
 

 

Copyright ©: University of Illinois CS 241 Staff 1 

Memory   



Address Space Abstraction 

 Address space 

 All memory data 

 i.e., program code, stack, data segment 

 

 Hardware interface (physical reality) 

 Computer has one small, shared memory 

 Application interface (illusion) 

 Each process wants private, large memory 

Copyright ©: University of Illinois CS 241 Staff 2 

How can 

we close 

this gap? 



Address Space Illusions 

 Address independence 

 Same address can be used in different address 

spaces yet remain logically distinct 

 Protection 

 One address space cannot access data in 

another address space 

 Virtual memory 

 Address space can be larger than the amount of 

physical memory on the machine 

Copyright ©: University of Illinois CS 241 Staff 3 



Address Space Illusions 

Illusion 

 

Giant address space 

Protected from others 

(Unless you want to share) 

More whenever you want it 

Reality 

 

Many processes sharing 

One address space 

Limited memory 

Copyright ©: University of Illinois CS 241 Staff 4 

Today: 

The story of the Illusion 



Uni-programming 

 1 process runs at a time 

 Always load process into the 

same spot 

 How do you switch 

processes? 

 What illusions does this 

provide? 

 Independence, protection,  

virtual memory? 

Copyright ©: University of Illinois CS 241 Staff 5 

User  

Program 

Operating 

Systems in 

ROM 

0 



Uni-programming 

 1 process runs at a time 

 Always load process into the 

same spot 

 How do you switch 

processes? 

 What illusions does this 

provide? 

 Independence, protection,  

virtual memory? 

 Problems? 

 Slow, large time slices 

Copyright ©: University of Illinois CS 241 Staff 6 

User  

Program 

Operating 

Systems in 

ROM 

0 



Multi-Programming 

 Multiple processes in memory at the same 

time 

 Goals 

1. Layout processes in memory as needed  

2. Protect each process’s memory from 

accesses by other processes 

3. Minimize performance overheads 

4. Maximize memory utilization 

Copyright ©: University of Illinois CS 241 Staff 7 



Multiple Fixed Partitions 

Copyright ©: University of Illinois CS 241 Staff 8 

Free Space 

0k 

4k 

16k 

64k 

128k 

Fixed boundaries 

between memory 

allocations 

In use 
Divide 

memory into 

n (possibly 

unequal) 

partitions.  



Multiple Fixed Partitions 

Copyright ©: University of Illinois CS 241 Staff 9 

Free Space 

Second memory  

allocation 

First memory  

allocation 

0k 

4k 

16k 

64k 

128k 

Internal 

“fragmentation” 

 

(cannot be  

reallocated) 

In use 

Third memory  

allocation 

Fourth memory  

allocation ? 



Problems with Fixed Partitions 

1. Program addresses vary across runs 

2. Internal fragmentation 

3. Not all processes may fit in memory 

Copyright ©: University of Illinois CS 241 Staff 10 



Problem 1: Insufficient Memory 

 What if there are more processes than 

could fit into the memory? 

 Swapping 

 Impact: Memory allocation changes as  

 Processes come into memory 

 Processes leave memory 

 Swapped to disk 

 Complete execution 

Copyright ©: University of Illinois CS 241 Staff 11 



Swapping 

Copyright ©: University of Illinois CS 241 Staff 12 

Monitor 

Disk 

User 

Partition 



Swapping 

Copyright ©: University of Illinois CS 241 Staff 13 

Monitor 

Disk 

User 1 

User 

Partition 



Swapping 

Copyright ©: University of Illinois CS 241 Staff 14 

Monitor 

User 1 

Disk 

User 1 

User 

Partition 



Swapping 

Copyright ©: University of Illinois CS 241 Staff 15 

Monitor 

User 2 

User 1 

Disk 

User 1 

User 

Partition 



Swapping 

Copyright ©: University of Illinois CS 241 Staff 16 

Monitor 

Disk 

User 2 

User 2 

User 

Partition 
User 1 



Swapping 

Copyright ©: University of Illinois CS 241 Staff 17 

Monitor 

Disk 

User 2 

User 2 

User 

Partition 
User 1 



Swapping 

Copyright ©: University of Illinois CS 241 Staff 18 

Monitor 

Disk 

User 1 

User 2 

User 

Partition 
User 1 



Storage Placement Strategies 

 First fit 

 Use the first available hole whose size is sufficient to meet 

the need 

 Rationale? 

