
Deadlocks

Copyright ©: University of Illinois CS 241 Staff 1

Deadlock

2 Copyright ©: University of Illinois CS 241 Staff

Which way

should I go?

Deadlock

3 Copyright ©: University of Illinois CS 241 Staff

I can almost

get across

Oh no! I’m

stuck!

GRIDLOCK!

Deadlock Definition

 Deadlocked process

 Waiting for an event that will never occur

 Typically, but not necessarily, involves

more than one process

 A set of processes is deadlocked if each

process in the set is waiting for an event that

only another process in the set can cause

Copyright ©: University of Illinois CS 241 Staff 4

How can a single process deadlock itself?

Deadlock: One-lane Bridge

 Traffic only in one direction

 Each section of a bridge can be viewed as a resource

Copyright ©: University of Illinois CS 241 Staff 5

What can happen?

Deadlock: One-lane Bridge

 Traffic only in one direction

 Each section of a bridge can be viewed as a resource

 Deadlock
 Resolved if cars back up (preempt resources and rollback)

 Several cars may have to be backed up

Copyright ©: University of Illinois CS 241 Staff 6

Deadlock: One-lane Bridge

 Traffic only in one direction

 Each section of a bridge can be viewed as a resource

 Deadlock
 Resolved if cars back up (preempt resources and rollback)

 Several cars may have to be backed up

 But, starvation is possible
 e.g., if the rule is that Westbound cars always go first

 Note
 Most OSes do not prevent or deal with deadlocks

Copyright ©: University of Illinois CS 241 Staff 7

Deadlock: One-lane Bridge

 Deadlock vs. Starvation

 Starvation = Indefinitely postponed

 Delayed repeatedly over a long period of time while

the attention of the system is given to other processes

 Logically, the process may proceed but the system

never gives it the CPU

Copyright ©: University of Illinois CS 241 Staff 8

I always have to

back up!

 Addressing Deadlock

 Prevention
 Design the system so that deadlock is impossible

 Avoidance

 Construct a model of system states, then choose a
strategy that, when resources are assigned to processes,
will not allow the system to go to a deadlock state

 Manual intervention
 Have the operator reboot the machine if it seems too slow

Copyright ©: University of Illinois CS 241 Staff 9

 Detection & Recovery
 Check for deadlock (periodically or sporadically) and

identify which processes and resources are involved

 Recover by killing one of the deadlocked processes and
releasing its resources

Necessary Conditions for

Deadlock

 Mutual exclusion
 Processes claim exclusive control of the resources

they require

 Hold-and-wait (a.k.a. wait-for) condition
 Processes hold resources already allocated to them

while waiting for additional resources

 No preemption condition
 Resources cannot be removed from the processes

holding them until used to completion

 Circular wait condition
 A circular chain of processes exists in which each

process holds one or more resources that are
requested by the next process in the chain

Copyright ©: University of Illinois CS 241 Staff 10

Dining Philosophers had it all

 Mutual exclusion
 Exclusive use of forks

 Hold and wait condition
 Hold 1 fork, wait for next

 No preemption condition
 Cannot force another to

undo their hold

 Circular wait condition
 Each waits for next neighbor

to put down fork

Copyright ©: University of Illinois CS 241 Staff 11

DEADLOCK!

This is the best one to tackle

 Nodes

 Circle: Processes

 Square: Resources

 Arcs

 From resource to process = resource

assigned to process

 From process to resource = process

requests (and is waiting for) resource

R1

R2 P1

P2

Formalizing circular wait:

Resource allocation graphs

12 Copyright ©: University of Illinois CS 241 Staff

P1 is

using

R1

P2

requested

R2

 Nodes

 Circle: Processes

 Square: Resources

 Deadlock

 Processes P1 and P2 are in deadlock

over resources R1 and r2

R1 R2

P1

P2

P1 requests

R2

P2

acquires R2

P2

requests R1

P1 acquires

R1

Resource allocation graphs

13 Copyright ©: University of Illinois CS 241 Staff

Circular

wait

If we use the trivial broken

“solution”...

define N 5

void philosopher (int i) {

 while (TRUE) {

 think();

 take_fork(i);

 take_fork((i+1)%N);

 eat(); /* yummy */

 put_fork(i);

 put_fork((i+1)%N);

 }

}

Dining Philosophers

resource allocation graph

Copyright ©: University of Illinois CS 241 Staff 14

If we use the trivial broken

“solution”...

