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Memory Allocation 



Memory allocation within a 

process 

 What happens when you declare a 

variable? 

 Allocating a page for every variable 

wouldn’t be efficient 

 Allocations within a process are much 

smaller 

 Need to allocate on a finer granularity 
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Memory allocation within a 

process 

 Solution (stack): stack data structure 

 Function calls follow LIFO semantics 

 So we can use a stack data structure to 

represent the process’s stack – no 

fragmentation! 

 Solution (heap): malloc 

 This is a much harder problem 

 Need to deal with fragmentation 
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Allocation example 
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p1 = malloc(4) 

p2 = malloc(5) 

p3 = malloc(6) 

free(p2) 

p4 = malloc(2) 



malloc Constraints 

 Applications 

 Can issue arbitrary sequence of malloc 

and free requests 

 free request must be to a malloc’d  

block 
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malloc Constraints 

 Allocators 

 Can’t control number or size of allocated blocks 

 Must respond immediately to malloc requests 

 i.e., can’t reorder or buffer requests 

 Must allocate blocks from free memory 

 Must align blocks so they satisfy all requirements 

 8 byte alignment for libc malloc on Linux boxes 

 Can manipulate and modify only free memory 

 Can’t move the allocated blocks once they are 
malloc’d 

 i.e., compaction is not allowed (why not?) 

 Copyright ©: University of Illinois CS 241 Staff 6 



Goal 1: Speed 

 Allocate fast! 

 Minimize overhead for both allocation and 

deallocation 

 Maximize throughput 

 Number of completed malloc or free requests 

per unit time 

 Example 

 5,000 malloc calls and 5,000 free calls in 10 

seconds 
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Goal 1: Speed 

 BUT 

 A fast allocator may not be efficient in 

terms of memory utilization 

 Faster allocators tend to be “sloppier” 

 Example: don’t look through every free block 

to find the perfect fit 
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Goal 2: Memory Utilization 

 Allocators usually 

waste some memory 

 Extra metadata or 

internal structures used 

by the allocator itself 

 Example: keeping track 

of where free memory is 

located 

 Chunks of heap 

memory that are 

unallocated (fragments) 
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Goal 2: Memory Utilization 

 Memory utilization = 

 The total amount of 

memory allocated to the 

application divided by 

the total heap size 

 Ideal 

 utilization = 100% 

 In practice 

 try to get close to 100% 
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Fragmentation 

 Poor memory utilization caused by 

unallocatable memory 

 internal fragmentation 

 external fragmentation 

 OS fragmentation  

 When allocating memory to processes 

 malloc fragmentation  

 When allocating memory to applications 
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Internal fragmentation 

 Payload is smaller than block size 

 

 

 

 

 Caused by  

 Overhead of maintaining heap data structures 

 Padding for alignment purposes 

 Explicit policy decisions  

(e.g., to return a big block to satisfy a small request) 
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Payload 
Internal  

fragmentation 

Block 

Internal  

fragmentation 



Experiment 

 Does libc’s malloc have internal 

fragmentation?  How much? 

 How would you test this? 

 1. Close Facebook 

 2. Preheat oven to 375° 
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Run Example 



fragtest 

#include <stdio.h> 

#include <stdlib.h> 

 

int main(int argc, char** argv) { 

 int* a = (int*) malloc(1); 

 int* b = (int*) malloc(1); 

 int* c = (int*) malloc(100); 

 int* d = (int*) malloc(100); 

 

 printf("a = %p\nb = %p\nc = %p\nd = %p\n", 

a,b,c,d); 

} 
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What output 

would you 

expect? 



External Fragmentation 

 There is enough aggregate heap memory, 

but no single free block is large enough 
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p1 = malloc(4) 

p2 = malloc(5) 

p3 = malloc(6) 

free(p2) 

p4 = malloc(6) 

Depends on the pattern of future requests 

Difficult to plan for 

Oops! (what would happen now?) 



Conflicting performance goals 

 Throughput vs. Utilization  

 Difficult to achieve simultaneously 

 Speed vs. Efficiency 

 Faster allocators tend to be “sloppier” 

with memory usage 

 Space-efficient allocators may not be 

very fast 

 Tracking fragments to avoid waste generally 

results in longer allocation times 
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Implementation issues you 

need to solve! 

 How do I know how much memory to free 

just given a pointer? 

