

Copyright ©: University of Illinois CS 241 Staff 1

Memory Allocation

Recap: Virtual Addresses

 A virtual address is a memory address that a

process uses to access its own memory

 Virtual address ≠ actual physical RAM address

 When a process accesses a virtual address, the MMU

hardware translates the virtual address into a physical

address

 The OS determines the mapping from virtual address to

physical address

Copyright ©: University of Illinois CS 241 Staff 2

Recap: Virtual Addresses

 Benefit: Isolation
 Virtual addresses in one process refer to different physical

memory than virtual addresses in another

 Exception: shared memory regions between processes

(discussed later)

 Benefit: Illusion of larger memory space
 Can store unused parts of virtual memory on disk

temporarily

 Benefit: Relocation
 A program does not need to know which physical

addresses it will use when it’s run

 Can even change physical location while program is

running

Copyright ©: University of Illinois CS 241 Staff 3

Mapping virtual to physical

addresses

Copyright ©: University of Illinois CS 241 Staff 4

Code segment

Data segment

Heap

Stack

Physical RAM

MMU

How does this thing
work??

MMU and TLB

 Memory Management Unit (MMU)

 Hardware that translates a virtual address to a physical

address

 Each memory reference is passed through the MMU

 Translate a virtual address to a physical address

 Lots of ways of doing this!

Copyright ©: University of Illinois CS 241 Staff 5

CPU MMU
Virtual

address
Physical
address Memory

TLB

Cache of translations

Translation
mapping

MMU and TLB

 Translation Lookaside Buffer (TLB)

 Cache for MMU virtual-to-physical address translations

 Just an optimization – but an important one!

Copyright ©: University of Illinois CS 241 Staff 6

CPU MMU
Virtual

address
Physical
address Memory

TLB

Cache of translations

Translation
mapping

Translating virtual to physical

 Can do it almost any way we like

 But, some ways are better than

others…

 Strawman solution from last time

 Base and bound

Copyright ©: University of Illinois CS 241 Staff 7

Base and bounds

Copyright ©: University of Illinois CS 241 Staff 8

if (virt addr > bound)

 trap to kernel

} else {

 phys addr =

 virt addr + base

}

 Process has the illusion of

running on its own dedicated

machine with memory

[0,bound)

 Provides protection from

other processes also

currently in memory

physical

memory

physical

memory

size

base + bound

base
bound

virtual

memory

0 0

Base and Bounds Registers

Copyright ©: University of Illinois CS 241 Staff 9

Memory

Bounds Register Base Register

CPU

Address
< +

Memory

Address

MA

Logical

Address LA

Physical

Address

PA

Fault

Base Address

Limit Address

MA+BA

Base

Address

BA

Base: start of the process’s memory partition
Limit: max address in the process’s memory partition

Base and bounds

Copyright ©: University of Illinois CS 241 Staff 10

 Problem: Process needs more

memory over time

 Stack grows as functions are

called

 Heap grows upon request (malloc)

 Processes start and end

 How does the kernel handle the

address space growing?

 You are the OS designer

 Design algorithm for allowing

processes to grow

physical

memory

base + bound

base
bound

virtual

memory

0 0

Process 1

Process 2

But wait, didn’t we solve this?

Copyright ©: University of Illinois CS 241 Staff 12

Code segment

Data segment

Heap

Stack

fixed size

fixed size

grows

dynamically

grows

dynamically

physical

memory

base + bound

base

 Problem:

wasted space

 And must have

virtual mem ≤

phys mem

Another attempt:

Segmentation

 Segment

 Region of contiguous memory

 Segmentation

 Generalized base and bounds with

support for multiple segments at once

Copyright ©: University of Illinois CS 241 Staff 13

Segmentation

Copyright ©: University of Illinois CS 241 Staff 14

code

stack

data code

stack

data

physical

memory

virtual

memory

segment 3

Virtual

memory

segment 1

Virtual

memory

segment 0

0

0

0

0

fff

4ff

6ff 4ff

2000

2fff

4000

46ff

Seg # Base Bound Description

0 4000 700 Code

segment

1 0 500 Data

segment

2 Unused

3 2000 1000 Stack

segment

Segmentation

 Segments are specified

many different ways

 Advantages over base and

bounds?

