

Copyright ©: University of Illinois CS 241 Staff 1

Memory Allocation

Memory allocation within a

process

 What happens when you declare a

variable?

 Allocating a page for every variable

wouldn’t be efficient

 Allocations within a process are much

smaller

 Need to allocate on a finer granularity

Copyright ©: University of Illinois CS 241 Staff 2

Memory allocation within a

process

 Solution (stack): stack data structure

 Function calls follow LIFO semantics

 So we can use a stack data structure to

represent the process’s stack – no

fragmentation!

 Solution (heap): malloc

 This is a much harder problem

 Need to deal with fragmentation

Copyright ©: University of Illinois CS 241 Staff 3

Allocation example

Copyright ©: University of Illinois CS 241 Staff 4

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

malloc Constraints

 Applications

 Can issue arbitrary sequence of malloc

and free requests

 free request must be to a malloc’d

block

Copyright ©: University of Illinois CS 241 Staff 5

malloc Constraints

 Allocators

 Can’t control number or size of allocated blocks

 Must respond immediately to malloc requests

 i.e., can’t reorder or buffer requests

 Must allocate blocks from free memory

 Must align blocks so they satisfy all requirements

 8 byte alignment for libc malloc on Linux boxes

 Can manipulate and modify only free memory

 Can’t move the allocated blocks once they are
malloc’d

 i.e., compaction is not allowed (why not?)

 Copyright ©: University of Illinois CS 241 Staff 6

Goal 1: Speed

 Allocate fast!

 Minimize overhead for both allocation and

deallocation

 Maximize throughput

 Number of completed malloc or free requests

per unit time

 Example

 5,000 malloc calls and 5,000 free calls in 10

seconds

Copyright ©: University of Illinois CS 241 Staff 7

Goal 1: Speed

 BUT

 A fast allocator may not be efficient in

terms of memory utilization

 Faster allocators tend to be “sloppier”

 Example: don’t look through every free block

to find the perfect fit

Copyright ©: University of Illinois CS 241 Staff 9

Goal 2: Memory Utilization

 Allocators usually

waste some memory

 Extra metadata or

internal structures used

by the allocator itself

 Example: keeping track

of where free memory is

located

 Chunks of heap

memory that are

unallocated (fragments)

Copyright ©: University of Illinois CS 241 Staff 10

Goal 2: Memory Utilization

 Memory utilization =

 The total amount of

memory allocated to the

application divided by

the total heap size

 Ideal

 utilization = 100%

 In practice

 try to get close to 100%

Copyright ©: University of Illinois CS 241 Staff 11

Fragmentation

 Poor memory utilization caused by

unallocatable memory

 internal fragmentation

 external fragmentation

 OS fragmentation

 When allocating memory to processes

 malloc fragmentation

 When allocating memory to applications

Copyright ©: University of Illinois CS 241 Staff 12

Internal fragmentation

 Payload is smaller than block size

 Caused by

 Overhead of maintaining heap data structures

 Padding for alignment purposes

 Explicit policy decisions

(e.g., to return a big block to satisfy a small request)

Copyright ©: University of Illinois CS 241 Staff 13

Payload
Internal

fragmentation

Block

Internal

fragmentation

Experiment

 Does libc’s malloc have internal

fragmentation? How much?

 How would you test this?

 1. Close Facebook

 2. Preheat oven to 375°

Copyright ©: University of Illinois CS 241 Staff 14

Run Example

fragtest

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

 int* a = (int*) malloc(1);

 int* b = (int*) malloc(1);

 int* c = (int*) malloc(100);

 int* d = (int*) malloc(100);

 printf("a = %p\nb = %p\nc = %p\nd = %p\n",

a,b,c,d);

}

Copyright ©: University of Illinois CS 241 Staff 15

What output

would you

expect?

External Fragmentation

 There is enough aggregate heap memory,

but no single free block is large enough

Copyright ©: University of Illinois CS 241 Staff 17

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6)

Depends on the pattern of future requests

Difficult to plan for

Oops! (what would happen now?)

Conflicting performance goals

 Throughput vs. Utilization

 Difficult to achieve simultaneously

 Speed vs. Efficiency

 Faster allocators tend to be “sloppier”

with memory usage

 Space-efficient allocators may not be

very fast

 Tracking fragments to avoid waste generally

results in longer allocation times

Copyright ©: University of Illinois CS 241 Staff 18

Implementation issues you

need to solve!

 How do I know how much memory to free

just given a pointer?

Copyright ©: University of Illinois CS 241 Staff 19

Keep the length of

the block in the

header preceding

the block

Requires an extra

word for every

allocated block

Keeping Track of Free Blocks

 One of the biggest jobs of an allocator is knowing

where the free memory is

 The allocator's approach to this problem affects:

 Throughput – time to complete a malloc() or free()

 Space utilization – amount of extra metadata used to track

location of free memory

 There are many approaches to free space

management

Copyright ©: University of Illinois CS 241 Staff 20

Implicit Free Lists

 For each block we need

both size and allocation

status

 Could store this information in

two words: wasteful!