 Best fit 

 Use the hole whose size is equal to the need, or if none is 

equal, the hole that is larger but closest in size 

 Rationale? 

 Worst fit 

 Use the largest available hole 

 Rationale? 

Copyright ©: University of Illinois CS 241 Staff 19 



Example 

 Consider a swapping system in which 

memory consists of the following hole sizes 

in memory order:  

 10K, 4K, 20K, 18K, 7K, 9K, 12K, and 15K.  

 Which hole is taken for successive segment 

requests of:   

 12K   

 10K   

 9K  

 

Copyright ©: University of Illinois CS 241 Staff 20 



Example 

 Consider a swapping system in which 

memory consists of the following hole sizes 

in memory order:  

 10K, 4K, 20K, 18K, 7K, 9K, 12K, and 15K.  

 Which hole is taken for successive segment 

requests of:   

 12K   

 10K   

 9K  

 

Copyright ©: University of Illinois CS 241 Staff 21 

First fit: 

20K, 10K, 

18K.    

Best fit: 

12K, 10K, 

9K. 

Worst fit: 

20K, 18K, 

and 15K.  



Storage Placement Strategies 

 Best fit 

 Produces the smallest leftover hole 

 Creates small holes that cannot be used  

 Worst Fit 

 Produces the largest leftover hole 

 Difficult to run large programs  

 First Fit 

 Creates average size holes  

 

 First-fit and best-fit better than worst-fit in terms of 

speed and storage utilization 

Copyright ©: University of Illinois CS 241 Staff 22 



Fragmentation 

 External Fragmentation 

 Memory space exists to satisfy a request, 

but it is not contiguous 

 Internal Fragmentation  

 Allocated memory may be larger than 

requested memory 

 The extra memory internal to a partition, 

but not being used 

Copyright ©: University of Illinois CS 241 Staff 23 



How Bad Is Fragmentation? 

 Statistical analysis - Random job sizes 

 First-fit 

 Given N allocated blocks 

 0.5N blocks will be lost on average, 

because of fragmentation 

 

 Known as 50% RULE 

Copyright ©: University of Illinois CS 241 Staff 24 



Compaction 

 Reduce external fragmentation by 

compaction 

 Move jobs in memory to place all free 

memory together in one large block 

 Compaction is possible only if relocation 

is dynamic, and is done at execution time 

 

Copyright ©: University of Illinois CS 241 Staff 25 



Compaction 

Copyright ©: University of Illinois CS 241 Staff 26 

Monitor Job 3 Free Job 5 Job 6 Job 7 Job 8 5 

Monitor Job 3 Job 5 Job 6 Job 7 Job 8 6 

Monitor Job 3 Job 5 Job 6 Job 7 Job 8 7 

Monitor Job 3 Job 5 Job 6 Job 7 Job 8 8 

Monitor Job 3 Free Job 5 Job 6 Job 7 Job 8 9 



Storage Management Problems 

 Fixed partitions suffer from 

 

 Variable partitions suffer from 

 

 Compaction suffers from  

 

 

Copyright ©: University of Illinois CS 241 Staff 27 



Storage Management Problems 

 Fixed partitions suffer from 

 Internal fragmentation 

 Variable partitions suffer from 

 External fragmentation 

 Compaction suffers from  

 Overhead 

 

Copyright ©: University of Illinois CS 241 Staff 28 



Limitations of Swapping 

 Problems with swapping under Partitioning 

 Process must fit into physical memory 

(impossible to run larger processes) 

 Memory becomes fragmented 

 External fragmentation 

 Lots of small free areas 

 Need compaction  

 Reassemble larger free areas 

 Processes are either in memory or on disk 

 Half and half doesn’t do any good 

 
Copyright ©: University of Illinois CS 241 Staff 29 



Problem 2: Varying Addresses 

 Problem addresses for a job are unknown 

until start time 

 At link-time, linker must know memory address 

at which the program will begin 

 These addresses must be adjusted at run time 

 

Solution? 
 

