
EECS 678 Dining Philosophers 1

The Dining Philosophers
with Pthreads

Dr. Douglas Niehaus
Michael Jantz

Dr. Prasad Kulkarni

EECS 678 Dining Philosophers 2

Introduction
● The Dining Philosophers canonical problem illustrates a

number of interesting points about concurrency control that
recur in various situations

● Multiple threads using multiple resources
● Different sets of resources used by different threads
● Threads spend different amounts of time using resources and

between intervals of resource use
● Deadlock can occur because of a set of interactions among

different threads and resources
● First proposed by Djikstra (1965) as a problem of

coordinating access by five computers to five tape drives
● Retold in its more amusing current form by Hoare

● Few real-world problems map directly onto its structure
● But many share characteristics: multiple threads, multiple

resources, varied patterns of resource use

EECS 678 Dining Philosophers 3

Dining Philosophers
● A set of philosophers spend their lives alternating between

thinking and eating
● Philosophers sit around a table with a shared bowl of food
● To eat, philosophers must hold two implements
● Implements are placed on the table between philosophers

● Each philosopher this has a right and left implement
● Each philosopher uses a different set of resources

● Implements can only be acquired one at a time
● When a philosopher becomes hungry, she tries to pick up

the left implement and then the right
● If an implement is missing, the philosopher waits for it to

appear
● A hungry philosopher holding two implements eats until no

longer hungry, puts down her implements and thinks

EECS 678 Dining Philosophers 4

Dining Philosphers
● N philosophers, N forks
● Food has unrestricted

concurrent access
● Forks are exclusive use

resources
● Each fork plays a different

role for its philosophers
(L/R)

● Each fork used by a
different set of
philosophers

● Deadlock appears quite
unlikely to happen

● Happens “quickly” in
practice

EECS 678 Dining Philosophers 5

Pthreads Implementation
● Starter code implements the “classic” dining philosophers

problem with its vulnerability to deadlock
● Assumes familiarity with Pthreads concepts in previous labs

● Concurrent execution of Pthreads
● Mutex used for mutual exclusion
● Condition variable use for signal-wait interaction

● Starter code also contains some components labeled
ASYMMETRIC and WAITER which are associated with
two different approaches to a solution you will work on.

● Go ahead and unpack the starter code and run the current
implementation

bash> tar zxvf eecs678-pthreads_dp-lab.tar.gz

EECS 678 Dining Philosophers 6

Pthreads Implementation
● Code is a fairly straightforward implementation

decomposed into a number of components
● dining_philosophers.c

● Code begins with includes and defined constants
● Constants are used to control many aspects of behavior

● Next, a definition of the philosopher structure
● Note the prog and prog_total fields which track the number

of times a philosopher has gone through the think-eat cycle
during an accounting period and during program execution,
respectively

● Next com some global variables:
● Diners: array of philosopher structures
● Stop: global stop flag
● chopstick: array of mutexes representing the chopsticks

EECS 678 Dining Philosophers 7

Pthreads Implementation
● Global continued

● waiter: mutex used to represent the waiter the waiter-based
solution

● available_chopsticks: array of integers used to represent
chopstick availability in the waiter solution

● Next is a set of utility routines used in various solutions
● Return pointers to philosopher to left and right of argument,

chopstick to left and right, and pointer to available flag of left
and right chopstick of a given philosopher

● think_one_thought() and eat_one_mouthful() routines
● Used in dp_thread() routine to represent activity

● dp_thread() routine is code executed by each philosopher
thread which implements the think-eat cycle until told to
stop, and does accounting on how many cycles completed

EECS 678 Dining Philosophers 8

Pthreads Implementation
● set_table() routine initializes data structures representing

chopsticks, initializes the philosopher structures and creates
the philosopher threads

● print_progress() prints progress statistics for each
philosopher, and zeroes the prog filed so progress during
each accounting period is counted as well as the total

● Five philosophers per line and a blank line between statistics
for each accounting period

● main() calls set_table(), prints out a header, and falls into
the accounting and deadlock detection loop

● Root thread zeroes philosopher period progress, then sleeps
for ACCOUNTING_PERIOD seconds

● Checks to see if any progress made while it slept
● Infers deadlock if not, and sets Stop
● Prints statistics in any case

EECS 678 Dining Philosophers 9

Pthreads Implementation
● Run the existing code

bash> cd pthreads_dp; make dp_test
● Your output should be similar, but remember thread

behavior and deadlock are affected by many random factors
● Context switches, other load on system, interrupts, etc

plato:starter_code$ make dp_test
gcc -g dining_philosophers.c -lpthread -lm -o dp
./dp

Dining Philosophers Update every 5 seconds

p0= 1012/1056 p1= 1/1 p2= 492/492 p3= 913/913 p4= 0/0

p0= 0/1056 p1= 0/1 p2= 0/492 p3= 0/913 p4= 0/0

Deadlock Detected

EECS 678 Dining Philosophers 10

Asymmetric Solution
● Example output shows that deadlock occurred during the

first accounting period, after threads had performed a
variable number of think-eat cycles

