

Copyright ©: University of Illinois CS 241 Staff 1

Memory

Address Space Abstraction

 Address space

 All memory data

 i.e., program code, stack, data segment

 Hardware interface (physical reality)

 Computer has one small, shared memory

 Application interface (illusion)

 Each process wants private, large memory

Copyright ©: University of Illinois CS 241 Staff 2

How can

we close

this gap?

Address Space Illusions

 Address independence

 Same address can be used in different address

spaces yet remain logically distinct

 Protection

 One address space cannot access data in

another address space

 Virtual memory

 Address space can be larger than the amount of

physical memory on the machine

Copyright ©: University of Illinois CS 241 Staff 3

Address Space Illusions

Illusion

Giant address space

Protected from others

(Unless you want to share)

More whenever you want it

Reality

Many processes sharing

One address space

Limited memory

Copyright ©: University of Illinois CS 241 Staff 4

Today:

The story of the Illusion

Uni-programming

 1 process runs at a time

 Always load process into the

same spot

 How do you switch

processes?

 What illusions does this

provide?

 Independence, protection,

virtual memory?

Copyright ©: University of Illinois CS 241 Staff 5

User

Program

Operating

Systems in

ROM

0

Uni-programming

 1 process runs at a time

 Always load process into the

same spot

 How do you switch

processes?

 What illusions does this

provide?

 Independence, protection,

virtual memory?

 Problems?

 Slow, large time slices

Copyright ©: University of Illinois CS 241 Staff 6

User

Program

Operating

Systems in

ROM

0

Multi-Programming

 Multiple processes in memory at the same

time

 Goals

1. Layout processes in memory as needed

2. Protect each process’s memory from

accesses by other processes

3. Minimize performance overheads

4. Maximize memory utilization

Copyright ©: University of Illinois CS 241 Staff 7

Multiple Fixed Partitions

Copyright ©: University of Illinois CS 241 Staff 8

Free Space

0k

4k

16k

64k

128k

Fixed boundaries

between memory

allocations

In use
Divide

memory into

n (possibly

unequal)

partitions.

Multiple Fixed Partitions

Copyright ©: University of Illinois CS 241 Staff 9

Free Space

Second memory

allocation

First memory

allocation

0k

4k

16k

64k

128k

Internal

“fragmentation”

(cannot be

reallocated)

In use

Third memory

allocation

Fourth memory

allocation ?

Problems with Fixed Partitions

1. Program addresses vary across runs

2. Internal fragmentation

3. Not all processes may fit in memory

Copyright ©: University of Illinois CS 241 Staff 10

Problem 1: Insufficient Memory

 What if there are more processes than

could fit into the memory?

 Swapping

 Impact: Memory allocation changes as

 Processes come into memory

 Processes leave memory

 Swapped to disk

 Complete execution

Copyright ©: University of Illinois CS 241 Staff 11

Swapping

Copyright ©: University of Illinois CS 241 Staff 12

Monitor

Disk

User

Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 13

Monitor

Disk

User 1

User

Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 14

Monitor

User 1

Disk

User 1

User

Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 15

Monitor

User 2

User 1

Disk

User 1

User

Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 16

Monitor

Disk

User 2

User 2

User

Partition
User 1

Swapping

Copyright ©: University of Illinois CS 241 Staff 17

Monitor

Disk

User 2

User 2

User

Partition
User 1

Swapping

Copyright ©: University of Illinois CS 241 Staff 18

Monitor

Disk

User 1

User 2

User

Partition
User 1

Storage Placement Strategies

 First fit

 Use the first available hole whose size is sufficient to meet

the need

 Rationale?

 Best fit

 Use the hole whose size is equal to the need, or if none is

equal, the hole that is larger but closest in size

 Rationale?

 Worst fit

 Use the largest available hole

 Rationale?

Copyright ©: University of Illinois CS 241 Staff 19

Example

 Consider a swapping system in which

memory consists of the following hole sizes

in memory order:

 10K, 4K, 20K, 18K, 7K, 9K, 12K, and 15K.

 Which hole is taken for successive segment

requests of:

 12K

 10K

 9K

Copyright ©: University of Illinois CS 241 Staff 20

Example

 Consider a swapping system in which

memory consists of the following hole sizes

in memory order:

 10K, 4K, 20K, 18K, 7K, 9K, 12K, and 15K.

 Which hole is taken for successive segment

requests of:

 12K

 10K

 9K

Copyright ©: University of Illinois CS 241 Staff 21

First fit:

20K, 10K,

18K.

Best fit:

12K, 10K,

9K.

Worst fit:

20K, 18K,

and 15K.

Storage Placement Strategies

 Best fit

 Produces the smallest leftover hole

 Creates small holes that cannot be used

 Worst Fit

 Produces the largest leftover hole

 Difficult to run large programs

 First Fit

 Creates average size holes

 First-fit and best-fit better than worst-fit in terms of

speed and storage utilization

Copyright ©: University of Illinois CS 241 Staff 22

Fragmentation

 External Fragmentation

 Memory space exists to satisfy a request,

but it is not contiguous

 Internal Fragmentation

 Allocated memory may be larger than

requested memory

 The extra memory internal to a partition,

but not being used

Copyright ©: University of Illinois CS 241 Staff 23

How Bad Is Fragmentation?

