
EECS 678 Pthreads: Producer-Consumer 1

Solving the Producer – Consumer
Problem with PThreads

Michael Jantz
Dr. Prasad Kulkarni

Dr. Douglas Niehaus

EECS 678 Pthreads: Producer-Consumer 2

Introduction
● This lab is an extension of last week's lab.

● If you have not done the PThreads Intro lab, you do so before
 trying to do this lab

● Go ahead and make and tag the starter code for this lab:

– tar xvzf eecs678-pthreads_pc-lab.tar.gz;

– cd pthreads_pc; make; ctags -R

● Helpful man pages for today:

– pthread_mutex_lock, pthread_mutex_unlock, pthread_cond_signal,
pthread_cond_wait

EECS 678 Pthreads: Producer-Consumer 3

The Producer - Consumer Problem
● The producer – consumer problem is a common implementation pattern for

cooperating processes or threads. Put simply, a producer produces information
that is later consumed by a consumer. Traditionally, the problem is defined as
follows:

– To allow the producer and consumer to run concurrently, the producer and consumer
must share a common buffer.

– So that the consumer does not try to consume an item that has not yet been produced,
the two processes must be synchronized.

– If the common data buffer is bounded, the consumer process must wait if the buffer is
empty, and the producer process must wait if the buffer is full.

● There are many examples of this problem in “real world” applications.

– e.g., a build system may run multiple processes concurrently. The compiler process will
produce assembly code to be read by the assembler process.

– You would have had to worry about this problem in PA1 had you not used a socket as
the data buffer between your client and server processes. Essentially, the operating
system handled your synchronization issues.

EECS 678 Pthreads: Producer-Consumer 4

An Instance of the PC Problem
● In producer_consumer.c, there is an instance of the PC

problem.

● Producer threads and consumer threads are each created.
They each share a bounded length FIFO queue.

● Producers place integers into the queue starting at 0 and
ending at some predefined maximum (call it WORK_MAX).
Producers announce each item they produce.

● Consumers remove one integer at a time from the queue,
reporting each as it is consumed. Each consumers exits after
WORK_MAX total removals by all consumers.

EECS 678 Pthreads: Producer-Consumer 5

The Proposed Solution
● In order to solve the PC problem, the producer_consumer.c as it was distributed

“proposes” the following “solution”:

void *producer (void *q)
{
 fifo = (queue *)q;
 while (1) {
 do_work(PRODUCER_CPU, PRODUCER_BLOCK);
 while (fifo->full && *total_produced != WORK_MAX) {
 printf ("prod %d:\t FULL.\n", my_tid);
 }
 if (*total_produced == WORK_MAX) {
 break;
 }
 item_produced = (*total_produced)++;
 queueAdd (fifo, item_produced);

 printf("prod %d:\t %d.\n", my_tid, item_produced);
 }
 return(NULL);
}

void *consumer (void *q)
{
 fifo = (queue *)q;
 while (1) {

 while (fifo->empty && *total_consumed != WORK_MAX) {
 printf ("con %d:\t EMPTY.\n", my_tid);
 }
 if (*total_consumed == WORK_MAX) {
 break;
 }
 queueRemove (fifo, &item_consumed);
 (*total_consumed)++;
 do_work(CONSUMER_CPU,CONSUMER_CPU);
 printf ("con %d:\t %d.\n", my_tid, item_consumed);
 }
 return(NULL);
}

● Essentially, when the queue is empty the consumer simply spins (as it has nothing
to do), and when the queue is full the producer will spin (as it has nothing to do).

EECS 678 Pthreads: Producer-Consumer 6

Problems With the Solution
● One of the problems with this solution is that it contains a

race condition. Suppose the scheduler created the following
interleaving:

Producer Consumer

Add last items to the queue.
Set queue->empty = 0
i == WORK_MAX, producer exits.

Remove an item from the queue.
A check to see if the queue is
empty shows that it is.

Set queue->empty = 1.
Set queue->full = 0
Start spinning.

EECS 678 Pthreads: Producer-Consumer 7

Imposing Mutual Exclusion
● The basic problem with this solution is that the critical section of code,

those accessing the shared total_produced, total_consumed, and queue
variables, are not executed atomically

– For example, producer thread can preempt the consumer thread
after the consumer has checked if the list is empty but before it
has set the fifo->empty variable (and vice versa).

● Use pthread_mutex_lock() and pthread_mutex_unlock() to enforce mutual
exclusion for the critical sections modifying the queue

● HINT: The mutex you should use has already been initialized and is called
mutex in the queue structure. Also, your mutex calls should not surround
the busy-wait loops yet.

● The modified solution protects the update of the queue itself but not the
check of the queue->empty and queue->full flags, so it doesn't eliminate all
problems of race conditions

● The solution also suffers from the problem of wasteful busy waiting.

EECS 678 Pthreads: Producer-Consumer 8

Another Synchronization Problem
● Suppose the scheduler created the following interleaving

after mutual exclusion is imposed on the queue manipulation

● Producer 2 will be adding an item to a queue that is full
Producer 1 Producer 2

A check to see if the queue is full
shows that it is not.
pthread_mutex_lock()
A check on total_produced
Add an item to the queue. The
queue is full now.
pthread_mutex_unlock()

A check to see if the queue is full shows
that it is not.

pthread_mutex_lock()
A check on total_produced
Add an item to the queue
pthread_mutex_unlock()

EECS 678 Pthreads: Producer-Consumer 9

Busy Waiting Problem
● Even if the thread is lucky enough to avoid this race condition, we are still

wasting a lot of cycles by forcing each thread to spin when the conditions
required for them to continue are not met.