 Protection

 Different segments can

have different protections

 Flexibility

 Can separately grow both

a stack and heap

 Enables sharing of code

and other segments if

needed

Copyright ©: University of Illinois CS 241 Staff 15

code

stack

data code

stack

data

physical

memory

virtual

memory

segment 3

Virtual

memory

segment 1

Virtual

memory

segment 0

0

0

0

0

fff

4ff

6ff 4ff

2000

2fff

4000

46ff

Segmentation

 Segments are specified

many different ways

 Advantages over base and

bounds?

 What must be changed on

context switch?

 Contents of your

segmentation table

 A pointer to the table, expose

caching semantics to the

software (what x86 does)

Copyright ©: University of Illinois CS 241 Staff 16

code

stack

data code

stack

data

physical

memory

virtual

memory

segment 3

Virtual

memory

segment 1

Virtual

memory

segment 0

0

0

0

0

fff

4ff

6ff 4ff

2000

2fff

4000

46ff

Recap: Mapping Virtual

Memory

 Base & bounds

 Problem: growth is inflexible

 Problem: external fragmentation

 As jobs run and complete, holes left in physical memory

 Segments

 Resize pieces based on process needs

 Problem: external fragmentation

 Note: x86 used to support segmentation, now effectively

deprecated with x86-64

 Modern approach: Paging

Copyright ©: University of Illinois CS 241 Staff 17

Paging

 Solve the external

fragmentation

problem by using

fixed-size chunks

of virtual and

physical memory

 Virtual memory

unit called a page

 Physical memory

unit called a frame

(or sometimes

page frame)

Copyright ©: University of Illinois CS 241 Staff 18

frame 0

frame 1

frame 2

frame Y

physical memory

…

page 0

page 1

page 2

page X

virtual memory

(for one process)‏

…

page 3

..
.

..
.

Application Perspective

 Application believes it has a single, contiguous

address space ranging from 0 to 2P – 1 bytes

 Where P is the number of bits in a pointer (e.g., 32 bits)

 In reality, virtual pages are scattered across

physical memory

 This mapping is invisible to the program, and not even

under it's control!

Copyright ©: University of Illinois CS 241 Staff 19

Application Perspective

Copyright ©: University of Illinois CS 241 Staff 20

Stack

Heap

Initialized vars
(data segment)

Code
(text segment)

Uninitialized vars
(BSS segment)

(Reserved for OS)

Physical RAM

MMU

Stack

Heap

Initialized vars
(data segment)

Code
(text segment)

Uninitialized vars
(BSS segment)

(Reserved for OS)

Stack

Heap

Initialized vars
(data segment)

Code
(text segment)

Uninitialized vars
(BSS segment)

(Reserved for OS)

Lots of separate processes

Translation process

 Virtual-to-physical address translation performed by

MMU

 Virtual address is broken into a virtual page number and

an offset

 Mapping from virtual page to physical frame provided by a

page table (which is stored in memory)

Copyright ©: University of Illinois CS 241 Staff 21

0xdeadbeef = 0xdeadb 0xeef

Virtual page number Offset

Translation process

Copyright ©: University of Illinois CS 241 Staff 22

page

frame 0
page

frame 1
page

frame 2

page

frame Y

page

frame 3

offset

physical address

page frame # page frame #

page table

offset

virtual address

virtual page #

..
. Page table entry

0
x
d
e
a
d
b

 0xeef

Translation process

if (virtual page is invalid or non-resident or protected)

 trap to OS fault handler

else

 physical frame # = pageTable[virtpage#].physPageNum

 Each virtual page can be in physical memory or

swapped out to disk (called “paged out” or just
“paged”)

 What must change on a context switch?
 Could copy entire contents of table, but this will be slow

 Instead use an extra layer of indirection: Keep pointer to
current page table and just change pointer

Copyright ©: University of Illinois CS 241 Staff 23

Where is the page table?

