
EECS 678 Pthreads Introduction Lab 1

Introduction to PThreads and
Basic Synchronization

Michael Jantz, Dr. Prasad Kulkarni
Dr. Douglas Niehaus

EECS 678 Pthreads Introduction Lab 2

Introduction

● In this lab, we will learn about some basic
synchronization issues using PThreads.

● Go ahead and make the starter code for this lab.
– cd pthreads_intro/; make

● This creates the ptcount executable

– Currently this does very little
● We will discuss some PThreads issues first, and then

consider how to add the missing pieces to ptcount.c

EECS 678 Pthreads Introduction Lab 3

Introduction

● Helpful man pages:

– Pthreads(7): Overview of Pthreads programming model

– pthread_create: Routine to create a new thread

– pthread_join: One thread waits for another to terminate

– pthread_mutex_init: Initialize a pthread_mutex_t mutex

– pthread_mutex_lock: lock a mutex

● Also presents pthread_mutex_unlock and pthread_mutex_trylock
● These functions are all you should need to make the code modifications

required for the lab

EECS 678 Pthreads Introduction Lab 4

Threads vs. Processes

● Multiple processes work well when the application tasks performed by each
process are: (a) unrelated, or (b) require communication well suited to pipes
or sockets

● More intimate, complex, or fine-grained collaboration among concurrent
parts of an application is often difficult or impossible when multiple
processes are used

● With an application's work divided among multiple processes, the context
switch overhead generally decreases performance

● The thread model was invented to address these issues

– Multiple threads sharing an address space decreases several sources
of overhead

EECS 678 Pthreads Introduction Lab 5

Threads vs. Processes

● Sharing of significant state information among processes is problematic
because:

– Multiple copies of state data are created or a shared segment must be
declared and managed

– Exchanging state information requires expensive IPC mechanisms and
complete consistency among multiple copies is often not possible

– Using semaphores among processes involves system call overhead

● Under the thread model context switch overhead is lower, all global
variables are shared, and implementing mutexes is cheaper

EECS 678 Pthreads Introduction Lab 6

Threads vs. Processes

● When you create a new process, an entire copy of the parent process'
process control block is copied to the child

● When you create a new thread, only the components of the process control
block that are necessary to create a new thread of control are actually
allocated for the child

– A new PC, registers image, user and kernel stack, and some other misc.
info are allocated for the new thread.

– The code and data regions of the address space are not copied, but are
now shared between the parent and the child

● For these reasons, threads are often thought of as lightweight processes

– Lower context switch and lower memory use compared to an equivalent
set of processes

EECS 678 Pthreads Introduction Lab 7

Thread Pros and Cons

● By allowing threads of control to share a common address space, the thread
model provides an efficient way to multi-task a job over several threads of control

– State information available to each thread is updated in a common copy
without the use of IPC mechanisms

– Context switching from thread to thread is more efficient than switching the
context of an entire process because much of the address space remains
the same

● These advantages, however, come with their own drawbacks:

– The use of shared data must be synchronized among threads

– Functions used by multiple threads of control must be reentrant

– A reentrant function must not hold static data over successive calls or return
a pointer to static data

EECS 678 Pthreads Introduction Lab 8

Creating Threads

● In the POSIX API, the fork() system call creates processes

● Under Linux, fork() makes use of the clone() system call :

– int clone(int (*fn)(void *), void *child_stack, int flags, void *arg, ...)

● Clone() provides a fine-grain interface for controlling what resources are
shared among parent and child

– The flags argument controls which resources are shared and which copied

– For example, calling clone() with the CLONE_FILES bit set in the flags
argument will create a child which shares the parent's open file table (as
opposed to creating a copy of the parent's file descriptor table for the child)

– Process creation uses flags that copy the parent address space

– Thread creation uses flags that share the address space

EECS 678 Pthreads Introduction Lab 9

Thread Libraries

● For many reasons, thread standards are often implemented and
distributed as libraries

– A common standard allows for portable software

– Libraries are an efficient way of distributing widely used user
level code

– Depending on which metrics the programmer cares about,
different user level designs of the thread system will yield much
different performance

● In today's lab, we will the Native POSIX Threads Library, which
implements the POSIX Thread API standard for Linux

EECS 678 Pthreads Introduction Lab 10

The POSIX Standard

● The POSIX standard specifies a set of interfaces (i.e. functions
and header files) that can be used for threaded programming

● These interfaces require that the underlying implementations meet
a certain set of criteria:

– A single process may contain multiple threads, all of which execute
the same program, i.e. share the same text segment

– Threads share the same global memory (data and heap segments).

