEEMBITF /N LI

miZO(1)E 2 LRU |9 @i >k H T-leetcode:

B A HERRIZAOR B Github P

m i Hgit clone[FI 22 Z T B 2AHE, FHE %A
B FEIRmPEIB TR
P 1ZE R EgecHlecmake T B85 2w 2
T3 T BoniliAE S googletest, 75 Edr R AT
FHIBS T AL A bﬁtpé%googletestﬂﬁ?ﬂil@%}%@lj

Operating System Concepts South U

N—

https://leetcode.com/problems/lru-cache
https://github.com/lamerman/cpp-lru-cache

19 class 1r'u_—c'ache {

N S 20 public:
X‘)—[- 21 typedef typename std::pair<key_t, value_t> key_value_pair_t;
1 -EX 4—h 22 typedef typename std::list<key_value_pair_t>::iterator list_iterator_t;
23
» /\ 246 lru_cache(size_t max_size) :
|X‘ I 25 _max_size(max_size) {
26 }
. EI 27
te rator 28¢< void put(const key_t& key, const value_t& value) {
I IE 29 auto it = _cache_items_map.find(Ckey);
30 _cache_items_list.push_front(key_value_pair_t(key, value));
/ /f/ll_: .? 31 if (it !'= _cache_items_map.end()) {
A ° 32 _cache_items_list.erase(it->second);
-~ 33 _cache_items_map.erase(it);
34 !
35 _cache_items_map[key] = _cache_items_list.begin();
36
37 if (_cache_items_map.size() > _max_size) {
38 auto last = _cache_items_list.endQ);
/ \1; 39 last--;
. ﬁ et%n 40 _cache_items_map.erase(last->first);
)j g 41 _cache_items_list.pop_back();
42 !
» \\ 43 3
put/y vz [“]
45¢e const value_t& get(const key_t& key) {
o) 46 auto it = _cache_items_map.find(Ckey);
%Yig j—["j_A '—H‘ 47 if (it == _cache_items_map.end()) {
ZIN)X 48 throw std::range_error("There is no such key in cache™");
49 } else {
50 _cache_items_list.splice(_cache_items_list.begin(), _cache_items_list, it->second);
51 return it->second->second;
52 }
53 }
Hashtable<Integer, node> for O(1) access 54
Key3 key1 Key4 Key s Key2 55e bool exists(const key_t& key) const {
! 56 return _cache_items_map.find(Ckey) != _cache_items_map.end();
57 3
evoyagortmscom | D8
596 size_t size() const {
1 Key 2 ‘ Key 3 “—» keya | | Keys 2?) return _cache_items_map.size();
alue1 | =—— | Value2 ‘-‘ Value 3 “* Value4 |~— | Value5 62
f f 63 private:
ead Doubly linked list for O(1) removal Tail 64 std: :list<key_value_pair_t> _cache_items_list;
St recent and update of cache data 65 std: :unordered_map<key_t, list_iterator_t> _cache_items_map;

T UpTIiAllly OydLTlil WUIILTULW 66 size t max _size:
- = — ’

19 class lru_cache {

/f*%ﬁ_‘ﬂj IZFI H/\J put 20 public:
21 typedef typename std::pair<key_t, value_t> key_value_pair_t;
1ﬂ‘r$%%|3 22 typedef typename std::list<key_value_pair_t>::iterator list_iterator_t;
ﬁ 23

- 24e lru_cache(size_t max_size) :
é‘ﬁ[& USh fro nt 25 _max_size(max_size) {
p _ o 2 }
27
=] }’: E/J .I:‘_:E EI:[ﬁ 286 void put(const key_t& key, const value_t& value) {
Ei = ’ I -I’IZI H 29 auto it = _cache_items_map.find(Ckey);

30 _cache_items_list.push_front(key_value_pair_t(key, value));
N o
§;’:[J Hfﬁj\% D!Z AN Qﬁ T% 31 if (it !'= _cache_items_map.end()) {
\— IZI i 32 _cache_items_list.erase(it->second);
\AYA = 33 _cache_items_map.erase(it);
A/
fm s AR, 4 }

35 _cache_items_map[key] = _cache_items_list.begin();
WA ERIuIi e .
A ﬁ /ﬂ:\‘)\ o 37 if (_cache_items_map.size() > _max_size) {
38 auto last = _cache_items_list.endQ);