One node per philosopher

One node per fork

 Everyone tries to pick up left

fork

 Request edges

Dining Philosophers

resource allocation graph

Copyright ©: University of Illinois CS 241 Staff 15

P2

P3 P4

P5

P1

R1 R2

R3

R4

R5

If we use the trivial broken

“solution”...

One node per philosopher

One node per fork

 Everyone tries to pick up left

fork

 Everyone succeeds

Dining Philosophers

resource allocation graph

16 Copyright ©: University of Illinois CS 241 Staff

If we use the trivial broken

“solution”...

One node per philosopher

One node per fork

 Everyone tries to pick up left

fork

 Everyone succeeds

 Assignment edges

Dining Philosophers

resource allocation graph

17 Copyright ©: University of Illinois CS 241 Staff

If we use the trivial broken

“solution”...

One node per philosopher

One node per fork

 Everyone tries to pick up left

fork

 Everyone succeeds

 Everyone tries to pick up

right fork

 Request edges

Dining Philosophers

resource allocation graph

18 Copyright ©: University of Illinois CS 241 Staff

If we use the trivial broken

“solution”...

One node per philosopher

One node per fork

Everyone tries to pick up left

fork

 Everyone succeeds

Everyone tries to pick up right

fork

 Cycle = deadlock

Dining Philosophers

resource allocation graph

19 Copyright ©: University of Illinois CS 241 Staff

DEADLOCK!

Default Solution: Be an Ostrich

 Approach

 Do nothing!

 Deadlocked processes stay stuck

 Rationale

 Keeps the common path faster and more
reliable

 Deadlock prevention, avoidance and
detection/recovery are expensive

 If deadlock is rare, is it worth the overhead?

21 Copyright ©: University of Illinois CS 241 Staff

Deadlock Prevention

 Goal 1: devise resource allocation rules that make

circular wait impossible

 Resources include mutex locks, semaphores, pages of

memory, ...

 ...but you can think about just mutex locks for now

 Goal 2: make sure useful behavior is still possible!

 The rules will necessarily be conservative

 Rule out some behavior that would not cause deadlock

 But they shouldn’t be to be too conservative

 We still need to get useful work done

Copyright ©: University of Illinois CS 241 Staff 22

Deadlock Prevention

 Prevent any one of the 4 conditions

 Mutual exclusion

 Hold-and-wait

 No preemption

 Circular wait

23 Copyright ©: University of Illinois CS 241 Staff

Mutual Exclusion

 Processes claim exclusive control of the

resources they require

 How to break it?

24 Copyright ©: University of Illinois CS 241 Staff

Mutual Exclusion

 Processes claim exclusive control of the

resources they require

 How to break it?

 Non-exclusive access only

 Read-only access

 Probably not an option for most scenarios

 But be smart and try to use shared resources wisely

 Battle won!

 War lost

 Very bad at Goal #2

25 Copyright ©: University of Illinois CS 241 Staff

Hold and Wait Condition

 Processes hold resources already allocated

to them while waiting for additional resources

 How to break it?

Copyright ©: University of Illinois CS 241 Staff 26

Hold and Wait Condition

 Processes hold resources already allocated

to them while waiting for additional resources

 How to break it?
 All at once

 Force a process to request all resources it needs at one time

 Get all or nothing

 Release and try again
 If a process needs to acquire a new resource, it must first

release all resources it holds, then reacquire all it needs

 Both
 Inefficient

 Potential of starvation

27 Copyright ©: University of Illinois CS 241 Staff

Hold and Wait Condition

 Processes hold resources already allocated

to them while waiting for additional resources

 How to break it?

 Only one

 Process can only have one resource locked

 Result

 No circular wait!

Copyright ©: University of Illinois CS 241 Staff 28

Hold and Wait Condition

 Processes hold resources already allocated

to them while waiting for additional resources

 Result

 No circular wait!

 Very constraining (mediocre job on Goal #2)

 Better than Rules #1 and #2, but...

 Often need more than one resource

 Hard to predict resource needs at the beginning

 Releasing and re-requesting is inefficient, complicates

programming, might lead to starvation

Copyright ©: University of Illinois CS 241 Staff 29

No Preemption Condition

 Resources cannot be taken from processes

holding them until used to completion

 How to break it?