– Each thread has its own stack (automatic variables)

● There are several other characteristics specified by the standard.

– Threads share a Process ID, but have a unique Thread ID.

– See the pthreads(7) manual page for a more complete description

EECS 678 Pthreads Introduction Lab 11

ptcount.c

● Open ptcount.c and read through it to get a feel for the program's
structure. As it is now, the program doesn't do much.

● The goal of this lab is to learn how PThreads work by modifying this
program to create some number of threads executing the same routine

– NUM_THREADS controls the number of threads created

● The routine each thread executes (inc_count) will spin in a loop (bound
by the LOOP_BOUND command line arg), incrementing some global
integer (by the scalar specified by the INCREMENT command line arg)
for each iteration

EECS 678 Pthreads Introduction Lab 12

pthread_create

● To create each pthread, use:

 int pthread_create(pthread_t *thread, const pthread_attr_t *attr,

 void *(*start_routine)(void*), void *arg);

● The arguments are as follows:

– thread is an address pointing to the allocated thread object, filled in on return

– attr is a pointer to the attribute object for this thread. Attribute objects provide
a mechanism for changing the configurable aspects of a thread.

– start_routine is a pointer to the routine in which the thread should start its
execution. For this lab, the start routine for all of our threads will be inc_count

– arg is a pointer to the arguments passed to the start routine. Each thread
start_routine is only allowed one argument. Thus, multiple arguments are
packaged in a struct, whose address is passed as the argument.

EECS 678 Pthreads Introduction Lab 13

pthread_create (cont.)

● The easiest way to create all of our threads is in a for loop

● In order to save time, we have provided the code you should use. Make
sure you understand where to put it and what each of its arguments
means:

for (i = 0; i < NUM_THREADS; i++)
 . . .
 pthread_create(&threads[i], &attr, inc_count, (void *)targs);
}

● When pthread_create returns, the thread described by &threads[i] are live
(i.e. ready to run and waiting to be scheduled or has started running
inc_count code already)

EECS 678 Pthreads Introduction Lab 14

Waiting on the Threads

● You'll recall from the IPC lab that we used waitpid to have the parent
process wait for its children to complete and exit

● We achieve similar behavior for threads with pthread_join:

int pthread_join(pthread_t thread, void **value_ptr);
● pthread_join will suspend execution of the calling process (or thread)

until the target thread, the thread referred to by the pthread_t instance in
argument thread, has terminated.

● value_ptr is a pointer to the data returned by the pthread_exit() library
call. We do not use this data, so you can just pass in NULL here.

● Again, we use pthread_join in a for loop:

 for (i = 0; i < NUM_THREADS; i++) {
 pthread_join(threads[i], NULL);
 }

EECS 678 Pthreads Introduction Lab 15

Testing the Threaded Program

● At this point you have the parent creating NUM_THREADS threads and then
waiting for the threads created to finish executing inc_count

● Now is a good time to go ahead and test the threaded program. To run the
program, use:

-bash-3.2$./ptcount LOOP_BOUND INCREMENT

● Where LOOP_BOUND is the number of times the loop in each thread should
iterate, and INCREMENT is the amount to increment count for each iteration.

● If you created and joined the PThreads correctly, you should see something like:

-bash-3.2$./ptcount 100 1
Thread: 0 finished. Counted: 100
Thread: 1 finished. Counted: 100
Thread: 2 finished. Counted: 100
Main(): Waited on 3 threads. Final value of count = 300. Done.

● Which is exactly what we wanted. Each thread increments the count 100 times (by
1 each time) and the final value of count is 300 because we have three threads.

EECS 678 Pthreads Introduction Lab 16

Puzzling Behavior
● Though these initial tests seem to show that ptcount is working correctly, but

running ptcount with a larger loop bound results in puzzling behavior

● The makefile has a target test runs ptcount with a large loop bound. The output
should look something like this:

-bash-3.2$ make test
./ptcount 100000 1
Thread: 0 finished. Counted: 100000
Thread: 1 finished. Counted: 100000
Thread: 2 finished. Counted: 100000
Main(): Waited on 3 threads. Final value of count = 288284. Done.

● Each thread reports that it counts up to 100000, but the final count is significantly
less than 300000. Note that in ptcount.c each thread prints out a local variable to
report its own count.