AL ﬁ' 4-% > 39 last--;
. Klﬁ’lﬂpUt E’%& 40 _cache_items_map.erase(last->first);
41 _cache_items_list.pop_back();
B HILH
WAz [
N = 44
%ﬁ keyT\E?i:[_\‘ﬁ%E; 45€ Icons‘c value_t& get(const key_t& key) {

46 auto it = _cache_items_map.find(Ckey);

ﬁ%‘t‘}ﬂu E%ﬁ:ﬁ:val 47 if (it == _cache_items_map.end()) {

A AT N 48 throw std::range_error("There is no such key in cache™");

N N 1k 49 } else {

J:IF:[E IEI o —F—‘y 50 _cache_items_list.splice(_cache_items_list.begin(), _cache_items_list, it->second);
51 return it->second->second;

BN <key, = ¢
Va|>Xj‘ o %%U [L*ﬁ 556 bool exists(const l.<ey_t& key)-const {

56 return _cache_items_map.find(Ckey) != _cache_items_map.end();
Q\\ 57 }
ZAF e O -

59@ size_t size() const {

ﬁD%T\E ’ ljl”%ﬁ |3ﬂ:\‘ 2? 3 return _cache_items_map.size();
IrUIﬁ H H;é?‘l:l:ll IE—IJ 23 private:

64 std::list<key_value_pair_t> _cache_items_list;

%A%E@%AEX# 65 std: :unordered_map<key_t, list_iterator_t> _cache_items_map;
Oper L o 66 size_t _max_size;

o=

L RUAHS BT et 5 vk

SmapH A key, CIEAR AR, 0
map Tk E]izkey, B Iok 4 A HIvaluelil T8
B, X5 Hsplice UK 45 mifesh 28Rk

= void put (const key_t& key, const value_t& value) {
auto it = _cache items_map. find(kev) :
= if (it !'= _cache_items_map. end()) {
it->second->second = value;|

_cache_items_list. splice(_cache_items_list.begin(), _cache items_list, it—>second);

1
I

= elsef
_cache_items_list. push_front (kev_value_pair t(key, value));

1
I

_cache_items_maplkev] = _cache items_list.begin();

= if (_cache_items map.size() > _max size) {
auto last = _cache items_list.end():
last—;
_cache_items_map. erase(last—>first) ;
_cache_items_list. pop_back():

—
Operating System Concepts 9.46 Southeast University " ’.1%
S

Q.

ecf‘i Problems of Previous LRU
— Implementations

B As to the previous two LRU implementations,

Clock: Every page entry has a counter; every
time page is referenced through this entry, copy
the clock into the counter.

Stack: Whenever a page is referenced, it is
removed from the stack and put on the top.

B The updating of the clock fields or stack must
be done for every memory reference

® Would slow every memory access by a factor
of at least ten

Operating System Concepts 9.47 Southeast University 1}#{6\?
S

Q’QLLRU Approximation Algorithms

B Reference bit per page (Hardware maintained)
Each page Is associated with a bit in the page table
Initially 0; When page is referenced, set the bit to 1.
Replace the one which is O (if one exists)

B However, we do not know the order of use.

B This information is the basis for many page-
replacement algorithms that approximate LRU
replacement ”

Operating System Concepts 9.48 Southeast University 1}#{6\?
S

¥ LRU Approximation Algorithms
% Gain additional ordering information by
recording the reference bits at regular intervals

m Additional-Reference-Bits Algorithm
Keep an 8-bit bytes for each page in main memory

At regular intervals, shifts the bits right 1 bit, shift
the reference bit into the lower-order bit

Interpret these 8-bit bytes as unsigned integers, the

page with lowest number is the LRU page
Reference

bit Shift right .
l — (discarded Page 0 is the
LRU page
0 %

Page 0 00000000
Page 1 141411111

- unsigned integers

1
g—:gz—g ; 11000100 LRU pages = lowest number '}%/ g
Operating Systefn-egeept? 01 1 1 01 1 1 - ‘ ..16\4

: != An Example of Additional-
: “"“Reference-Bits Algorithm (1)

B Assume the following page reference string,
where T marks the end of each time interval:
3,2,3,1T,80,3,T,3,0,2, T,6,3,4,7

®m Assume there are 5 frames in memory, and
each frame has a Page field (P) and 4 used
bits (U3, U2, U1, and U0).