 Standard trick

 If blocks are aligned, low-order

address bits are always 0

 Why store an always-0 bit?

Use it as allocated/free flag!

 When reading size word, must

mask out this bit

Copyright ©: University of Illinois CS 241 Staff 21

Size

1 word

Payload

a = 1: Allocated block

a = 0: Free block

Size: block size

Payload: application data

(allocated blocks only)

a

Optional

padding

Implicit Free Lists

 No explicit structure tracking location of

free/allocated blocks.

 Rather, the size word (and allocated bit) in each

block form an implicit “block list”

Copyright ©: University of Illinois CS 241 Staff 22

Implicit Free Lists: Free Blocks

 How do we find a free block in the heap?

 Start scanning from the beginning of the heap.

 Traverse each block until (a) we find a free block

and (b) the block is large enough to handle the

request.

 This is called the first fit strategy

 Could also use next fit, best fit, etc

Copyright ©: University of Illinois CS 241 Staff 23

Implicit Free Lists: Allocating

Blocks

 Splitting free blocks

 Allocated space might be smaller than free

space,

 May need to split the free block

Copyright ©: University of Illinois CS 241 Staff 24

Implicit Free Lists: Freeing a

Block

 Simplest implementation:

 Only need to clear allocated flag
void free_block(ptr p) { *p = *p & ~1; }

 Problem?

Copyright ©: University of Illinois CS 241 Staff 25

Implicit Free Lists: Coalescing

Blocks

 Join (coalesce) with next and previous

block if they are free

 Coalescing with next block

Copyright ©: University of Illinois CS 241 Staff 27

16 8 16 8

free(p) p

16 16 8

16

8 24

But how do we coalesce

with previous block?

Implicit Free Lists:

Bidirectional Coalescing

 Boundary tags [Knuth73]

 Replicate size/allocated word at tail end of all blocks

 Lets us traverse list backwards, but needs extra space

 General technique: doubly linked list

Copyright ©: University of Illinois CS 241 Staff 28

Implicit Free Lists:

Bidirectional Coalescing

 Boundary tags [Knuth73]

Copyright ©: University of Illinois CS 241 Staff 29

size

1 word

Format of

allocated and

free blocks

payload and

padding

a = 1: Allocated block
a = 0: Free block
Size: block size

payload: application data

(allocated blocks only)

a

size a Boundary tag

 (footer)

16 16 16 16 24 16 24 16

Header

Implicit Free Lists: Summary

 Implementation

 Very simple

 Allocation

 linear-time worst case

 Free

 Constant-time worst case—even with coalescing

 Memory usage

 Will depend on placement policy

 First, next, or best fit

Copyright ©: University of Illinois CS 241 Staff 30

Implicit Free Lists: Summary

 Not used in practice for malloc/free

 linear-time allocation is actually slow!

 But used in some special-purpose applications

 However, concepts of splitting and boundary

tag coalescing are general to all allocators

Copyright ©: University of Illinois CS 241 Staff 31

Alternative Approaches

 Explicit Free Lists

 Segregated Free Lists

 Buddy allocators

Copyright ©: University of Illinois CS 241 Staff 32

Explicit Free Lists

 Linked list among free blocks

 Use data space for link pointers

 Typically doubly linked

 Still need boundary tags for coalescing

Copyright ©: University of Illinois CS 241 Staff 33

16 16 16 16 24 24 16 16 16 16

Forward links

Back links

A B

C

Links aren’t necessarily

in same order as

blocks! Advantage?

Explicit Free Lists: Inserting

Free Blocks

 Where in free list to put newly freed

block?

 LIFO (last-in-first-out) policy

 Insert freed block at beginning of free list

 Pro

 Simple, and constant-time

 Con

 Studies suggest fragmentation is worse than

address-ordered

Copyright ©: University of Illinois CS 241 Staff 34

Explicit Free Lists: Inserting

Free Blocks

 Where in free list to put newly freed

block?

 Address-ordered policy

 Insert so list is always in address order

 i.e. addr(pred) < addr(curr) <

addr(succ)

 Con

 Requires search (using boundary tags); slow!

 Pro

 studies suggest fragmentation is better than LIFO

Copyright ©: University of Illinois CS 241 Staff 35

Segregated Free Lists

 Each size class has its own collection

of blocks

Copyright ©: University of Illinois CS 241 Staff 36

4-8

12

16

20-32

36-64

Segregated Free Lists

 Each size class has its own collection

of blocks

Copyright ©: University of Illinois CS 241 Staff 37

4-8

12

16

20-32

36-64

 Often separate size class for every

small size (8, 12, 16, …)

 For larger, typically have size class

for each power of 2

What is the point of having
separate lists?