30 Copyright ©: University of Illinois CS 241 Staff

No Preemption Condition

 Resources cannot be taken from processes

holding them until used to completion

 How to break it?
 Let it all go

 If a process holding some resources is denied a further
request, that process must release its original
resources

 Inefficient!

 Take it all away
 If a process requests a resource that is held by

another process, the OS may preempt the second
process and force it to release its resources

 Waste of CPU and other resources!

31 Copyright ©: University of Illinois CS 241 Staff

int pthread_mutex_trylock(pthread_mutex_t *mutex);
On success, pthread_mutex_trylock() returns 0. On error, one of the following values is returned:
EBUSY: The mutex is already locked.

No Preemption Condition

 Resources cannot be taken from processes

holding them until used to completion

 Result
 Breaks circular wait

 Because we don’t have to wait

 Reasonable strategy sometimes
 e.g. if resource is memory: “preempt” = page to disk

 Not so convenient for synchronization resources
 e.g., locks in multithreaded application

 What if current owner is in the middle of a critical section
updating pointers? Data structures might be left in
inconsistent state!

32 Copyright ©: University of Illinois CS 241 Staff

Circular Wait Condition

 A circular chain of processes exists in which

each process holds one or more resources

that are requested by the next process in

the chain

 How to break it?

33 Copyright ©: University of Illinois CS 241 Staff

Circular Wait Condition

 A circular chain of processes exists in which

each process holds one or more resources

that are requested by the next process in

the chain

 How to break it?

 Guarantee no cycles

 Allow processes to access resources only in

increasing order of resource id

 Not really fair or necessarily efficient …

34 Copyright ©: University of Illinois CS 241 Staff

Back to the trivial broken

“solution”...

define N 5

void philosopher (int i) {

 while (TRUE) {

 think();

 take_fork(i);

 take_fork((i+1)%N);

 eat(); /* yummy */

 put_fork(i);

 put_fork((i+1)%N);

 }

}

Dining Philosophers solution

with numbered resources

35 Copyright ©: University of Illinois CS 241 Staff

Back to the trivial broken

“solution”...

define N 5

void philosopher (int i) {

 while (TRUE) {

 think();

 take_fork(i);

 take_fork((i+1)%N);

 eat(); /* yummy */

 put_fork(i);

 put_fork((i+1)%N);

 }

}

Dining Philosophers solution

with numbered resources

36 Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers solution

with numbered resources

Back to the trivial broken

“solution”...

define N 5

void philosopher (int i) {

 while (TRUE) {

 think();

 take_fork(i);

 take_fork((i+1)%N);

 eat(); /* yummy */

 put_fork(i);

 put_fork((i+1)%N);

 }

}

37 Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers solution

with numbered resources

Instead, number resources...

First request lower numbered fork

define N 5

void philosopher (int i) {

 while (TRUE) {

 think();

 take_fork(LOWER(i));

 take_fork(HIGHER(i));

 eat(); /* yummy */

 put_fork(LOWER(i));

 put_fork(HIGHER(i));

 }

}

1

2

3

4

5

38 Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers solution

with numbered resources

Instead, number resources...

Then request higher numbered fork

define N 5

void philosopher (int i) {

 while (TRUE) {

 think();

 take_fork(LOWER(i));

 take_fork(HIGHER(i));

 eat(); /* yummy */

 put_fork(LOWER(i));

 put_fork(HIGHER(i));

 }

}

1

2

3

4

5

39 Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers solution

with numbered resources

Instead, number resources...

Then request higher numbered fork

define N 5

void philosopher (int i) {

 while (TRUE) {

 think();

 take_fork(LOWER(i));

 take_fork(HIGHER(i));

 eat(); /* yummy */

 put_fork(LOWER(i));

 put_fork(HIGHER(i));

 }

}

1

2

3

4

5

40 Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers solution

with numbered resources

Instead, number resources...

One philosopher can eat!

define N 5

void philosopher (int i) {

 while (TRUE) {

 think();

 take_fork(LOWER(i));

 take_fork(HIGHER(i));

 eat(); /* yummy */

 put_fork(LOWER(i));

 put_fork(HIGHER(i));

 }

}

1

2

3

4

5

41 Copyright ©: University of Illinois CS 241 Staff

 Without numbering

Ordered resource requests

prevent deadlock

Cycle!