®m |nitlal State us U2 Ul WO

I I I I | O

o O O O O
o O O O O
o O O O O
o O O O O

Operating System Concepts | , B}#.I/Q

: != An Example of Additional-
: “"“Reference-Bits Algorithm (2)

B Assume the following page reference string:
3,2,3,T,80,3,T,3,0,2,T,6, 3,4, 7

® During the first time interval, pages 3, 2, and

3 are referenced.
P U3 U2 Ul Uuo

U3 U2 Ul uo

I N W T

3
‘ =

o O O B BB
o O O O O
o O O O O
o O O O O
o O O O O
o O O L =
o O O O O
o O O O O

m At the end of the first time interval, all U B,'th
o Bf@-SRIfted right one POoSItioN s umesy Wﬁi

94 An Example of Additional-

T Reference-Bits Algorithm (3)

B Assume the following page reference string:
3,2,3,T,80,3T,3,0,2,T,6, 3,4, 7

B During the second time Iinterval, pages 8, 0O,
and 3 are referenced.

P U3 U2 Ul Uo P U3 U2 Ul uo
3 1 1 0 0 3 0 1 1 0
2 0 1 0 0 2 0 0 1 0
38 1 0 0 0 E> 8 0 1 0 0
0 1 0 0 0 0 0 1 0 0
= 0 0 0 0 = 0 0 0 0

m At the end of the second time interval, aITBU
rarfditS-are shifted right ene positien.- Wﬁi

94 An Example of Additional-

B N - -
Reference-Bits Algorithm (4)

B Assume the following page reference string:
3,2,3,T,80,3T,3,0,2,T,6, 3,4, 7

B During the third time interval, pages 3, O,
and 2 are referenced.

P U3 U2 Ul Uo P U3 U2 Ul uo
3 1 1 1 0 3 0 1 1 1
2 1 0 1 0 2 0 1 0 1
38 0 1 0 0 E> 8 0 0 1 0
0 1 1 0 0 0 0 1 1 0
= 0 0 0 0 = 0 0 0 0

m At the end of the third time interval, all U hit
rrBf@-8RIfted right one position suesumesy Wﬁi

QQ:L An Example of Additional-
’ N - -
Reference-Bits Algorithm (5)
B Assume the following page reference string:
3,2,3,T,80,3T,3,0,2,T,6, 3,4, 7

® During the fourth time interval, pages 6, 3, 4,
and 7 are referenced.

P U3 U2 Ul Uo P U3 U2 Ul Uo

3 1 1 1 1 3 1 1 1 1

2 0) 1 0 1 2 0) 1 0) 1

8 0 0 1 0 E> 4 1 0 0 0

o) 0 1 1 0 o) 0 1 1 0

6 1 0 0 0 6 1 o) 0 0
After pages 6, 3, 4 are referenced,)
page 8 has been replaced by 4 ‘})ﬁ §

heep /MRS e iiregina.ca/~hamilton/courses/330/notes/metrty/pae replaceerizhtl

QQ:L An Example of Additional-
T Reference-Bits Algorithm (6)
B Assume the following page reference string:
3,2,3,T,80,3T,3,0,2,T,6, 3,4, 7

® During the fourth time interval, pages 6, 3, 4,
and 7 are referenced.

P U3 U2 Ul Uo P U3 U2 Ul uo
3 1 1 1 1 3 1 1 1 1
2 0) 1 0) 1 4 1 0) 0) 0)
4 1 0) 0 0 E> 4 1 0 0 0)
0 0) 1 1 0 0 0 1 1 0)
6 1 0 0 0 6 1 0 0 0
After page 7 is referenced, page ”'
2 has been replaced by 7 }w §
heepe/MRRRIC e iregina.ca/~hamilton/courses/330/notes/meffory/peEtie replacehenthttl

LRU Approximation Algorithms
@ond Chance Algorithm (FIFO+reference bit)

When a page has been selected for replacement, we
Inspect its reference bit.

If the value Is O, we proceed to replace this page;

If the reference bit is set to 1, give the page a second
chance and move on to pick the next FIFO page.

