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Memory Allocation 



Recap: Virtual Addresses 

 A virtual address is a memory address that a 

process uses to access its own memory 

 Virtual address ≠ actual physical RAM address 

 When a process accesses a virtual address, the MMU 

hardware translates the virtual address into a physical 

address 

 The OS determines the mapping from virtual address to 

physical address 
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Recap: Virtual Addresses 

 Benefit: Isolation 
 Virtual addresses in one process refer to different physical 

memory than virtual addresses in another 

 Exception: shared memory regions between processes 

(discussed later) 

 Benefit: Illusion of larger memory space  
 Can store unused parts of virtual memory on disk 

temporarily 

 Benefit: Relocation 
 A program does not need to know which physical 

addresses it will use when it’s run 

 Can even change physical location while program is 

running 
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Mapping virtual to physical 

addresses 

Copyright ©: University of Illinois CS 241 Staff 4 

Code segment 

Data segment 

Heap 

Stack 

Physical RAM 

MMU 

How does this thing 
work?? 



MMU and TLB 

 Memory Management Unit (MMU) 

 Hardware that translates a virtual address to a physical 

address 

 Each memory reference is passed through the MMU 

 Translate a virtual address to a physical address 

 Lots of ways of doing this! 

Copyright ©: University of Illinois CS 241 Staff 5 

CPU MMU 
Virtual 

address 
Physical 
address Memory 

TLB 

Cache of translations 

Translation 
mapping 



MMU and TLB 

 Translation Lookaside Buffer (TLB) 

 Cache for MMU virtual-to-physical address translations 

 Just an optimization – but an important one! 
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Translating virtual to physical 

 Can do it almost any way we like 

 But, some ways are better than 

others… 

 

 Strawman solution from last time     

 Base and bound 
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Base and bounds 
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if (virt addr > bound) 

    trap to kernel 

} else { 

    phys addr =  

   virt addr + base 

} 

 

 Process has the illusion of 

running on its own dedicated 

machine with memory 

[0,bound) 

 Provides protection from 

other processes also 

currently in memory 

physical   

memory 

physical   

memory 

size 

base + bound 

base 
bound 

virtual 

memory 

0 0 



Base and Bounds Registers 
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Memory 

Bounds Register Base Register 

CPU 

Address 
< + 

Memory 

Address 

MA 

Logical 

Address LA 

Physical 

Address 

PA 

Fault 

Base Address 

Limit Address 

MA+BA 

Base 

Address 

BA 

Base: start of the process’s memory partition 
Limit: max address in the process’s memory partition 



Base and bounds 
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 Problem: Process needs more 

memory over time 

 Stack grows as functions are 

called 

 Heap grows upon request (malloc) 

 Processes start and end 

 How does the kernel handle the 

address space growing? 

 You are the OS designer 

 Design algorithm for allowing 

processes to grow 

physical   

memory 

base + bound 

base 
bound 

virtual 

memory 

0 0 

Process 1 

Process 2 



But wait, didn’t we solve this? 
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Code segment 

Data segment 

Heap 

Stack 

fixed size 

fixed size 

grows  

dynamically 

grows  

dynamically 

physical   

memory 

base + bound 

base 

 Problem: 

wasted space 

 And must have 

virtual mem ≤ 

phys mem 



Another attempt: 

Segmentation 

 Segment 

 Region of contiguous memory 

 Segmentation 

 Generalized base and bounds with 

support for multiple segments at once 
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Segmentation 
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Seg # Base Bound Description 

0 4000 700 Code 

segment 

1 0 500 Data 

segment 

2 Unused 

3 2000 1000 Stack 

segment 



Segmentation 

 Segments are specified 

many different ways 

 Advantages over base and 

bounds? 

 Protection 

 Different segments can 

have different protections 

 Flexibility 

 Can separately grow both 

a stack and heap 

 Enables sharing of code 

and other segments if 

needed 
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Segmentation 

 Segments are specified 

many different ways 

 Advantages over base and 

bounds? 

 What must be changed on 

context switch? 

