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Abstract—Traffic measurement is a critical function in
transportation engineering. We consider privacy-preserving
point-to-point traffic measurement in this paper. We measure
the number of vehicles traveling from one geographical location
to another by taking advantage of capabilities provided by the
intelligent cyber-physical road systems that enable automatic
collection of traffic data. The challenge is to allow the collection
of aggregate point-to-point data while preserving the privacy
of individual vehicles. We propose a novel measurement
scheme which utilizes bit arrays to collect “masked” data and
adopts maximum likelihood estimation (MLE) to obtain the
measurement result. Both mathematical proof and simulation
demonstrate the practicality and scalability of our scheme.
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I. INTRODUCTION

Traffic measurement is a critical function in transportation

engineering [1]. There are two categories of traffic statistics,

“point” statistics and “point-to-point” statistics. Point

statistics tell the number of vehicles traversing a specific

point (location). Various prediction models have been

proposed to estimate them [2], [3], [4]. Point-to-point

statistics describe the number of vehicles traveling between

two points (locations). They are essential inputs to a

variety of studies including estimation of traffic link flow

distribution as part of investment plan and calculation of

road exposure rates as part of safety analysis. Though some

point-to-point statistics may be inferred from point data

[5], the practicality is limited by either high computation

overhead or degraded measurement accuracy. As for direct

measurement of “point-to-point” traffic, little work has been

done especially when drivers’ location privacy is concerned.
This paper considers the important problem of privacy-

preserving point-to-point transportation traffic measurement.

The set of vehicles traveling from one geographical location

to another is modeled as a traffic flow, and the flow size is the

number of vehicles in the set. To enable automatic collection

of traffic flow data, we take advantage of intelligent cyber-

physical road systems (CPRS), which integrate the latest

technologies in wireless communications and on-board

computer processing into transportation systems [6] [7].

In particular, IntelliDrive [8] from USDOT [9] envisions

a nationwide system where vehicles communicate with

roadside equipments (RSE) in real time via dedicated short

range communications. In CPRS, vehicles may report their

IDs to RSEs when they pass by, and that information

can be used by the authority to measure traffic flows.

However, if a vehicle keeps transmitting its unique identifier

to RSEs, that information will enable others to track its entire

moving history. As more and more people concern about

their location privacy, the degree of privacy that a scheme

preserves will directly affect its applicability.

To address the concerns of privacy, there are many issues

that we need to consider: First of all, we need a criteria to

tell what is good privacy and what is not. In this paper, we

capture the essence of privacy in traffic flow measurement,

and quantify it as a probability that a potential tracker

cannot identify any trace of any vehicle. Secondly, given

that criteria, how can we preserve the optimal privacy?

Apparently, the better the privacy, the more applicable the

measurement scheme. Furthermore, to protect the privacy of

vehicles, only randomized and de-identified information is

collected. How can we achieve sound measurement accuracy

based on information that looks totally random?

In this paper, we propose a novel scheme for privacy-

preserving traffic flow measurement. It utilizes bit arrays

to encode “masked” data sent from vehicles to RSEs, and

adopts maximum likelihood estimation (MLE) to obtain

measurement results. We analyze its performance through

both mathematical proof and simulations, which demonstrate

the applicability of our scheme.

The rest of the paper is organized as follows: Section II

gives the system and threat model, problem statement,

and the performance metrics. Section III discusses some

straightforward solutions and their limitations. Section IV

presents our novel solution and its performance analysis.

Section V shows simulation results. Section VI summarizes

the related work. Finally, Section VII draws the conclusion.

II. PRELIMINARIES

A. System Model

We consider an intelligent cyber-physical road system

involving three groups of entities: vehicles, roadside
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equipments (RSE), and a central server. Each vehicle has

a unique ID, e.g., its VIN. Each RSE also has its unique ID.

Both vehicles and RSEs are equipped with computing and

communication capabilities, e.g., on-board computer chips

and communication modules. Vehicles communicate with

RSEs in real time via dedicated short range communications

(DSRC) [9]. RSEs are connected to the central server

through wired or wireless means. They collect information

from vehicles and transfer it to the central server on a

periodical basis.

B. Problem Statement

We define a traffic flow between one RSE-equipped

location and another RSE-equipped location as the set

of vehicles traveling between the two locations during a

measurement period. The size of the traffic flow is the

number of vehicles in this set. Our problem is to measure the

sizes of traffic flows in a road system between all pairs of

locations where RSEs are installed while protecting vehicles’

privacy. To achieve the privacy-preserving end, we need

a solution in which a vehicle never transmits any unique

identifier. Ideally, the information transmitted by the vehicles

to the RSEs looks totally random, out of which neither the

identity nor the trajectory of any vehicle can be pried with

high probability.

We also assume that a special MAC protocol is applied to

support privacy preservation such that the MAC address of

a vehicle is not fixed. Vehicles may pick an MAC address

randomly from a large space for one-time use when needed.