When a page gets a second chance, its reference bit
IS cleared, and its arrival time Is reset to current time.

youngest (R) (R) ()
[page J>@
Current /—_\4 Ig lI)aeced
pointer —>E]/ [0] [0J P
i S , 0
.
[1] [il
1] 1] []

Q\. LRU Approximation Algorithms

B Second-Chance Algorithm (clock+reference bit)
Given a circular queue, called clock
If page to be replaced (in clock order) has

reference bit = 1, then: "% "™~ e MY
v set reference bit O. = T - I
vleave page in memory. a4 B a4 B
v'replace next page (in veim [0]
clock order), subject . 0] ’
to same rules. @ ¥ %
]]
7 g
1]

N N

circular queue of pages circular queue of pages
Operating System Concepts (a) (b)

e,t{., Counting Algorithms

m Keep a counter of the number of references
that have been made to each page.

m | east Frequently Used (LFU) Algorithm:
replaces page with the smallest count.

B Most Frequently Used (MFU) Algorithm:
based on the argument that the page with
the smallest count was probably just brought
In and has yet to be used.

Operating System Concepts 9.58 Southeast University lw‘}&?

?‘4‘3 Chapter 9: Virtual Memory

m Background

® Demand Paging

m Copy-on-Write

B Page Replacement within a Process

B Allocation of Frames among Processes
® Thrashing and Working Set Model

® Memory-Mapped Files

m Allocating Kernel Memory

m Other Considerations

m Operating-System Examples

Operating System Concepts 9.59 Southeast University BH.{Q
S

&
?Pﬂkxation of Frames among Processes
B Each process needs a minimum number of
pages.

m Example: IBM 370 — 6 pages to handle SS
MOVE Instruction:

Instruction is 6 bytes, might span 2 pages.
2 pages to handle from.
2 pages to handle to.

m |f n-level indirect addressing is allowed

2-level indirect addressing

n+1 frame needec AT /—Tf ey

OP [OperandOperand
v 1 e 2 §

code p
.................... .“ Page x Page Page z
Page n Page n+1

_Direct
indicator

Operating System Concepts

Qd\. Fixed Allocation
B Two major allocation schemes.
fixed allocation
priority allocation

m Equal allocation — e.g., If 100 frames and 5
processes, give each process 20 pages.

B Proportional allocation — Allocate pages to a
process according to the size of the process.

s, = size of process p, m =64
=10
S=3s |
2.S; s, =127
m = total number of frames 10
a,]3—7X64 ~5
. S;
g, =allocation for p; = —xm 127

| S @y =64 59><W s
Operating System Concepts 9.61 Southe 2

af-?#., Priority Allocation

B Use a proportional allocation scheme using
priorities rather than size.

B If process P; generates a page fault,
select for replacement one of its frames.

select for replacement a frame from a process
with lower priority number.

Operating System Concepts 9.62 Southeast University B}#.{Q
S

2. Global vs. Local Allocation

B Global replacement — process selects a
replacement frame from the set of all
frames; one process can take a frame from
another.

m L_ocal replacement — each process selects
from only its own set of allocated frames.

Operating System Concepts 9.63 Southeast University B}#{Q
S

?‘4‘3 Chapter 9: Virtual Memory

m Background

® Demand Paging

m Copy-on-Write

B Page Replacement

m Allocation of Frames among Processes
m Thrashing and Working Set Model

® Memory-Mapped Files

m Allocating Kernel Memory

m Other Considerations

m Operating-System Examples

Operating System Concepts 9.64 Southeast University BH.{Q
S

i‘ﬁf" Thrashing

“process does not have “enough” frames,

the page-fault rate is very high. This leads to:
low CPU utilization.

operating system thinks that it needs to increase
the degree of multiprogramming.

another process added to the system.
B Thrashing = a process is busy swapping pages

I CPU utilization
IN and OUt OS monitors is too low _ | Increase the
CPU utilization » | multiprogramming
degree

New process needs free frames
v

The ready Replace other
queue empties process’s pages
(global replacement)

Many processes queue lVictim process runs = Page fault
up for paging device
Replace other
‘—

....... process’s pages i
Operating System Concepts (global replacement) f

st

*Process migrates from one locality to another.

Thrashing
o Why does paging work?
Locality model

Localities may overlap.
® Why does thrashing occur?