 Contents of your 

segmentation table 

 A pointer to the table, expose 

caching semantics to the 

software (what x86 does) 
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Recap: Mapping Virtual 

Memory 

 Base & bounds 

 Problem: growth is inflexible 

 Problem: external fragmentation 

 As jobs run and complete, holes left in physical memory 

 Segments 

 Resize pieces based on process needs 

 Problem: external fragmentation 

 Note: x86 used to support segmentation, now effectively 

deprecated with x86-64 

 Modern approach: Paging 
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Paging 

 Solve the external 

fragmentation 

problem by using 

fixed-size chunks 

of virtual and 

physical memory 

 Virtual memory 

unit called a page 

 Physical memory 

unit called a frame 

(or sometimes 

page frame) 
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frame 0 
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…
 

page 0 
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page X 
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…
 

page 3 

..
. 

..
. 



Application Perspective 

 Application believes it has a single, contiguous 

address space ranging from 0 to 2P – 1 bytes 

 Where P is the number of bits in a pointer (e.g., 32 bits) 

 In reality, virtual pages are scattered across 

physical memory 

 This mapping is invisible to the program, and not even 

under it's control! 
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Application Perspective 
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Translation process 

 Virtual-to-physical address translation performed by 

MMU 

 Virtual address is broken into a virtual page number and 

an offset 

 Mapping from virtual page to physical frame provided by a 

page table (which is stored in memory) 
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0xdeadbeef = 0xdeadb 0xeef 

Virtual page number Offset 



Translation process 
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Translation process 

if (virtual page is invalid or non-resident or protected) 

    trap to OS fault handler 

else 

    physical frame # = pageTable[virtpage#].physPageNum 

 
 Each virtual page can be in physical memory or 

swapped out to disk (called “paged out” or just 
“paged”) 

 What must change on a context switch? 
 Could copy entire contents of table, but this will be slow 

 Instead use an extra layer of indirection: Keep pointer to 
current page table and just change pointer 
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Where is the page table? 

 Page Tables store the virtual-to-physical address 

mappings. 

 Where are they located?  

 In memory! 

 OK, then. How does the MMU access them?  

 The MMU has a special register called the page table 

base pointer 

 This points to the physical memory address of the top of 

the page table for the currently-running process 
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Where is the page table? 
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Process A page tbl 

Process B page tbl 

Physical RAM 

MMU pgtbl base ptr 



Paging 

 Can add read, write, execute protection bits 

to page table to protect memory 

 Check is done by hardware during access 

 Can give shared memory location different 

protections from different processes by having 

different page table protection access bits 

 How does the processor know that a virtual 

page is not in memory? 

 Resident bit tells the hardware that the virtual 

address is resident or non-resident 
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Valid vs. Resident 

 Resident  

 Virtual page is in memory 

 NOT an error for a program to access 

non-resident page 

 Valid  

 Virtual page is legal for the program to 

access 

 e.g., part of the address space 
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Valid vs. Resident 

 Who makes a page resident/non-resident? 

 OS memory manager 

 Who makes a virtual page valid/invalid? 

 User actions  

 Why would a process want one if its virtual 

pages to be invalidated? 

 Avoid accidental memory references to bad 

locations 
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Page Table Entry 

 Typical PTE format (depends on CPU architecture!) 
 

 

 

 

 Various bits accessed by MMU on each page access: 

 Modify bit: Indicates whether a page is “dirty” (modified) 

 Reference bit: Indicates whether a page has been accessed 

(read or written) 

 Valid bit: Whether the PTE represents a real memory mapping 

 Protection bits: Specify if page is readable, writable, or 

executable 

 Page frame number: Physical location of page in RAM 
 Why is this 20 bits wide in the above example? 
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page frame number prot V R M 

20 2 1 1 1 



Page Faults 

 What happens when a program accesses a virtual 

page that is not mapped into any physical page? 