42 Copyright ©: University of Illinois CS 241 Staff

 With numbering

Ordered resource requests

prevent deadlock

3

4

7

8

Contradiction:
Must have requested

3 first!

43 Copyright ©: University of Illinois CS 241 Staff

Proof by M.C. Escher

Copyright ©: University of Illinois CS 241 Staff 44

Copyright ©: University of Illinois CS 241 Staff 45

Are we always in trouble

without ordering resources?

 Not always

 Ordered resource requests are sufficient

to avoid deadlock, but not necessary

 Convenient, but may be conservative

46 Copyright ©: University of Illinois CS 241 Staff

3

4

7

8

Q: What’s the rule of the road?

 What’s the law? Does it resemble one of the rules

we saw?

Copyright ©: University of Illinois CS 241 Staff 47

I can almost

get across
Drat!

Deadlock Detection

 Check to see if a deadlock has

occurred!

 Single resource per type

 Can use wait-for graph

 Check for cycles

 How?

48 Copyright ©: University of Illinois CS 241 Staff

Wait for Graphs

Resource

Allocation Graph

Corresponding Wait

For Graph

49 Copyright ©: University of Illinois CS 241 Staff

Easier to find
cycles on this

graph

 Get rid of the

cycles in the wait

for graph

 How many cycles

are there?

Deadlock Recovery

50 Copyright ©: University of Illinois CS 241 Staff

 Options

 Kill all deadlocked processes and release
resources

 Kill one deadlocked process at a time and
release its resources

 Steal one resource at a time

 Rollback all or one of the processes to a
checkpoint that occurred before they
requested any resources
 Difficult to prevent indefinite postponement

Deadlock Recovery

51 Copyright ©: University of Illinois CS 241 Staff

Deadlock Recovery

Copyright ©: University of Illinois CS 241 Staff 52

Resource

Allocation Graph

Corresponding Wait

For Graph

Have to kill
one more

Deadlock Recovery

Copyright ©: University of Illinois CS 241 Staff 53

Resource

Allocation Graph

Corresponding Wait

For Graph

Only have
to kill one

Deadlock Recovery: Process

Termination

 How should the aborted process be chosen?

 Process priority

 Current computation time and time to completion

 Amount of resources used by the process

 Amount of resources needed by the process to
complete

 If this process is terminated, how many other
processes will need to be terminated?

 Is process interactive or batch?

54 Copyright ©: University of Illinois CS 241 Staff

Deadlock Recovery: Resource

Preemption

 Selecting a victim
 Minimize cost

 Rollback
 Return to some safe state

 Restart process for that state

 Challenge: Starvation
 Same process may always be picked as

victim

 Fix: Include number of rollbacks in cost
factor

55 Copyright ©: University of Illinois CS 241 Staff

Deadlock Avoidance

 Basic idea

 Resource manager tries to see the worst

case that could happen

 It does not grant an incremental resource

request to a process if this allocation

might lead to deadlock

56 Copyright ©: University of Illinois CS 241 Staff

Deadlock Avoidance

 Approach

 Define a model of system states (SAFE,
UNSAFE)

 Choose a strategy that guarantees that the
system will not go to a deadlock state

 Multiple instance of each Resources

 Requires the maximum number of each
resource needed for each process
 For each resource i, p.Max[i] = maximum

number of instances of i that p can request

57 Copyright ©: University of Illinois CS 241 Staff

Safe vs. Unsafe

 Safe
 Guarantee

 There is some scheduling order in which every process can run
to completion even if all of them suddenly and simultaneously
request their maximum number of resources

 From a safe state
 The system can guarantee that all processes will finish

 Unsafe state: no such guarantee
 A deadlock state is an unsafe state

 An unsafe state may not be a deadlock state

 Some process may be able to complete

 Overall
 a conservative/pessimistic approach

58 Copyright ©: University of Illinois CS 241 Staff

How to Compute Safety

 Banker’s Algorithm (Dijkstra, 1965)

 Each customer tells banker the maximum
number of resources it needs, before it
starts

 Customer borrows resources from banker

 Customer returns resources to banker

 Banker only lends resources if the
system will stay in a safe state after the
loan

59 Copyright ©: University of Illinois CS 241 Staff