>, size of

CPU utilization

Operating System Concepts

ocality > total physical memory size

thrashing ;

degree of multiprogramming

Locality In
a memory-
reference
pattern

Operating System Concepts

memory address

page numbers

32

30

28

26

24

22

callty IN I\/Iemorv Reference Pattern

Il 1
|I I\ \| """"""""""" o e Hll‘ mJH*
(11000 A wi
. I P
} ‘ | iL 1|'|| lll :i"{"‘;"gl" : ”I“Iiml
| |- 1l
ML), I'I ’ .H.‘ il ’! |
WHHI HH’ “ l i
Y L L1 1
Hm l'”wlw“ ;IHUH

|
i ﬂm lh i|| ||||I' |1|n|m--r |

i

i

’H.

g

it

H
.h
“

e R

IIlIIIIHIll I il m '|H ’I
il i l |

HIRUD L i 9 1) L f [| i e ‘. L0 P
g o i

execution time ——

e,ﬁi., Working-Set Model

m The pages used by a process within a window
of time are called its working set

A = size of working-set window = a fixed number
of page references. Example: 10000 instructions

B The working-set model is based on the
assumption of locality

..2615777751623412344434344413234
A :f < A :f
I I
WS(t1) = {1,2,5,6,7} WS(t2) = {3,4)

B Changes continuously - hard to maintain an
accurate number

® How can the system use this number to gi\x}%‘/ 1
@ PHEALIM MEeMmory to the processmess . /”l&

dL Working-Set Model (cont.)

m A defines the size of working set window
If a page Is In active use, it will be in the working set
If it IS not In the use, it will be dropped from the

working set
...2615777751623412344434344413234
) - A 4
I I
WS(t1) = {1,2,5,6,7} WS(t2) = {3,4}

®m Working-set Is the approximation of the
program’s locality

B The accuracy of the working set depends on
the selection of the A

Operating System Concepts 9.69 Southeast University B}#‘Q

e#‘- Working-Set Model (cont.)
® Important property of the working set is the size

m Compute working set size for each process P,
In the system, i.e., WSS,

m WSS, (working set of process P;) =
total number of pages referenced in the most
recent A (varies in time)

If A = o0, the window will cover the entire program.
If A too small, it will not encompass entire locality.

If A too large, it will encompass several localities.

..2615777751623412344434344413234
) 4 b3
I I

WS(t1) = {1,2,5,6,7} WS(t2) = {3,4} 1}#‘/ g
Operating System Concepts 9.70 Southeast University _‘ ..1&

edk Working-Set Model (cont.)

B The operating system monitors the working-
set WSS, of each process P;, and allocates

them enough frames

A =7
ee Page numbers referred over time:
4737477437334...... 13245321142...... 8988999889
»
10— 1] ——————— 1l

Working set: 3,4,7 1,2,3,4,5 8,9

Working set size: 3 5 2

No. of alloc. frames: 3 5 2

SO many processes in memory

N If D>m> ThraShing_ that not enough page frames are

allocated to each process to hold

D =2 WSS, = total demand theif current working set of pages
In number of frames : L

m = total physical memory size /E> m

m.Rolicy. if D>m, suspend one qut;tb@eﬁef"éﬁ“@ém%eslg

CPU utilizati

Q‘Q‘Eping Track of the Working Set WSS,

m Approximate with interval timer + a reference bit

m Example: A = 10,000
Timer interrupts after every T=5,000 time units.
Keep iIn memory A/T=2 bits for each page. e
Whenever a timer interrupts, e | e

copy and set the values of I "1
reference bits of all pages to 0. wio] | wfoTo
If any one of the bits in memory g see
= 1 = page in working set. Ee Hevhy
page X frame O
B Improvement: interrupt every pagey | frame

T:].,OOO t|me UnitS, and keep Pagez | frame2
- l=10 DIts for each page swesimesy| Paew [T i

g,d@,,Page-Fault Frequency Scheme

Directly measure and control the page-fault rate to prevent thrashing

increase number
of frames

upper bound

page-fault rate

lower bound
decrease number
of frames

A 4

number of frames

m Establish "acceptable” page-fault rate.
If actual rate Is too low, process loses frame.