 

 Copyright ©: University of Illinois CS 241 Staff 30 



Virtual Memory 

 Basic idea 
 Allow the OS to hand out more memory than 

exists on the system 

 Keep recently used stuff in physical memory 

 Move less recently used stuff to disk 

 Keep all of this hidden from processes 

 Process view 
 Processes still see an address space from 0 – 

max address 

 Actual physical location (and movement) of 
memory handled by the OS without process help 

Copyright ©: University of Illinois CS 241 Staff 31 



Virtual Addresses 

 Virtual address 

 An address meaningful to the user process 

 Physical address 

 An address meaningful to the physical memory 

 Different jobs run at different phy. addresses 

 But virtual address can be the same 

 Program never sees physical address 

 Linker must know program’s starting memory 

address 

Copyright ©: University of Illinois CS 241 Staff 32 



Indirection 

“Any programming problem can 

be solved by adding a level of 

indirection … 

 

…except for the problem of too 

many layers of indirection.” 

 

Copyright ©: University of Illinois CS 241 Staff 33 

David Wheeler 



Multi-programming 

 Multiple processes in memory at the same time 

 What do we really need? 

 Address translation 

 Translate every memory reference from 

virtual address to physical address 

 Static before execution, or dynamic during 

execution? 

 Protection 

 Support independent addresses spaces 

Copyright ©: University of Illinois CS 241 Staff 34 



Dynamic Address Translation 

 Load each process into contiguous regions of 

physical memory 

 

 Logical or "Virtual"  

addresses 

 Logical address space 

 Range: 0 to MAX 

 Physical addresses 

 Physical address space 

 Range: R+0 to R+MAX 

for base value R 

 

Copyright ©: University of Illinois CS 241 Staff 35 



Dynamic Address Translation 

 Translation enforces protection 

 One process can’t even refer to another process’s address 

space 

 Translation enables virtual memory 

 A virtual address only needs to be in physical memory 

when it is being accessed 

 Change translations on the fly as different virtual 

addresses occupy physical memory 

 
Copyright ©: University of Illinois CS 241 Staff 36 

User 

process 

Translator 

(MMU) 

Physical 

memory 
Virt  
addr 

Phys  
addr 



Dynamic Address Translation 

 Implementation tradeoffs 

 Flexibility (e.g., sharing, growth, virtual memory) 

 Size of translation data 

 Speed of translation 

 

Copyright ©: University of Illinois CS 241 Staff 37 

User 

process 

Translator 

(MMU) 

Physical 

memory 
Virt  
addr 

Phys  
addr 



MMU 

Base Register 

Copyright ©: University of Illinois CS 241 Staff 38 

Memory 

Base Register 

CPU  

Instruction 

Address 

+ 

BA 

MA MA+BA 

Physical 

Address 
Logical 

Address 

Base Address 

Base: start of the process’s memory partition 



MMU 

Base Register 

Copyright ©: University of Illinois CS 241 Staff 39 

Memory 

Base Register 

CPU  

Instruction 

Address 

+ 

14000 

346 14346 

Physical 

Address 
Logical 

Address 

Base Address 

Base: start of the process’s memory partition 



 

Protection 

 Problem 

 How to prevent a malicious process from 

writing or jumping into another user's or 

OS partitions 

 Solution 

 Base bounds register  

Copyright ©: University of Illinois CS 241 Staff 40 



Base and bounds 

if (virt addr > bound) 

    trap to kernel 

} else { 

    phys addr =  

   virt addr + base 

} 

 

 Process has the illusion of 

running on its own dedicated 

machine with memory 

[0,bound) 

 Provides protection from 

other processes also 

currently in memory 

Copyright ©: University of Illinois CS 241 Staff 41 

physical   

memory 

physical   

memory 

size 

base + bound 

base 
bound 

virtual 

memory 

0 0 



Base and Bounds Registers 

Copyright ©: University of Illinois CS 241 Staff 42 

Memory 

Bounds Register Base Register 

CPU 

Address 
< + 

Memory 

Address 

MA 

Logical 

Address LA 

Physical 

Address 

PA 

Fault 

Base Address 

Limit Address 

MA+BA 

Base 

Address 

BA 

Base: start of the process’s memory partition 
Limit: max address in the process’s memory partition 



Base and bounds 

 What must change during a context switch? 

 The base and the bounds registers 

 Can a process change its own base and 

bound? 

 No, only the OS can change these registers 

 The program can do it indirectly (e.g., ask for 

more memory in stack) 

 

Copyright ©: University of Illinois CS 241 Staff 43 



Base and bounds 

 Problem: Process needs more 

memory over time 

 How does the kernel handle the 

address space growing? 

 You are the OS designer 

 Design algorithm for allowing 

processes to grow 

Copyright ©: University of Illinois CS 241 Staff 44 

physical   

memory 

base + bound 

base 
bound 

virtual 

memory 

0 0 

Process 1 

Process 2 