 Statistical analysis - Random job sizes

 First-fit

 Given N allocated blocks

 0.5N blocks will be lost on average,

because of fragmentation

 Known as 50% RULE

Copyright ©: University of Illinois CS 241 Staff 24

Compaction

 Reduce external fragmentation by

compaction

 Move jobs in memory to place all free

memory together in one large block

 Compaction is possible only if relocation

is dynamic, and is done at execution time

Copyright ©: University of Illinois CS 241 Staff 25

Compaction

Copyright ©: University of Illinois CS 241 Staff 26

Monitor Job 3 Free Job 5 Job 6 Job 7 Job 8 5

Monitor Job 3 Job 5 Job 6 Job 7 Job 8 6

Monitor Job 3 Job 5 Job 6 Job 7 Job 8 7

Monitor Job 3 Job 5 Job 6 Job 7 Job 8 8

Monitor Job 3 Free Job 5 Job 6 Job 7 Job 8 9

Storage Management Problems

 Fixed partitions suffer from

 Variable partitions suffer from

 Compaction suffers from

Copyright ©: University of Illinois CS 241 Staff 27

Storage Management Problems

 Fixed partitions suffer from

 Internal fragmentation

 Variable partitions suffer from

 External fragmentation

 Compaction suffers from

 Overhead

Copyright ©: University of Illinois CS 241 Staff 28

Limitations of Swapping

 Problems with swapping under Partitioning

 Process must fit into physical memory

(impossible to run larger processes)

 Memory becomes fragmented

 External fragmentation

 Lots of small free areas

 Need compaction

 Reassemble larger free areas

 Processes are either in memory or on disk

 Half and half doesn’t do any good

Copyright ©: University of Illinois CS 241 Staff 29

Problem 2: Varying Addresses

 Problem addresses for a job are unknown

until start time

 At link-time, linker must know memory address

at which the program will begin

 These addresses must be adjusted at run time

Solution?

 Copyright ©: University of Illinois CS 241 Staff 30

Virtual Memory

 Basic idea
 Allow the OS to hand out more memory than

exists on the system

 Keep recently used stuff in physical memory

 Move less recently used stuff to disk

 Keep all of this hidden from processes

 Process view
 Processes still see an address space from 0 –

max address

 Actual physical location (and movement) of
memory handled by the OS without process help

Copyright ©: University of Illinois CS 241 Staff 31

Virtual Addresses

 Virtual address

 An address meaningful to the user process

 Physical address

 An address meaningful to the physical memory

 Different jobs run at different phy. addresses

 But virtual address can be the same

 Program never sees physical address

 Linker must know program’s starting memory

address

Copyright ©: University of Illinois CS 241 Staff 32

Indirection

“Any programming problem can

be solved by adding a level of

indirection …

…except for the problem of too

many layers of indirection.”

Copyright ©: University of Illinois CS 241 Staff 33

David Wheeler

Multi-programming

 Multiple processes in memory at the same time

 What do we really need?

 Address translation

 Translate every memory reference from

virtual address to physical address

 Static before execution, or dynamic during

execution?

 Protection

 Support independent addresses spaces

Copyright ©: University of Illinois CS 241 Staff 34

Dynamic Address Translation

 Load each process into contiguous regions of

physical memory

 Logical or "Virtual"

addresses

 Logical address space

 Range: 0 to MAX

 Physical addresses

 Physical address space

 Range: R+0 to R+MAX

for base value R

Copyright ©: University of Illinois CS 241 Staff 35

Dynamic Address Translation

 Translation enforces protection

 One process can’t even refer to another process’s address

space

 Translation enables virtual memory

 A virtual address only needs to be in physical memory

when it is being accessed

 Change translations on the fly as different virtual

addresses occupy physical memory

Copyright ©: University of Illinois CS 241 Staff 36

User

process

Translator

(MMU)

Physical

memory
Virt
addr

Phys
addr

Dynamic Address Translation

 Implementation tradeoffs

 Flexibility (e.g., sharing, growth, virtual memory)

 Size of translation data

 Speed of translation

Copyright ©: University of Illinois CS 241 Staff 37

User

process

Translator

(MMU)

Physical

memory
Virt
addr

Phys
addr

MMU

Base Register

Copyright ©: University of Illinois CS 241 Staff 38

Memory

Base Register

CPU

Instruction

Address

+

BA

MA MA+BA

Physical

Address
Logical

Address

Base Address

Base: start of the process’s memory partition

MMU

Base Register

Copyright ©: University of Illinois CS 241 Staff 39

Memory

Base Register

CPU

Instruction

Address

+

14000

346 14346

Physical

Address
Logical

Address

Base Address

Base: start of the process’s memory partition

Protection

 Problem

 How to prevent a malicious process from

writing or jumping into another user's or

OS partitions

 Solution

 Base bounds register

Copyright ©: University of Illinois CS 241 Staff 40

Base and bounds

if (virt addr > bound)

 trap to kernel

} else {

 phys addr =

 virt addr + base

}

 Process has the illusion of

running on its own dedicated

machine with memory

[0,bound)

 Provides protection from

other processes also

currently in memory

Copyright ©: University of Illinois CS 241 Staff 41

physical

memory

physical

memory

size

base + bound

base
bound

virtual

memory

0 0

Base and Bounds Registers

Copyright ©: University of Illinois CS 241 Staff 42

Memory

Bounds Register Base Register

CPU

Address
< +

Memory

Address

MA

Logical

Address LA

Physical

Address

PA

Fault

Base Address

Limit Address

MA+BA

Base

Address

BA

Base: start of the process’s memory partition
Limit: max address in the process’s memory partition

Base and bounds

 What must change during a context switch?

 The base and the bounds registers

 Can a process change its own base and

bound?

 No, only the OS can change these registers

 The program can do it indirectly (e.g., ask for

more memory in stack)

Copyright ©: University of Illinois CS 241 Staff 43

Base and bounds

 Problem: Process needs more

memory over time

 How does the kernel handle the

address space growing?

 You are the OS designer

 Design algorithm for allowing

processes to grow

Copyright ©: University of Illinois CS 241 Staff 44

physical

memory

base + bound

base
bound

virtual

memory

0 0

Process 1

Process 2

