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Memory Allocation 



Recap: Virtual Addresses 

 A virtual address is a memory address that a 

process uses to access its own memory 

 Virtual address ≠ actual physical RAM address 

 When a process accesses a virtual address, the MMU 

hardware translates the virtual address into a physical 

address 

 The OS determines the mapping from virtual address to 

physical address 
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Recap: Virtual Addresses 

 Benefit: Isolation 
 Virtual addresses in one process refer to different physical 

memory than virtual addresses in another 

 Exception: shared memory regions between processes 

(discussed later) 

 Benefit: Illusion of larger memory space  
 Can store unused parts of virtual memory on disk 

temporarily 

 Benefit: Relocation 
 A program does not need to know which physical 

addresses it will use when it’s run 

 Can even change physical location while program is 

running 
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Mapping virtual to physical 

addresses 
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Code segment 

Data segment 
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Physical RAM 

MMU 

How does this thing 
work?? 



MMU and TLB 

 Memory Management Unit (MMU) 

 Hardware that translates a virtual address to a physical 

address 

 Each memory reference is passed through the MMU 

 Translate a virtual address to a physical address 

 Lots of ways of doing this! 
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MMU and TLB 

 Translation Lookaside Buffer (TLB) 

 Cache for MMU virtual-to-physical address translations 

 Just an optimization – but an important one! 
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Translating virtual to physical 

 Can do it almost any way we like 

 But, some ways are better than 

others… 

 

 Strawman solution from last time     

 Base and bound 

 

Copyright ©: University of Illinois CS 241 Staff 7 



Base and bounds 
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if (virt addr > bound) 

    trap to kernel 

} else { 

    phys addr =  

   virt addr + base 

} 

 

 Process has the illusion of 

running on its own dedicated 

machine with memory 

[0,bound) 

 Provides protection from 

other processes also 

currently in memory 

physical   

memory 

physical   

memory 

size 

base + bound 

base 
bound 

virtual 

memory 

0 0 



Base and Bounds Registers 
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Memory 

Bounds Register Base Register 

CPU 

Address 
< + 

Memory 

Address 

MA 

Logical 

Address LA 

Physical 

Address 

PA 

Fault 

Base Address 

Limit Address 

MA+BA 

Base 

Address 

BA 

Base: start of the process’s memory partition 
Limit: max address in the process’s memory partition 



Base and bounds 
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 Problem: Process needs more 

memory over time 

 Stack grows as functions are 

called 

 Heap grows upon request (malloc) 

 Processes start and end 

 How does the kernel handle the 

address space growing? 

 You are the OS designer 

 Design algorithm for allowing 

processes to grow 

physical   

memory 

base + bound 

base 
bound 

virtual 

memory 

0 0 

Process 1 

Process 2 



But wait, didn’t we solve this? 
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Code segment 

Data segment 

Heap 

Stack 

fixed size 

fixed size 

grows  

dynamically 

grows  

dynamically 

physical   

memory 

base + bound 

base 

 Problem: 

wasted space 

 And must have 

virtual mem ≤ 

phys mem 



Another attempt: 

Segmentation 

 Segment 

 Region of contiguous memory 

 Segmentation 

 Generalized base and bounds with 

support for multiple segments at once 
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Segmentation 
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Seg # Base Bound Description 

0 4000 700 Code 

segment 

1 0 500 Data 

segment 

2 Unused 

3 2000 1000 Stack 

segment 



Segmentation 

 Segments are specified 

many different ways 

 Advantages over base and 

bounds? 

 Protection 

 Different segments can 

have different protections 

 Flexibility 

 Can separately grow both 

a stack and heap 

 Enables sharing of code 

and other segments if 

needed 
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Segmentation 

 Segments are specified 

many different ways 

 Advantages over base and 

bounds? 

 What must be changed on 

context switch? 