If actual rate Is too high, process gains fram O

Operating System Concepts 9.73 Southeast University

gdWorkmg Sets and Page Fault Rates

m Direct relationship between working set of a
process and its page-fault rate

®m \Working set changes over time
m Peaks and valleys over time

working set

1

page
fault
rate

— — — — — — — — — — — — — — e

time

Transition from one working set to another ;}%Q
Operating System Concepts 9.74 Southeast University “ 43 Y

?,Q% Chapter 9: Virtual Memory

m Background

® Demand Paging

m Copy-on-Write

B Page Replacement

m Allocation of Frames

® Thrashing and Working Set Model
B Memory-Mapped Files

m Allocating Kernel Memory

m Other Considerations

m Operating-System Examples

Operating System Concepts 9.75 Southeast University 1}4.{6\?
S

Qd.L’ Memory-Mapped Files

B Memory-mapped file I/O allows a part of virtual
address space to be logically associate with a file

File I/0O to be treated as routine memory access by
mapping a disk block to a page in memory.

User process's
virtual address space

Stack
mapped | T~ 1
Memory-mapped)
] magped portion of file
Scope of J
local scan | ¥MaPPe
mapped ’,’J Heap
unmavped / Un-initialized Memory-mapped
\ it data (bss) portion of file
Initialized data File
Operating System Concepts Text

gdi’ Memory-Mapped Files

m A file is initially read using demand paging.
A page-sized portion of the file is read from the file
system into a physical page.
Subseqguent reads/writes to/from the file are treated as

ordinary memory accesses. User process's
virtual address space

B Simplifies file accessr—-—-. |- S ___.
by treating file /10 | [Memory-mapped |
. portion of 1
through memorysereor o e
rather than read() mapped | /[T e
write() system calls_[wmaped|/ | Unintislized | | Merey seened
Initialized data File
Operating System Concepts Text

Q,J.’ Memory-Mapped Files

B Also allows several processes to map the same
file allowing the pages in memory to be shared.

.
-
1 I
| St
————— 1 | l_l_-
2 e - :|__': 3 <« - :|-|-:-— 5
T — Tty o it
3 | r lI"I |':" 6
4 -t =1 ! T
5 e
6 _+J.=..,.n | |: :
LS R
Lr &
g b=t 1 L sl :
process A ! !_;___ . « - -|--! | 1 process B
virtual memory ! " 1 !virtual memory
Yo §
(I !
1o bl
B o g 4 < :
_______: 2 S 1 B Nam—
physical memory

—] [—
1123|4156 ‘) ,
Operating System Conc disk file - ’&J

i‘,_‘—?"fMemory-Mapped Shared Memory

B Processes request the shared segment

B OS maintains the shared segment

B Processes can attach/detach the segment

B Can mark segment for deletion on last detach

Private Private
address OS address address
Space space space
\\ Shared //
Process A segment Process B

Operating System Concepts 9.79 Southeast University &}#.{Q
S

?‘4‘3 Chapter 9: Virtual Memory

m Background

® Demand Paging

m Copy-on-Write

B Page Replacement

m Allocation of Frames

® Thrashing and Working Set Model
B Memory-Mapped Files

m Allocating Kernel Memory

m Other Considerations

m Operating-System Examples

Operating System Concepts 9.80 Southeast University BH.{Q
S

e,ﬁ%, Allocating Kernel Memory

m Treated differently from user memory

m Often allocated from a free-memory pool

Kernel requests memory for structures of
varying sizes
Some kernel memory needs to be contiguous

® Question: Can kernel memory management
adopt contiguous memory allocation
methods, similar to user-space memory
management?

Operating System Concepts 9.81 Southeast University 1}#{6\?
S

<.
8-

physically contiguous pages

256 KB

B 128 KB 128 KB
AL AR
| i : | Size
64 KB 64 KB
BL BR
, 01000000
=y
32{5 3%28 crL|[cRR

Operating System C

00100000

» Buddy System
m AlloCates memory from fixed-size segment

consisting of physically-contiguous pages
B Memory allocated using power-of-2 allocator

Satisfies requests In units sized as power of 2

Request rounded up to next highest power of 2
Buddy Addresses

00000000

00000000

00000000

00000000
Foy Nalatelale

10000000

01000000

00100000
NnA40000

L
8-

Buddy System

Q’ TgiS‘aIgorithm is used to give best fit

v Example — If the request of 25Kb is made then block of size

32Kb is allocated.