Copyright ©: University of Illinois CS 241 Staff 19 

Keep the length of 

the block in the 

header preceding 

the block 

 

Requires an extra 

word for every 

allocated block 



Keeping Track of Free Blocks 

 One of the biggest jobs of an allocator is knowing 

where the free memory is 

 The allocator's approach to this problem affects: 

 Throughput – time to complete a malloc() or free() 

 Space utilization – amount of extra metadata used to track 

location of free memory 

 There are many approaches to free space 

management 
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Implicit Free Lists 

 For each block we need 

both size and allocation 

status 

 Could store this information in 

two words: wasteful! 

 Standard trick 

 If blocks are aligned, low-order 

address bits are always 0 

 Why store an always-0 bit? 

Use it as allocated/free flag! 

 When reading size word, must 

mask out this bit 
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Size 

1 word 

Payload 

a = 1: Allocated block   

a = 0: Free block 

Size: block size 

 

Payload: application data 

(allocated blocks only) 

 

a 

Optional 

padding 



Implicit Free Lists 

 No explicit structure tracking location of 

free/allocated blocks. 

 Rather, the size word (and allocated bit) in each 

block form an implicit “block list” 
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Implicit Free Lists: Free Blocks 

 How do we find a free block in the heap? 

 Start scanning from the beginning of the heap. 

 Traverse each block until (a) we find a free block 

and (b) the block is large enough to handle the 

request. 

 This is called the first fit strategy 

 Could also use next fit, best fit, etc 
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Implicit Free Lists: Allocating 

Blocks 

 Splitting free blocks 

 Allocated space might be smaller than free 

space,  

 May need to split the free block 
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Implicit Free Lists: Freeing a 

Block 

 Simplest implementation: 

 Only need to clear allocated flag 
void free_block(ptr p) { *p = *p & ~1; } 

 Problem? 
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Implicit Free Lists: Coalescing 

Blocks 

 Join (coalesce) with next and previous 

block if they are free 

 Coalescing with next block 
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16 8 16 8 

free(p) p 

16 16 8 

16 

8 24 

But how do we coalesce 

with previous block? 



Implicit Free Lists: 

Bidirectional Coalescing 

 Boundary tags [Knuth73] 

 Replicate size/allocated word at tail end of all blocks 

 Lets us traverse list backwards, but needs extra space 

 General technique: doubly linked list 
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Implicit Free Lists: 

Bidirectional Coalescing 

 Boundary tags [Knuth73] 
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size 

1 word 

Format of 

allocated and 

free blocks 

payload and 

padding 

a = 1: Allocated block   
a = 0: Free block 
Size: block size 

 

payload: application data 

(allocated blocks only) 

 

a 

size a Boundary tag 

  (footer) 

16 16 16 16 24 16 24 16 

Header 



Implicit Free Lists: Summary 

 Implementation 

 Very simple 

 Allocation 

 linear-time worst case 

 Free 

 Constant-time worst case—even with coalescing 

 Memory usage 

 Will depend on placement policy 

 First, next, or best fit 
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Implicit Free Lists: Summary 

 Not used in practice for malloc/free 

 linear-time allocation is actually slow! 

 But used in some special-purpose applications 

 

 However, concepts of splitting and boundary 

tag coalescing are general to all allocators 
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Alternative Approaches 

 Explicit Free Lists 

 Segregated Free Lists 

 Buddy allocators 
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Explicit Free Lists 

 Linked list among free blocks 

 Use data space for link pointers 

 Typically doubly linked 

 Still need boundary tags for coalescing 
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16 16 16 16 24 24 16 16 16 16 

Forward links 

Back links 

A B 

C 

Links aren’t necessarily 

in same order as 

blocks! Advantage? 



Explicit Free Lists: Inserting 

Free Blocks 

 Where in free list to put newly freed 

block? 

 LIFO (last-in-first-out) policy 

 Insert freed block at beginning of free list 

 Pro 

 Simple, and constant-time 

 Con 

 Studies suggest fragmentation is worse than 

address-ordered 
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Explicit Free Lists: Inserting 

Free Blocks 

 Where in free list to put newly freed 

block? 

 Address-ordered policy 

 Insert so list is always in address order 

 i.e. addr(pred) < addr(curr) < 

addr(succ) 

 Con  

 Requires search (using boundary tags); slow! 