 Hardware triggers a page fault 

 Page fault handler 

 Find any available free physical page 

 If none, evict some resident page to disk 

 Allocate a free physical page 

 Load the faulted virtual page to the prepared physical 

page 

 Modify the page table 
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Advantages of Paging 

 Simplifies physical memory management 

 OS maintains a free list of physical page frames 

 To allocate a physical page, just remove an 

entry from this list 

 No external fragmentation! 

 Virtual pages from different processes can be 

interspersed in physical memory 

 No need to allocate pages in a contiguous 

fashion 
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Advantages of Paging 

 Allocation of memory can be performed at a 

(relatively) fine granularity 

 Only allocate physical memory to those parts of 

the address space that require it 

 Can swap unused pages out to disk when 

physical memory is running low 

 Idle programs won't use up a lot of memory 

(even if their address space is huge!) 
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Paging Example 
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Paging Example 
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Paging Example 
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Paging Example 
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Paging Example 
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Paging Example 
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Paging Example 
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Paging Example 
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Is paging enough? 
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Memory allocation within a 

process 

 What happens when you declare a 

variable? 

 Allocating a page for every variable 

wouldn’t be efficient 

 Allocations within a process are much 

smaller 

 Need to allocate on a finer granularity 
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Memory allocation within a 

process 

 Solution (stack): stack data structure 

 Function calls follow LIFO semantics 

 So we can use a stack data structure to 

represent the process’s stack – no 

fragmentation! 

 Solution (heap): malloc 

 This is a much harder problem 

 Need to deal with fragmentation 
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Problems 

 What was the key abstraction not supported well by 

segmentation and by B&B? 

 Supporting an address space larger than the size of 

physical memory 

 How could you support this using B&B and 

segmentation? 

 Use lots of segments and have the user switch between 

them (this is kind of how x86 segmentation works) 

 

 Note: x86 used to support segmentation, now 

effectively deprecated with x86-64 
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Paging 

 On heavily-loaded systems, memory can fill up 

 Need to make room for newly-accessed pages 

 Heuristic: try to move “inactive” pages out to disk 

 What constitutes an “inactive” page? 

 Paging 

 Refers to moving individual pages out to disk (and back)  

 We often use the terms “paging” and “swapping” 

interchangeably 

 Different from context switching 

 Background processes often have their pages remain 

resident in memory 
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Demand Paging 

 Never bring a page into primary memory until its 

needed 

 Fetch Strategies  

 When should a page be brought into primary (main) 

memory from secondary (disk) storage.  

 Placement Strategies 

 When a page is brought into primary storage, where 

should it be put?  

 Replacement Strategies 

 Which page now in primary storage should be removed 

from primary storage when some other page or segment 

needs to be brought in and there is not enough room 
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Page Eviction 

 When do we decide to evict a page from 

memory? 

 Usually, at the same time that we are trying to 

allocate a new physical page 

 However, the OS keeps a pool of “free pages” 

around, even when memory is tight, so that 

allocating a new page can be done quickly 

 The process of evicting pages to disk is then 

performed in the background 
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Page Eviction: Which page? 

 Hopefully, kick out a less-useful page 

 Dirty pages require writing, clean pages don’t 

 Where do you write? To “swap space” 

 Goal: kick out the page that’s least useful 

 Problem: how do you determine utility? 

 Heuristic: temporal locality exists 

 Kick out pages that aren’t likely to be used again 
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Basic Page Replacement 

 How do we replace pages? 

 Find the location of the desired page on disk 

 Find a free frame 

 If there is a free frame, use it 

 If there is no free frame, use a page replacement 

algorithm to select a victim frame 

 Read the desired page into the (newly) free 

frame. Update the page and frame tables. 

 Restart the process 
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Page Replacement Strategies 

 Random page replacement  

 Choose a page randomly  

 FIFO - First in First Out  

 Replace the page that has 

been in primary memory 

the longest  

 LRU - Least Recently Used  

 Replace the page that has 

not been used for the 

longest time  

 

 LFU - Least Frequently 

Used  

 Replace the page that is 

used least often  

 NRU - Not Recently Used  

 An approximation to LRU.  

 Working Set  

 Keep in memory those 

pages that the process is 

actively using.  
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