When smaller allocation needed than available, current
chunk split into two buddies of next-lower power of 2

v"Continue until appropriate sized chunk available

physically contiguous pages

256 KB

B 128 KB 128 KB
AL AR
| i : | Size
64 KB 64 KB
BL BR
, 01000000
=y
32{5 3%28 crL|[cRR

Operating System C

00100000

00000000

00000000

00000000

00000000
0100000

Buddy Addresses

10000000

01000000

00100000
04110000

Example

512 KB of Memory (physically contiguous area)

Operating System Concepts

Southeast University

Alloc A 45 KB
Alloc B 70 KB
Alloc C 50 KB
Alloc D 90 KB
Free C
Free A
Free B
Free D

s Advantages of Buddy System
B In comparison to other simpler techniques such

as dynamic allocation, the buddy memory
system has little external fragmentation.

B The buddy memory allocation system is
Implemented with the use of a binary tree to
represent used or unused split memory blocks.

B The buddy system is very fast to allocate or
deallocate memory.

B In buddy systems, the cost to allocate and free a
nlock of memory is low compared to that of
pest-fit or first-fit algorithms.

https://www.geeksforgeeks.org/operating-system-allocating- kernel memc&}%@l\?
Operatig BielelyB§r8tem-slab-system/ 9.85 Southeast Uni

e,t{., Buddy System Allocator

physically contiguous pages

B Question: What is the
key inadequacy of this
power-of-2 allocator?

128 KB 128 KB ® [nternal fragmentation

B \When the size of an
R = allocated block is x, the
i expected size of

- 5 wasted memory is

32 KB| |32 KB
V2
Ll about —~x?

Operating System Concepts 9.86 Southeast University BH.{Q
S

256 KB

&
?‘Qk_’., Slab .Allocator |
B Alternate strategy: With kernel, a considerable
amount of memory Iis allocated for a finite set of

object types, such as process descriptors, file
descriptors and other common objects.

m Slab i1s one or more physically contiguous pages
B Cache consists of one or more slabs

B Single cache for each unique kernel data structu

Each cache filled with objects — instantiations of the

data structure a contiguous phy memory (slab) a contiguous phy memory (slab)
(a set of page frames) (a set of page frames)

Obj | Obj | Obj | Obj Obj | Obj | Obj
[x| ox || x Y Y Y

Operating System Concepts

-)

r.;{.
/\ ——
o

cache
structure

i [|slab
structure

<+ > <

a set of a set of a set of
contiguous contiguous ~ contiguous
pages pages pages
(a slab) (a slab) (a slab)

set of slabs containing same type of
objects (a cache)
(can store objects of type/size X)

Operating System Concepts 9.88

Slabs and Caches

cache ,///"\\‘
structure

v N
slab
r__Jstructure L___
v Z
) asetof' asetof
contiguous contiguous
pages pages
(a slab) (a slab)

a set of slabs
(another cache)
(can store objects of type/size Y)

Southeast University e

ld\' Slab Allocator

B \When cache created, filled with objects marked
as free; When structures stored, objects
marked as used

m |f slab is full of used objects, next object
allocated frOm kernel objects caches slabs

empty slab — —.

If no empty slabs, cbjects [

new slab allocated

]

physically
= contiguous

B Benefits include i pages
no fragmentation, =
fast memory e

~heguest satisfaction - T

\

?,Q% Chapter 9: Virtual Memory

m Background

® Demand Paging

m Copy-on-Write

B Page Replacement

m Allocation of Frames

® Thrashing and Working Set Model
® Memory-Mapped Files

m Allocating Kernel Memory

B Other Considerations

m Operating-System Examples

Operating System Concepts 9.90 Southeast University 1}4.{6\?
S

e’d‘;’ Other Issues -- Prepaging

® Prepaging (Tiid 1)
To reduce the large number of page faults that
occur at process startup

Prepage all or some of the pages a process will
need, before they are referenced

But if prepaged pages are unused, I/O and memory
was wasted

Assume s pages are prepaged and a of the pages
IS used

Is the benefit of s * a save pages faults larger or smaller
than the cost of prepaging s * (1- a) unnecessary pages?

a near zero = prepaging loses

Operating System Concepts 9.91 Southeast University }#J/Q
S

2. Other Issues — Page Size
m Continue: Windows Prefetch

Introduced In Windows XP and used in Windows 10

stores specific data about the applications you run in
order to help them start faster

pf files in Windows/Prefetch

B Page size selection must take into consideration
fragmentation
table size
/O overhead

Operating System Concepts 9.92 Southeast University 1}#{6\?