– Many “FULL” and “EMPTY messages can be printed

– Try 'bash> grep “EMPTY” narrative1.raw | wc'

● There were 43,000 in our example run
● You can comment out the busy-wait printfs to see behavior differently

● Consider how many wasted cycles are executed. And this is with a blocking
print statement!

– Also there is still a race wrt the empty and full flags

● Condition variables were invented to help with these kinds of situations
among others

EECS 678 Pthreads: Producer-Consumer 10

Signal and Wait
● The pthread_mutex_lock() and pthread_mutex_unlock()

library calls are implemented using more primitive methods
provided by the operating system (via the futex system call).

– A process calling wait(fred) will attempt to acquire the mutex fred if it
is available. If it is not available, the calling process will insert itself
into a list of waiters associated with the mutex fred, and will block (i.e.
remove itself from the scheduler's list of processes ready to run). This
is essentially the operation of pthread_mutex_lock.

– A process calling signal(fred) will wakeup a process in fred's waiters
list if one is present (i.e. change its blocked state to ready and place it
on the scheduler's ready list). This is essentially the operation of
pthread_mutex_unlock.

EECS 678 Pthreads: Producer-Consumer 11

Condition Variables
● The question becomes, can we use block and wakeup to

implement more precise and efficient synchronization?

● It turns out we can. And the POSIX standard provides a
component called a condition variable that makes using these
primitives convenient and intuitive.

– A condition variable has its own list of waiters associated with it.

– When a program reaches a point where it should wait for some
condition to be true, it blocks and inserts itself into the condition
variable's waiters list using pthread_cond_wait()

– When the condition is met, any process with access to the condition
variable can wakeup a process on the condition variable's waiters list,
pthread_cond_signal(), or all waiters, pthread_cond_broadcast()

EECS 678 Pthreads: Producer-Consumer 12

Library Calls
● pthread_cond_wait() forces a thread to block until a certain condition has been

signaled:

– int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);

– This call atomically unlocks the associated mutex and waits for the condition variable cond to be
signaled.

– It requires that the associated mutex must be locked by the calling thread on entrance to this call.
Before returning to the calling thread, pthread_cond_wait re-acquires the associated mutex.

● pthread_cond_signal() signals a particular condition variable:

– int pthread_cond_signal(pthread_cond_t *cond);

– This call restarts one of the threads that are waiting on the condition variable cond.

– If no threads are waiting on cond nothing happens.

– If several threads are waiting on cond, exactly one is restarted, but it is not specified which.

– Use pthread_cond_broadcast(pthread_cond_t *cond) to wake all threads waiting on a particular
condition variable

● Note: a mutex is used to ensure operations on the condition variable are atomic

EECS 678 Pthreads: Producer-Consumer 13

Modifying producer_consumer.c
● Modify producer_consumer.c to make use of the condition

variable library calls described above to handle one producer
and one consumer

● When you are through, the producer and consumer should
not spin until the condition they are waiting on is met, but
should actually block their own execution. They should be
signaled to wake up when that condition is satisfied.

● As a hint, the starter code has initialized all the mutexes and
condition variables you should need. You can use the same
mutex as before to associate with the condition variables.
The condition variables created and initialized are fairly
obvious: fifo->notFull, and fifo->notEmpty.

EECS 678 Pthreads: Producer-Consumer 14

Output
● When you are through, the output of the printf statements will provide information

by which you can verify the semantics specified on the previous slide are present
– Makefile targets: test1, test2, test3 and test4 run with various numbers

of producers and consumers

– NarrativeX.raw gives the raw output of testX

– NarrativeX.sorted gives output for each thread separately

● Raw output shows how execution of threads are interleaved
● Sorted output shows the sequence of actions by each thread
● The amount of working and blocking time associated with each item can affect

how threads behave, and thus how their execution is interleaved

– Change the settings and see how behavior changes, if it does

● Also, run a given test multiple times with the same setting and look for differences
in behavior due to random chance and changing system conditions

EECS 678 Pthreads: Producer-Consumer 15

Lab Assignment
● Your final task for this lab is to experiment with

producer_consumer using different numbers of threads and
different work settings

● If you have modified the producer and consumer routines to
use the mutex and condition variables correctly, the program
should work correctly for arbitrary numbers of threads

● How will you ensure the producers (consumers) produce
(consume) the correct number of items? Consider how the
integer pointer to the number consumed and the number
produced is used.

EECS 678 Pthreads: Producer-Consumer 16

Testing
● producer_consumer takes as its arguments the number of

producer and consumer threads it will use.

● Test your program for different combinations of producers
and consumers: several producers and 1 consumer, 1
producer and several consumers, several producers and
consumers.

– The testX makefile targets are a guide, but try other
things as well

– You will have to create your own raw and sorted files
for new tests

● Examine the raw and sorted output for a given test and see
what you can deduce about behavior

EECS 678 Pthreads: Producer-Consumer 17

Conclusions
● Producer-Consumer is an extremely simple canonical

problem which arises in a wide range of situations

● Yet, as simple as it is, there are a number of interesting
features and a wide range of behavior

● One important part of this assignment is to look for small
inconsistencies or other features of a behavior narrative that
indicate unexpected scenarios

● Another important aspect is to note how variable the behavior
of different runs under the same settings can be

– Concurrency is subject to a lot of random variation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