 Contents of your 

segmentation table 

 A pointer to the table, expose 

caching semantics to the 

software (what x86 does) 
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Recap: Mapping Virtual 

Memory 

 Base & bounds 

 Problem: growth is inflexible 

 Problem: external fragmentation 

 As jobs run and complete, holes left in physical memory 

 Segments 

 Resize pieces based on process needs 

 Problem: external fragmentation 

 Note: x86 used to support segmentation, now effectively 

deprecated with x86-64 

 Modern approach: Paging 
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Paging 

 Solve the external 

fragmentation 

problem by using 

fixed-size chunks 

of virtual and 

physical memory 

 Virtual memory 

unit called a page 

 Physical memory 

unit called a frame 

(or sometimes 

page frame) 
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..
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..
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Application Perspective 

 Application believes it has a single, contiguous 

address space ranging from 0 to 2P – 1 bytes 

 Where P is the number of bits in a pointer (e.g., 32 bits) 

 In reality, virtual pages are scattered across 

physical memory 

 This mapping is invisible to the program, and not even 

under it's control! 
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Application Perspective 
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Translation process 

 Virtual-to-physical address translation performed by 

MMU 

 Virtual address is broken into a virtual page number and 

an offset 

 Mapping from virtual page to physical frame provided by a 

page table (which is stored in memory) 
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0xdeadbeef = 0xdeadb 0xeef 

Virtual page number Offset 



Translation process 
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Translation process 

if (virtual page is invalid or non-resident or protected) 

    trap to OS fault handler 

else 

    physical frame # = pageTable[virtpage#].physPageNum 

 
 Each virtual page can be in physical memory or 

swapped out to disk (called “paged out” or just 
“paged”) 

 What must change on a context switch? 
 Could copy entire contents of table, but this will be slow 

 Instead use an extra layer of indirection: Keep pointer to 
current page table and just change pointer 

Copyright ©: University of Illinois CS 241 Staff 23 



Where is the page table? 

 Page Tables store the virtual-to-physical address 

mappings. 

 Where are they located?  

 In memory! 

 OK, then. How does the MMU access them?  

 The MMU has a special register called the page table 

base pointer 

 This points to the physical memory address of the top of 

the page table for the currently-running process 
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Where is the page table? 
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Process A page tbl 

Process B page tbl 

Physical RAM 

MMU pgtbl base ptr 



Paging 

 Can add read, write, execute protection bits 

to page table to protect memory 

 Check is done by hardware during access 

 Can give shared memory location different 

protections from different processes by having 

different page table protection access bits 

 How does the processor know that a virtual 

page is not in memory? 

 Resident bit tells the hardware that the virtual 

address is resident or non-resident 
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Valid vs. Resident 

 Resident  

 Virtual page is in memory 

 NOT an error for a program to access 

non-resident page 

 Valid  

 Virtual page is legal for the program to 

access 

 e.g., part of the address space 
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Valid vs. Resident 

 Who makes a page resident/non-resident? 

 OS memory manager 

 Who makes a virtual page valid/invalid? 

 User actions  

 Why would a process want one if its virtual 

pages to be invalidated? 

 Avoid accidental memory references to bad 

locations 
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Page Table Entry 

 Typical PTE format (depends on CPU architecture!) 
 

 

 

 

 Various bits accessed by MMU on each page access: 

 Modify bit: Indicates whether a page is “dirty” (modified) 

 Reference bit: Indicates whether a page has been accessed 

(read or written) 

 Valid bit: Whether the PTE represents a real memory mapping 

 Protection bits: Specify if page is readable, writable, or 

executable 

 Page frame number: Physical location of page in RAM 
 Why is this 20 bits wide in the above example? 
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page frame number prot V R M 

20 2 1 1 1 



Page Faults 

 What happens when a program accesses a virtual 

page that is not mapped into any physical page? 

 Hardware triggers a page fault 

 Page fault handler 

 Find any available free physical page 

 If none, evict some resident page to disk 

 Allocate a free physical page 

 Load the faulted virtual page to the prepared physical 

page 

 Modify the page table 
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Advantages of Paging 

 Simplifies physical memory management 

 OS maintains a free list of physical page frames 

 To allocate a physical page, just remove an 

entry from this list 

 No external fragmentation! 