 Page Tables store the virtual-to-physical address

mappings.

 Where are they located?

 In memory!

 OK, then. How does the MMU access them?

 The MMU has a special register called the page table

base pointer

 This points to the physical memory address of the top of

the page table for the currently-running process

Copyright ©: University of Illinois CS 241 Staff 24

Where is the page table?

Copyright ©: University of Illinois CS 241 Staff 25

Process A page tbl

Process B page tbl

Physical RAM

MMU pgtbl base ptr

Paging

 Can add read, write, execute protection bits

to page table to protect memory

 Check is done by hardware during access

 Can give shared memory location different

protections from different processes by having

different page table protection access bits

 How does the processor know that a virtual

page is not in memory?

 Resident bit tells the hardware that the virtual

address is resident or non-resident

Copyright ©: University of Illinois CS 241 Staff 26

Valid vs. Resident

 Resident

 Virtual page is in memory

 NOT an error for a program to access

non-resident page

 Valid

 Virtual page is legal for the program to

access

 e.g., part of the address space

Copyright ©: University of Illinois CS 241 Staff 27

Valid vs. Resident

 Who makes a page resident/non-resident?

 OS memory manager

 Who makes a virtual page valid/invalid?

 User actions

 Why would a process want one if its virtual

pages to be invalidated?

 Avoid accidental memory references to bad

locations

Copyright ©: University of Illinois CS 241 Staff 28

Page Table Entry

 Typical PTE format (depends on CPU architecture!)

 Various bits accessed by MMU on each page access:

 Modify bit: Indicates whether a page is “dirty” (modified)

 Reference bit: Indicates whether a page has been accessed

(read or written)

 Valid bit: Whether the PTE represents a real memory mapping

 Protection bits: Specify if page is readable, writable, or

executable

 Page frame number: Physical location of page in RAM
 Why is this 20 bits wide in the above example?

 Copyright ©: University of Illinois CS 241 Staff 29

page frame number prot V R M

20 2 1 1 1

Page Faults

 What happens when a program accesses a virtual

page that is not mapped into any physical page?

 Hardware triggers a page fault

 Page fault handler

 Find any available free physical page

 If none, evict some resident page to disk

 Allocate a free physical page

 Load the faulted virtual page to the prepared physical

page

 Modify the page table

Copyright ©: University of Illinois CS 241 Staff 30

Advantages of Paging

 Simplifies physical memory management

 OS maintains a free list of physical page frames

 To allocate a physical page, just remove an

entry from this list

 No external fragmentation!

 Virtual pages from different processes can be

interspersed in physical memory

 No need to allocate pages in a contiguous

fashion

 Copyright ©: University of Illinois CS 241 Staff 31

Advantages of Paging

 Allocation of memory can be performed at a

(relatively) fine granularity

 Only allocate physical memory to those parts of

the address space that require it

 Can swap unused pages out to disk when

physical memory is running low

 Idle programs won't use up a lot of memory

(even if their address space is huge!)

Copyright ©: University of Illinois CS 241 Staff 32

Paging Example

Copyright ©: University of Illinois CS 241 Staff 33

3 1

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real Memory Request Address within

Virtual Memory Page 3

Paging Example

Copyright ©: University of Illinois CS 241 Staff 34

3 1

1 2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real Memory Request Address within

Virtual Memory Page 1

Paging Example

Copyright ©: University of Illinois CS 241 Staff 35

3 1

1

6

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real Memory Request Address within

Virtual Memory Page 6

Paging Example

Copyright ©: University of Illinois CS 241 Staff 36

3 1

1

6

2

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real Memory Request Address within

Virtual Memory Page 2

Paging Example

Copyright ©: University of Illinois CS 241 Staff 37

3 1

1

6

2

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real Memory Request Address within

Virtual Memory Page 8

What happens when there

is no more space in the

cache?

