
Introduction to POSIX Signals

Michael Jantz
Prasad Kulkarni

Douglas Niehaus

EECS 678 Signals Lab 2

Introduction

● This lab is an introduction to signals in Unix systems.

– In it, you will learn about some common uses for signals.

– You will also construct a small program that uses signals.

● Unpack the starter code, then make and tag it:

– bash> tar zxvf eecs678-signals-lab.tar.gz

– cd signals/; make; ctags -R

EECS 678 Signals Lab 3

Signals

● A signal is a short message that may be sent to a process or
a group of processes.

● The only information given to a process is usually the number
identifying the signal; there is no room in standard signals for
arguments, a message or other accompanying information.

● Signals serve two main purposes:

– To make a process aware that a specific event has occurred.

– To cause a process to execute a signal handler function included in its
code.

EECS 678 Signals Lab 4

Interrupts vs. Signals
● Signals and interrupts are very similar in their behavior

● Important difference: interrupts are sent to the operating
system by the hardware, signals are sent to the process by
the operating system, or other processes through the OS

● Important similarity: both signals and interrupts associate
handlers with asynchronous events which interrupt current
processing, thus inserting the handler into current code path

● Signals can thus be thought of as an interrupt in software:

– However, note that signals have nothing to do with Soft-IRQs. The
name seems related, but these are a method for deferring much of
the processing associated with a hardware-interrupt into a less
restrictive execution context inside the OS.

EECS 678 Signals Lab 5

Signal Disposition
● Each signal that can be delivered in Linux has a current

disposition, which determines how the process behaves
when it is receives the signal

● A process can change the disposition of a signal using
various system calls. Using these system calls, a process
can elect one of the following behaviors to occur on delivery
of the signal:

– perform the default action

– ignore the signal or

– catch the signal with a signal handler, a
programmer-defined function that is automatically
invoked when the signal is delivered

EECS 678 Signals Lab 6

Signal Disposition
● Signals have standard names under POSIX, but signal

numbers can be different across platforms

– See Signal (7) manual page and /usr/include/bits/signum.h

– bash> kill -l

● The entries in the “Action” column of the table on the
following slide specify the default disposition for each
signal as follows:

– Term Default action is to terminate the process.

– Ign Default action is to ignore the signal.

– Core Default action is to terminate the process and dump core (see core(5)).

– Stop Default action is to stop the process.

– Cont Default action is to continue the process if it is currently stopped.

EECS 678 Signals Lab 7

Signal Value Action Comment
 --

 SIGHUP 1 Term Hangup detected on controlling terminal or death of controlling process

 SIGINT 2 Term Interrupt from keyboard (Ctl-C)

 SIGQUIT 3 Core Quit from keyboard

 SIGILL 4 Core Illegal Instruction

 SIGABRT 6 Core Abort signal from abort(3)

 SIGFPE 8 Core Floating point exception

 SIGKILL 9 Term Kill signal

 SIGSEGV 11 Core Invalid memory reference

 SIGPIPE 13 Term Broken pipe: write to pipe with no readers

 SIGALRM 14 Term Timer signal from alarm(2)

 SIGTERM 15 Term Termination signal

 SIGUSR1 30,10,16 Term User-defined signal 1

 SIGUSR2 31,12,17 Term User-defined signal 2

 SIGCHLD 20,17,18 Ign Child stopped or terminated

 SIGCONT 19,18,25 Cont Continue if stopped

 SIGSTOP 17,19,23 Stop Stop process

 SIGTSTP 18,20,24 Stop Stop typed at tty (Ctl-Z)

 SIGTTIN 21,21,26 Stop tty input for background process

 SIGTTOU 22,22,27 Stop tty output for background process

EECS 678 Signals Lab 8

Using Signals with the Shell
● Sometimes a user may start a long job and then want to

do something else

– bash> find /usr -print

– OOPS! No & at the end for background execution

– Ctl-Z sends SIGTSTP
● Returns control to command line

“suspending” child process, which
depends on context a bit

– While Ctl-C sends SIGINT, generally terminating
● Signals can be used in other ways as well

EECS 678 Signals Lab 9

Multiple Jobs in One Shell
● You can stop the current process (without losing what you've already done)

by issuing the SIGTSTP signal. This is done with Ctl-Z:

bash> find /usr -print
^Z
[1]+ Stopped find /usr -print
bash>

● Before window based systems were common programmers did more control
of multiple jobs from the command line. For example you could start another
job from the same command line:

bash> find /lib -print

● And stop this process (Ctl-Z): (act fast before this one finishes)

[2]+ Stopped find /lib -print

● We now are managing a shell session with multiple jobs. Type jobs:

bash> jobs
[1]- Stopped find /usr -print
[2]+ Stopped find /lib -print

EECS 678 Signals Lab 10

Foreground and Background
● Note that the jobs are given numbers. To bring the one numbered [1] back

to the foreground do:

bash> fg %1

– fg %n brings the nth process (as listed when you type jobs) to
the foreground.

– fg with no arguments will bring the current process (the one with
the + next to it when you type jobs), to the foreground.