● “P1 = 123/456” entry indicates that P1 executed 123 think-eat
cycles in the current accounting period and has 456 total

● Numbers may not be completely consistent as there is no
concurrency control between main and philosopher threads

● Try running the test several times and see that behavior varies
● Deadlock occurs because each philosopher has picked up

the left fork before any have pick up the right
● Happens much more quickly than most people would expect

● Asymmetric solution is to have the even numbered
philosophers pick up in left-right order, while
odd-numbered pick up in right-left order

EECS 678 Dining Philosophers 11

Asymmetric Solution
● Make a copy of dining_philosophers.c into

dp_asymmetric.c and update the Makefile appropriately
● Make the necessary change to dp_thread where the string

ASYMMETRIC appears in the comment: test me->id for
even or odd and alter mutex lock order accordingly

bash> make dp_asymmetric_test
● If your implementation is correct, then the program should

run for 10 5-second cycles and complete without deadlock
● Note how many think-eat cycles each philosopher makes in

each accounting cycle and total
● This will vary with the platform (cycle4, 1005D-*, etc)
● Was several hundred thousand on development machine

● Note that progress by each philosopher is roughly equal
● Try running it a few more times and see how much behavior

varies due to random chance and system context

EECS 678 Dining Philosophers 12

Asymmetric Solution
● All philosophers still randomly compete for their left and

right chopsticks, holding their first and waiting for the
second

● As long as thinking and eating periods vary randomly and
other factors make when a philosopher tries to pick up their
chopsticks vary randomly, then progress should be roughly
equal and no philosopher should starve

● However, if a set of philosophers ever began to share the
same “rhythm” then one philosopher might be at a
disadvantage

EECS 678 Dining Philosophers 13

Waiter Solution
● Now consider a slightly more complex solution using a

Pthread condition variable approach
● Mutex waiter represents a waiter in the cafe that will “give”

the chopsticks to a philosopher as a pair
● Note that this will constrain concurrency more than the

asymmetric solution as this creates a region where only one
philosopher at a time can obtain its chopsticks

● Copy dining_philosophers.c into dp_waiter.c
● Look for “WAITER SOLUTION” in the code
● Relevant changes are in dp_thread() code where philosophers

obtain and give back their chopsticks
● This solution does not need the chopstick array of mutexes

● Use the array of integers available_chopsticks instead, whose
integrity will be protected by the waiter mutex, and condition
variable programming pattern

EECS 678 Dining Philosophers 14

Waiter Solution
● Get-chopsticks section

ensures that testing
my_chopsticks_free and
mark_my_chopsticks_free
set of operations are
ATOMIC using waiter

● Free-chopsticks section
uses waiter to ensures the
mark_my_chopsticks_free
and Signal sets of
operations are done
ATOMICALLY

● Consider types and
pointers carefully as the
helper routines return
pointers to available flags
and philosophers

 pthread_mutex_lock(&waiter);

 while (!(my_chopsticks_free)) {
 pthread_cond_wait(&(me->can_eat), &waiter);
 }

 mark_my_chopsticks_taken;

 pthread_mutex_unlock(&waiter);

 Eat;

 pthread_mutex_lock(&waiter);

 mark_my_chopstick_free;
 Signal those who might care they became free

 pthread_mutex_unlock(&waiter);

EECS 678 Dining Philosophers 15

Waiter Solution
● When your solution is complete and correct, your solution

should produce output similar to the asymmetric solution
● Runs through 10 cycles and completes without deadlock

● Note, however, that the number of think-eat cycles is
significantly lower

● Why?
● Another point of interest is the while loop testing the

condition and calling pthread_cond_wait()
● Why does this need to be a loop

● Hint: Consider possible events between when the decision
to send the signal is made and when the signal is received

EECS 678 Dining Philosophers 16

Waiter Solution
● Does this solution prevent starvation?

● Hint: NO !!!
● Try to extend your solution to count the number of times a

philosopher is awakened and both chopsticks are not free,
so it must wait again

● Experiment with tests in the chopstick freeing area that send
a signal to a philosopher only when both its chopsticks are
free

● You should find that a small but significant percentage of the
time a chopstick is taken between when the signal is sent and
when the receiving philosopher tries to get its chopsticks

● Consider what would happen in these retry cases if the
while loop was an if-then instead

EECS 678 Dining Philosophers 17

Conclusions
● The dining philosophers is a simple problem with a

surprising number of subtle aspects
● Deadlock seems extremely unlikely, yet happens quit

quickly
● Solutions are not all that difficult, but have different

implications
● Plausible but incorrect solutions also easy to construct
● Shows that knowing if a solution is correct is also hard
● Neither of these solutions to preventing deadlock prevent

starvation
● Consider how to implement the Waiter solution with a

Monitor representing the waiter
● Waiter can maintain a queue of requests, ensuring all

philosophers eventually eat

	
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