Paging Example

Copyright ©: University of Illinois CS 241 Staff 38

3 1

1

6

2

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real Memory Store Virtual Memory

Page 1 to disk

Paging Example

Copyright ©: University of Illinois CS 241 Staff 39

3 1

6

2

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real Memory Process request for Address
within Virtual Memory Page 8

Paging Example

Copyright ©: University of Illinois CS 241 Staff 40

3 1

8

6

2

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real Memory Load Virtual Memory

Page 8 to cache

Is paging enough?

Copyright ©: University of Illinois CS 241 Staff 41

Stack

Heap

Initialized vars
(data segment)

Code
(text segment)

Uninitialized vars
(BSS segment)

(Reserved for OS)

Physical RAM

MMU

How do we allocate memory in here?

Memory allocation within a

process

 What happens when you declare a

variable?

 Allocating a page for every variable

wouldn’t be efficient

 Allocations within a process are much

smaller

 Need to allocate on a finer granularity

Copyright ©: University of Illinois CS 241 Staff 42

Memory allocation within a

process

 Solution (stack): stack data structure

 Function calls follow LIFO semantics

 So we can use a stack data structure to

represent the process’s stack – no

fragmentation!

 Solution (heap): malloc

 This is a much harder problem

 Need to deal with fragmentation

Copyright ©: University of Illinois CS 241 Staff 43

Problems

 What was the key abstraction not supported well by

segmentation and by B&B?

 Supporting an address space larger than the size of

physical memory

 How could you support this using B&B and

segmentation?

 Use lots of segments and have the user switch between

them (this is kind of how x86 segmentation works)

 Note: x86 used to support segmentation, now

effectively deprecated with x86-64

Copyright ©: University of Illinois CS 241 Staff 44

Paging

 On heavily-loaded systems, memory can fill up

 Need to make room for newly-accessed pages

 Heuristic: try to move “inactive” pages out to disk

 What constitutes an “inactive” page?

 Paging

 Refers to moving individual pages out to disk (and back)

 We often use the terms “paging” and “swapping”

interchangeably

 Different from context switching

 Background processes often have their pages remain

resident in memory

Copyright ©: University of Illinois CS 241 Staff 45

Demand Paging

 Never bring a page into primary memory until its

needed

 Fetch Strategies

 When should a page be brought into primary (main)

memory from secondary (disk) storage.

 Placement Strategies

 When a page is brought into primary storage, where

should it be put?

 Replacement Strategies

 Which page now in primary storage should be removed

from primary storage when some other page or segment

needs to be brought in and there is not enough room

Copyright ©: University of Illinois CS 241 Staff 46

Page Eviction

 When do we decide to evict a page from

memory?

 Usually, at the same time that we are trying to

allocate a new physical page

 However, the OS keeps a pool of “free pages”

around, even when memory is tight, so that

allocating a new page can be done quickly

 The process of evicting pages to disk is then

performed in the background

Copyright ©: University of Illinois CS 241 Staff 47

Page Eviction: Which page?

 Hopefully, kick out a less-useful page

 Dirty pages require writing, clean pages don’t

 Where do you write? To “swap space”

 Goal: kick out the page that’s least useful

 Problem: how do you determine utility?

 Heuristic: temporal locality exists

 Kick out pages that aren’t likely to be used again

Copyright ©: University of Illinois CS 241 Staff 48

Basic Page Replacement

 How do we replace pages?

 Find the location of the desired page on disk

 Find a free frame

 If there is a free frame, use it

 If there is no free frame, use a page replacement

algorithm to select a victim frame

 Read the desired page into the (newly) free

frame. Update the page and frame tables.

 Restart the process

Copyright ©: University of Illinois CS 241 Staff 49

Page Replacement Strategies

 Random page replacement

 Choose a page randomly

 FIFO - First in First Out

 Replace the page that has

been in primary memory

the longest

 LRU - Least Recently Used

 Replace the page that has

not been used for the

longest time

 LFU - Least Frequently

Used

 Replace the page that is

used least often

 NRU - Not Recently Used

 An approximation to LRU.

 Working Set

 Keep in memory those

pages that the process is

actively using.

Copyright ©: University of Illinois CS 241 Staff 51