● Since you brought the find to the foreground you see its output continue
from where it was when you stopped it

● You can bring the make process to the foreground if you like

● bg takes job numbers as arguments as does fg, except that it sends the
selected job to the background, as if you had started it with & at the end
of the command line, as opposed to the foreground

EECS 678 Signals Lab 11

Killing Jobs
● Now, let's finish this example up. You can kill jobs using the kill command:

bash> kill %1

[1]- Stopped find /usr -print
bash> jobs

[1]- Terminated find /usr -print
[2]+ Stopped find /lib -print

● By default, kill delivers a SIGINT signal, the same as Ctl-C, to the job you
specify

– You can also use the PID of a process instead of %n, see ps
command

● Some commands do not wish to be terminated by Ctl-C, and to prevent this
they can catch the SIGINT signal

● However, it is obviously prudent to be able to have a SIGKILL that cannot be
caught

bash> kill -KILL <pid>

EECS 678 Signals Lab 12

Signal Handlers
● How can a process ignore the SIGINT signal?

● For most signals, user processes are allowed to define signal
handlers to override the signal's default disposition.

● The SIGKILL and SIGSTOP signals are the exceptions, as they
are caught by the operating system

– This is why they are used to kill processes without doubt
● In this lab, you are going to see how to set up signal handlers and

thus be able to choose how your programs will respond to signals
if they are sent

EECS 678 Signals Lab 13

signals.c
● This file contains two functions you will use as signal handlers:

– catch_int keeps a count of how many times it has been invoked up to some
threshold. When this count passes CTRL_C_THRESHOLD, it asks the user if
he or she wants to exit. If the user responds in the affirmative, the program
exits.

– catch_tstp prints out the current ctrl_c_count.

● In this lab, we will use these functions to implement a program that
accepts a number of SIGINT signals, the signal generated by
Ctl-C, before asking the user if they would like to really exit

● Issuing the SIGTSTP signal, the signal generated by Ctl-Z, prints
the number of times the user has issued the INT signal since the
user was last prompted to exit

● You will use the system calls for the activities described in the
following slides

EECS 678 Signals Lab 14

Pause and Sigaction
● int pause (void)

– Causes the calling process to wait until any signal is received

– Should be called in a loop in the main function.

● int sigaction (int signum, const struct sigaction *act,
struct sigaction *old_act)

– Assigns a handler for a signal according to contents of a struct sigaction

– signum is the number of the signal for which you would like to assign a
handler; SIGINT and SIGTSTP are used for this lab

– act is a pointer to the struct sigaction specifying how the signal should be
handled - see the following slide for a more in-depth explanation

– old_act is a pointer to the struct sigaction that was associated with this
signal before this call. For this lab, we don't care about this information.
Simply pass in NULL to ignore it.

EECS 678 Signals Lab 15

struct sigaction
● The struct sigaction has the following structure:

 struct sigaction {
 void (*sa_handler)(int);
 void (*sa_sigaction)(int, siginfo_t *, void *);
 sigset_t sa_mask;
 int sa_flags;
 void (*sa_restorer)(void);
 };

● sa_handler is a pointer to the handler function that will be called when the signal is received. Use this when the
handler does not need additional information other than the signal number. You will use this in this lab to store a
pointer to each handler function.

● sa_sigaction is also a pointer to a handler function. Use this when your handler needs more information than just
a signal number; see sigaction man page for more details. You will not need this for this lab.

● sa_mask is the set of signals you wish to mask (i.e. block) during execution of the signal handler. You will need to
use this for this lab.

● sa_flags allows you to set various options when handling the signal. You will not need to change the default
settings for this lab.

● sa_restorer is obsolete. You will not need this for this lab.

EECS 678 Signals Lab 16

Modifications

● Modify signals.c to implement the behavior
described on slide 13

● You should not need to modify the signal handlers

● One last system call you may want to use:
– int sigfillset(sigset_t *set)

– sigfillset initializes the set pointed to by set to be full
● i.e. it includes all signals

● Continue to the next slide when you're confident
your simple program is working

EECS 678 Signals Lab 17

Adding a Timeout

● Suppose users of this program almost always mean to exit when
they issue 5 SIGINT signals. Most of the time users remember to
type 'Y' and actually exit the program, but a small percentage of
the time, the user simply leaves the terminal and forgets to type 'Y'

– Think of how logging out of the machines here at the lab
works

● In this situation, it might make sense to add a timeout which
performs the exit if there is no response from the user for some
time.

● As the final part of this lab, we will add a timeout to exit our
program if the user forgets to type a response when prompted.

EECS 678 Signals Lab 18

Alarm
● The alarm system call is a convenient way to implement timeouts.

– unsigned int alarm(unsigned int seconds)

– alarm() arranges for a SIGALRM signal to be delivered to the calling process in
seconds seconds.

● You should initiate an alarm to go off after so many seconds after the
user has been prompted to exit

● You will have to unmask the SIGALRM signal when initializing the
SIGINT signal handler (so SIGALRM will be handled when the timeout
occurs). Use sigdelset to remove SIGALRM from the masked set:

– int sigdelset(sigset_t *set, int signum)

● You should define a signal handler for the SIGALRM signal. This
handler should terminate the process if the user has not entered a
response to the exit prompt

EECS 678 Signals Lab 19

Final Output
bash> ./signals
^C^C^C^C^C
Really Exit? [Y/n]: n

Continuing
^C^C^C^Z

So far, '3' Ctrl-C presses were counted

^C^Z

So far, '4' Ctrl-C presses were counted

^C
Really Exit? [Y/n]: n

Continuing
^C^C^C^C^C
Really Exit? [Y/n]:
User taking too long to respond. Exiting . . .

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