Buddy Allocators

 Special case of segregated free lists

 Limited allocations to to power-of-two sizes

 Can only coalesce with "buddy“

 Who is other half of next-higher power of two

 Clever use of low address bits to find

buddies

 Problem

 large powers of two result in large internal

fragmentation (e.g., what if you want to allocate

65537 bytes?)

Copyright ©: University of Illinois CS 241 Staff 38

Buddy System

 Approach

 Minimum allocation size = smallest frame

 Use a bitmap to monitor frame use

 Maintain freelist for each possible frame size

 power of 2 frame sizes from min to max

 Initially one block = entire buffer

 If two neighboring frames (“buddies”) are free, combine

them and add to next larger freelist

Copyright ©: University of Illinois CS 241 Staff 39

Buddy System Example

Copyright ©: University of Illinois CS 241 Staff 40

128 Free

Buddy System Example

Copyright ©: University of Illinois CS 241 Staff 41

128 Free

Process A requests 16

64 Free 64 Free

32 Free 32 Free

16 A 16 Free 32 Free

64 Free

64 Free

Buddy System Example

Copyright ©: University of Illinois CS 241 Staff 42

128 Free

Process B requests 32

16 A 16 Free 32 Free 64 Free 32 B

Buddy System Example

Copyright ©: University of Illinois CS 241 Staff 43

128 Free

Process C requests 8

16 A 16 Free 32 B 64 Free

16 A
8

C
32 B 64 Free 8

Buddy System Example

Copyright ©: University of Illinois CS 241 Staff 44

Process A exits

16 Free
8

C
32 B 64 Free 8

Buddy System Example

 Advantage

 Minimizes external fragmentation

 Disadvantage

 Internal fragmentation when not 2^n request

Copyright ©: University of Illinois CS 241 Staff 45

Process C exits

16 Free 8 32 B 64 Free 8

16 Free 32 B 64 Free 16 Free

32 B 64 Free 32 Free

So what should I do for MP2?

 Designs sketched here are all

reasonable

 But, there are many other possible

designs

 So, implement anything you want!

Copyright ©: University of Illinois CS 241 Staff 46

Back to Paging

 On heavily-loaded systems, memory can fill up

 Need to make room for newly-accessed pages

 Heuristic: try to move “inactive” pages out to disk

 What constitutes an “inactive” page?

 Paging

 Refers to moving individual pages out to disk (and back)

 We often use the terms “paging” and “swapping”

interchangeably

 Different from context switching

 Background processes often have their pages remain

resident in memory

Copyright ©: University of Illinois CS 241 Staff 47

Demand Paging

 Never bring a page into primary memory until its needed

 Fetch Strategies

 When should a page be brought into primary (main) memory

from secondary (disk) storage.

 Placement Strategies

 When a page is brought into primary storage, where should it be

put?

 Replacement Strategies

 Which page now in primary storage should be removed from

primary storage when some other page or segment needs to be

brought in and there is not enough room

Copyright ©: University of Illinois CS 241 Staff 48

Page Eviction: When?

 When do we decide to evict a page from

memory?

 Usually, at the same time that we are trying to

allocate a new physical page

 However, the OS keeps a pool of “free pages”

around, even when memory is tight, so that

allocating a new page can be done quickly

 The process of evicting pages to disk is then

performed in the background

Copyright ©: University of Illinois CS 241 Staff 49

Page Eviction: Which page?

 Hopefully, kick out a less-useful page

 Dirty pages require writing, clean pages don’t

 Where do you write? To “swap space”

 Goal: kick out the page that’s least useful

 Problem: how do you determine utility?

 Heuristic: temporal locality exists

 Kick out pages that aren’t likely to be used again

Copyright ©: University of Illinois CS 241 Staff 50

Basic Page Replacement

 How do we replace pages?

 Find the location of the desired page on disk

 Find a free frame

 If there is a free frame, use it

 If there is no free frame, use a page replacement

algorithm to select a victim frame

 Read the desired page into the (newly) free

frame. Update the page and frame tables.

 Restart the process

Copyright ©: University of Illinois CS 241 Staff 51

Page Replacement Strategies

 Random page replacement

 Choose a page randomly

 FIFO - First in First Out

 Replace the page that has

been in primary memory

the longest

 LRU - Least Recently Used

 Replace the page that has

not been used for the

longest time

 LFU - Least Frequently

Used

 Replace the page that is

used least often

 NRU - Not Recently Used

 An approximation to LRU.

 Working Set

 Keep in memory those

pages that the process is

actively using.

Copyright ©: University of Illinois CS 241 Staff 52