Q.
'

e,f—fk Other Issues — TLB Reach

B TLB Reach - The amount of memory accessible
from the TLB

B TLB Reach = (TLB Size) X (Page Size)

m [deally, the working set of each process is
stored In main memory and its corresponding
page table items is in TLB. OthQ,Q/vise, a high
degree of two-memory accesses i

B [ncrease the Page Size poes_
B Provide Multiple Page Sizes ,
This allows applications that require larger page

sizes the opportunity to use them without a aim%g

oreaing SICIATfICANT INCrease Iin fragmentation viesy i

123 79

374 | 199

906 3

767 | 100 -

ifpage #= 767,
1

222 999 Qutput frame # = 100

<|lz|l=<|z|<]|=x<

QQLOther Issues — Program Structure
m Program structure: Row-major order

Ay 7 |
int A[][] = new int[2048][1024]; B="12=>"13
- . . I T |
Each row Is stored in one page cIm=m s
Program 1 for (int j = 0; j < A.length; j++)L FeF—%s2—Fa3 _

for (int1=0; 1 <A.length; i++)
sum += A[l,j];
Assume only one page can be held in mem,
2048 x 1024 page faults

Program 2 for (inti=0; 1 < A.length; i++)
for (intj = 0; j < A.length; j++)

sum += A[l,j]; Column-major order

Assume only one page can be held in mem), 81 %2 %3 |
2048 page faults &y /8y /s

Operating System Concepts 004 soureast | 981 Fp Agz

—

gd\. Other Issues - I/O interlock

m |/O Interlock — Pages must sometimes be
locked into memory

m Consider I/O - Pages that are used for
copying a file from a device must be locked
from being selected for eviction by a page
replacement algorithm —

e pages %) \J

disk drive

Why Frames Used For I/O
Must Be Kept in Memory? Process B

pages

v
Process A starts /O and then blocks. I ‘/ g
Process B runs and needs a frame. .

Operating System Concepts 9.95 We should not remove A’ s page N

?,QL,, Chapter 9: Virtual Memory

B Background

B Demand Paging

m Copy-on-Write

B Page Replacement

m Allocation of Frames

®m Thrashing and Working Set Model
B Memory-Mapped Files

m Allocating Kernel Memory

m Other Considerations

B Operating-System Examples BWWQ

Operating System Concepts 9.96 Southeast University

E._J;. Operating System Examples

®m \Windows XP

m Solaris

Operating System Concepts 9.97 Southeast University

?xd%. Windows XP

m Uses demand paging with clustering.
Clustering brings in pages surrounding the
faulting page.

B Processes are assigned working set minimum
and working set maximum

® Working set minimum Is the minimum number
of pages the process Is guaranteed to have In
memory ”’

Operating System Concepts 9.98 Southeast University 1}#{6\?
S

1 4 Windows XP (Cont.)

B A process may be assigned as many pages up
to its working set maximum

B When the amount of free memory in the system
falls below a threshold, automatic working set
trimming is performed to restore the amount of
free memory

® Working set trimming removes pages from
processes that have pages in excess of their

working set minimum \r'WSj

Operating System Concepts 9.99 Southeast Univ

9 -
Solaris
e
® Maintains a list of free pages to assign faulting
processes

B Lotsfree — threshold parameter (amount of free
memory) to begin paging

m Desfree — threshold parameter to increasing
paging

®m Minfree — threshold parameter to being
swapping

Operating System Concepts 9.100 Southeast University 1}#{6\?
S

1‘»_“—1%. Solaris (Cont.)
® Paging Is performed by pageout process

B Pageout scans pages using modified clock
algorithm

m Scanrate Is the rate at which pages are
scanned. This ranges from slowscan to
fastscan

B Pageout is called more frequently depending
upon the amount of free memory available

Operating System Concepts 9.101 Southeast University 1}#{6\?
S

Solaris 2 Page Scanner

8192 |
fastscan

scan rate

100
slowscan

| |
| | |

minfree desfree lotsfree
amount of free memory

Operating System Concepts 9.102 Southeast University