 Virtual pages from different processes can be 

interspersed in physical memory 

 No need to allocate pages in a contiguous 

fashion 
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Advantages of Paging 

 Allocation of memory can be performed at a 

(relatively) fine granularity 

 Only allocate physical memory to those parts of 

the address space that require it 

 Can swap unused pages out to disk when 

physical memory is running low 

 Idle programs won't use up a lot of memory 

(even if their address space is huge!) 
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Paging Example 
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Paging Example 
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Paging Example 
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Paging Example 
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Paging Example 
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Paging Example 
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Paging Example 
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Paging Example 
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Is paging enough? 
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Memory allocation within a 

process 

 What happens when you declare a 

variable? 

 Allocating a page for every variable 

wouldn’t be efficient 

 Allocations within a process are much 

smaller 

 Need to allocate on a finer granularity 
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Memory allocation within a 

process 

 Solution (stack): stack data structure 

 Function calls follow LIFO semantics 

 So we can use a stack data structure to 

represent the process’s stack – no 

fragmentation! 

 Solution (heap): malloc 

 This is a much harder problem 

 Need to deal with fragmentation 
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Problems 

 What was the key abstraction not supported well by 

segmentation and by B&B? 

 Supporting an address space larger than the size of 

physical memory 

 How could you support this using B&B and 

segmentation? 

 Use lots of segments and have the user switch between 

them (this is kind of how x86 segmentation works) 

 

 Note: x86 used to support segmentation, now 

effectively deprecated with x86-64 
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Paging 

 On heavily-loaded systems, memory can fill up 

 Need to make room for newly-accessed pages 

 Heuristic: try to move “inactive” pages out to disk 

 What constitutes an “inactive” page? 

 Paging 

 Refers to moving individual pages out to disk (and back)  

 We often use the terms “paging” and “swapping” 

interchangeably 

 Different from context switching 

 Background processes often have their pages remain 

resident in memory 
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Demand Paging 

 Never bring a page into primary memory until its 

needed 

 Fetch Strategies  

 When should a page be brought into primary (main) 

memory from secondary (disk) storage.  

 Placement Strategies 

 When a page is brought into primary storage, where 

should it be put?  

 Replacement Strategies 

 Which page now in primary storage should be removed 

from primary storage when some other page or segment 

needs to be brought in and there is not enough room 
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Page Eviction 

 When do we decide to evict a page from 

memory? 

 Usually, at the same time that we are trying to 

allocate a new physical page 

 However, the OS keeps a pool of “free pages” 

around, even when memory is tight, so that 

allocating a new page can be done quickly 

 The process of evicting pages to disk is then 

performed in the background 
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Page Eviction: Which page? 

 Hopefully, kick out a less-useful page 

 Dirty pages require writing, clean pages don’t 

 Where do you write? To “swap space” 

 Goal: kick out the page that’s least useful 

 Problem: how do you determine utility? 

 Heuristic: temporal locality exists 

 Kick out pages that aren’t likely to be used again 
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Basic Page Replacement 

 How do we replace pages? 

 Find the location of the desired page on disk 

 Find a free frame 

 If there is a free frame, use it 

 If there is no free frame, use a page replacement 

algorithm to select a victim frame 

 Read the desired page into the (newly) free 

frame. Update the page and frame tables. 

 Restart the process 
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Page Replacement Strategies 

 Random page replacement  

 Choose a page randomly  

 FIFO - First in First Out  

 Replace the page that has 

been in primary memory 

the longest  

 LRU - Least Recently Used  

 Replace the page that has 

not been used for the 

longest time  

 

 LFU - Least Frequently 

Used  

 Replace the page that is 

used least often  

 NRU - Not Recently Used  

 An approximation to LRU.  

 Working Set  

 Keep in memory those 

pages that the process is 

actively using.  
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