● Furthermore, if you run the test again, the final count changes, but it is still not the
expected result. What is going on?

EECS 678 Pthreads Introduction Lab 17

Incrementing Count
● Each thread updates the count using the = and + operator in C:

count = count + my_args->inc;

● Observe that this one line instruction in C, is actually implemented by
three instructions in the x86 hardware:

mov $(C_ADDR), %eax ; Move count into a register
add %ebx, %eax ; Add inc to count
mov %eax, $(C_ADDR) ; Store count back into memory

● Now, recall that each thread is sharing only the global instance of count,
which is loaded from memory and stored again each time any thread
increments it

● While this does not explain observed behavior yet, it's necessary for
understanding the solution

EECS 678 Pthreads Introduction Lab 18

A Preemptive Scheduler
● Recall from lecture that the Linux scheduler is preemptive.

– The scheduler has the ability to stop a running process, with the
intention of resuming it later, and switch context to another process in
the READY state.

● Now, imagine a scenario where the scheduler just happened to interleave
two running threads in the following way:

T1 T2

1. mov $(C_ADDR), %eax
2.
3.
4.
5. add %ebx, %eax
6. mov %eax, $(C_ADDR)

mov $(C_ADDR), %eax
add %ebx, %eax
mov %eax, $(C_ADDR)

EECS 678 Pthreads Introduction Lab 19

An Interleaving Problem

● Observe that:

– At time 1, T1 loads the count value from memory.

– Next, T1 is preempted and T2 begins executing. In its execution, it loads the same value from
memory. T2 continues, incrementing the value it had loaded, and stores it back into memory.

– Now, at time 5, T2 is preempted by T1. At this time, T1 still holds the value it loaded at time 1 into
%eax. T1 proceeds to increment this value, and stores it back into memory.

– When T1 stores its value of count back into memory, the work done by T2 is essentially lost.

● This explains why the value read by the parent process after the threads had
finished incrementing is substantially lower than what you might expect

– Each instance of such an interleaving loses an increment of count by a thread

● Probability of inconsistencies in shared data, such as count, depends on the
length of the code section using it, the number of threads sharing it, and the
number of times threads execute the code section operating on shared data.

EECS 678 Pthreads Introduction Lab 20

Fixing the Problem

● Regions of code that update shared data are known as
critical sections.

● In order to ensure data shared among cooperating threads
remains correct, we need a way of ensuring that only one
thread may execute inside a critical section at a time:

– This is called mutual exclusion
● Policy Goal:

– All updates to shared data must be executed atomically
with respect to other operations on that data.

EECS 678 Pthreads Introduction Lab 21

pthread_mutex_lock

● Library calls for lock and unlock:

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

● The implementation of these routines permits only one thread to
lock a given mutex at a time

– A mechanism for mutual exclusion on critical section

● When a thread executes pthread_mutex_lock and the mutex is
already locked, the operating system blocks the calling thread.

● All threads blocking on the mutex are awakened when the lock is
released -> the owner calls pthread_mutex_unlock

EECS 678 Pthreads Introduction Lab 22

Mutex Solution

● Place mutex lock/unlock around the critical section in ptcount.c to
ensure mutually exclusive access to the count variable

– Note that the code already declares an instance of
pthread_mutex_t count_mutex

● When you have built ptcount with the locks in place, ptcount should
produce the following output:

-bash-3.2$ make test

./ptcount 1000000 1
Thread: 0 finished. Counted: 1000000
Thread: 2 finished. Counted: 1000000
Thread: 1 finished. Counted: 1000000
Main(): Waited on 3 threads. Final value of count = 3000000. Done.

EECS 678 Pthreads Introduction Lab 23

Conclusion

● PThreads provides a standard interface for multi-threaded
programming available on many platforms

● Multi-threaded software architectures have many advantages over
multi-process architectures but:

– Concurrent access to shared data creates critical sections
which can cause incorrect shared data

● Concurrency control in the form of mutex locks, also called
semaphores, is the most common way to ensure correct
multi-threaded programs

● Other types of concurrency control exist, with various advantages
and disadvantages

EECS 678 Pthreads Introduction Lab 24

Conclusion

● Creation, exposure and use of concurrency arises in many
different situations

● Shared data access must be properly controlled for correct
programs

● The PThreads mutex you have seen here is a classic example

● Principles of concurrent programming in PThreads also apply in a
wide range of other situations

– Linux Kernel internals among others

– There are at least 7 different kinds of concurrency control in the
Linux Kernel

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