 Pro 

 studies suggest fragmentation is better than LIFO 
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Segregated Free Lists 

 Each size class has its own collection 

of blocks 
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4-8 

12 

16 

20-32 

36-64 



Segregated Free Lists 

 Each size class has its own collection 

of blocks 
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4-8 

12 

16 

20-32 

36-64 

 Often separate size class for every 

small size (8, 12, 16, …) 

 For larger, typically have size class 

for each power of 2 

What is the point of having 
separate lists? 



Buddy Allocators 

 Special case of segregated free lists 

 Limited allocations to to power-of-two sizes 

 Can only coalesce with "buddy“ 

 Who is other half of next-higher power of two 

 Clever use of low address bits to find 

buddies 

 Problem 

 large powers of two result in large internal 

fragmentation (e.g., what  if you want to allocate 

65537 bytes?) 
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Buddy System 

 Approach 

 Minimum allocation size = smallest frame 

 Use a bitmap to monitor frame use 

 Maintain freelist for each possible frame size  

 power of 2 frame sizes from min to max 

 Initially one block = entire buffer 

 If two neighboring frames (“buddies”) are free, combine 

them and add to next larger freelist 
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Buddy System Example 
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128 Free 



Buddy System Example 
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128 Free 

Process A requests 16 

64 Free 64 Free 

32 Free 32 Free 

16 A 16 Free 32 Free 

64 Free 

64 Free 



Buddy System Example 
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128 Free 

Process B requests 32 

16 A 16 Free 32 Free 64 Free 32 B 



Buddy System Example 
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128 Free 

Process C requests 8 

16 A 16 Free 32 B 64 Free 

16 A 
8 

C 
32 B 64 Free 8 



Buddy System Example 
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Process A exits 

16 Free 
8 

C 
32 B 64 Free 8 



Buddy System Example 

 Advantage 

 Minimizes external fragmentation 

 Disadvantage 

 Internal fragmentation when not 2^n request 
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Process C exits 

16 Free 8 32 B 64 Free 8 

16 Free 32 B 64 Free 16 Free 

32 B 64 Free 32 Free 



So what should I do for MP2? 

 Designs sketched here are all 

reasonable 

 But, there are many other possible 

designs 

 So, implement anything you want! 
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Back to Paging 

 On heavily-loaded systems, memory can fill up 

 Need to make room for newly-accessed pages 

 Heuristic: try to move “inactive” pages out to disk 

 What constitutes an “inactive” page? 

 Paging 

 Refers to moving individual pages out to disk (and back)  

 We often use the terms “paging” and “swapping” 

interchangeably 

 Different from context switching 

 Background processes often have their pages remain 

resident in memory 
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Demand Paging 

 Never bring a page into primary memory until its needed 

 Fetch Strategies  

 When should a page be brought into primary (main) memory 

from secondary (disk) storage.  

 Placement Strategies 

 When a page is brought into primary storage, where should it be 

put?  

 Replacement Strategies 

 Which page now in primary storage should be removed from 

primary storage when some other page or segment needs to be 

brought in and there is not enough room 
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Page Eviction: When? 

 When do we decide to evict a page from 

memory? 

 Usually, at the same time that we are trying to 

allocate a new physical page 

 However, the OS keeps a pool of “free pages” 

around, even when memory is tight, so that 

allocating a new page can be done quickly 

 The process of evicting pages to disk is then 

performed in the background 
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Page Eviction: Which page? 

 Hopefully, kick out a less-useful page 

 Dirty pages require writing, clean pages don’t 

 Where do you write? To “swap space” 

 Goal: kick out the page that’s least useful 

 Problem: how do you determine utility? 

 Heuristic: temporal locality exists 

 Kick out pages that aren’t likely to be used again 
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Basic Page Replacement 

 How do we replace pages? 

 Find the location of the desired page on disk 

 Find a free frame 

 If there is a free frame, use it 

 If there is no free frame, use a page replacement 

algorithm to select a victim frame 

 Read the desired page into the (newly) free 

frame. Update the page and frame tables. 

 Restart the process 
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Page Replacement Strategies 

 Random page replacement  

 Choose a page randomly  

 FIFO - First in First Out  

 Replace the page that has 

been in primary memory 

the longest  

 LRU - Least Recently Used  

 Replace the page that has 

not been used for the 

longest time  

 

 LFU - Least Frequently 

Used  

 Replace the page that is 

used least often  

 NRU - Not Recently Used  

 An approximation to LRU.  

 Working Set  

 Keep in memory those 

pages that the process is 

actively using.  
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