C. Threat Model

We assume a semi-honest model for the RSEs. On the one

hand, all RSEs are from trustworthy authorities, which can

be enforced by authentication based on PKI. The vehicles

can use the public-key certificate broadcasted by RSEs,

which they obtained from the trusted third parties, to verify

the RSEs. On the other hand, the authorities may exploit the

information collected by RSEs to track individual vehicles

when they need to do so. For instance, if a vehicle transmits

any unique identifier upon each query, that identifier can be

used for tracking purpose.

Note that there are also other ways to track a vehicle, for

example, tailgating the vehicle, or setting cameras near RSEs

to take photos and using image processing to recognize it.

These methods are beyond the scope of this paper. In this

paper, we focus on preventing automatical tracking caused

by the traffic flow measurement scheme itself.

D. Performance Metrics

In this paper, we consider three performance metrics

to evaluate a traffic flow measurement scheme: preserved

privacy, measurement accuracy, and computation overhead.

They are defined in the following.

1) Preserved Privacy: We capture the essence of

privacy preservation in point-to-point transportation traffic

measurement, which is allowing the tracker only a limited

chance to identify any partial or full trajectory of any vehicle.

Accordingly, we quantify the privacy of a scheme through

a parameter p which satisfies the following requirement: the

probability for any “trace” of any vehicle not to be identified

must be at least p, where a trace of a vehicle is a pair of

RSEs it has passed by. A larger value of p means better

privacy. Intuitively, a scheme with p = 0.5 is better than one

with p = 0.1 in terms of privacy because the latter gives the

tracker a better chance to link traces of a vehicle to obtain

its trajectory since it allows the traces to be identified with

a higher probability, i.e., 1− p.

2) Measurement Accuracy: Let nc be the true size of

a traffic flow between a pair of locations and n̂c be the

corresponding measured result. We define the measurement

accuracy through the absolute difference between n̂c and

nc, namely |n̂c−nc|. Clearly, the smaller the difference, the

more accurate the measurement.

3) Computation Overhead: We consider the computation

overhead for vehicles, RSEs, and the central server. For

vehicles, we measure the computation overhead for each

vehicle per RSE en route. For RSEs, we measure the

computation overhead for each RSE per passing vehicle. For

the central server, we measure the computation overhead for

it to measure the traffic flow size for a pair of RSEs.

III. STRAIGHTFORWARD APPROACHES AND THEIR

LIMITATIONS

To measure the traffic flow sizes between all pairs of

RSEs in the road system, a straightforward approach is

making vehicles report their IDs to all RSEs that they pass

by. RSEs collect the IDs from the passing vehicles. At

the end of each measurement period, all RSEs send their

collected ID sets to the central server, which then measures

the traffic flow size between each pair of RSEs by simply

comparing the two corresponding ID sets: if a vehicle ID

appears in both ID sets, then the vehicle must have passed

both RSEs. Thus, the number of IDs that appear in both

ID sets equals the true traffic flow size between the two

corresponding RSEs. However, this simple approach leads

to serious privacy breaching as it reveals vehicles’ identities

along the way.

A natural follow-up thinking is making vehicles report

their encrypted IDs (EIDs) to the RSEs en route. The

central server will compute traffic flow sizes based on

the EID sets collected by RSEs. To prevent the tracker

from using fixed EIDs to identify vehicles, each vehicle

has many EIDs encrypted by different keys. However, the

EIDs of a vehicle must satisfy the following property:

they will produce the same result after a certain procedure

of computations, allowing the central server to find out

they represent the same vehicle. In this scheme, although
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vehicles’ true identities are hidden, traces of each vehicle are

still revealed and can be linked to obtain its full trajectory.

An alternative approach is having the RSEs broadcast

their IDs (RIDs). Each vehicle will record the RIDs of all

RSEs it has passed by, and transmit them to every RSE

that it passes in the future. RSEs collect those RIDs from

passing vehicles, and send them to the central server at the

end of each measurement period. To compute the size of a

traffic flow between two RSEs, Rx and Ry , the central server

simply goes through the RID set collected by Ry (Rx), and

count the number of times that Rx (Ry) appears in this set.

This is the size of the directional traffic flow from Rx (Ry)

to Ry (Rx). The undirectional traffic flow between Rx and

Ry is the sum of both directional flow sizes. Clearly, this

approach also reveals a vehicle’s trajectory in the form of a

list of RIDs sent to each RSE that it passes.1

IV. PRIVACY PRESERVING POINT-TO-POINT

TRANSPORTATION TRAFFIC MEASUREMENT

In this section, we present our novel scheme for privacy

preserving point-to-point transportation traffic measurement.

There are two phases for each measurement period: online

coding and offline decoding. Online coding is an interaction

between vehicles and RSEs, where necessary information

for traffic flow measurement are securely collected. Later in

the offline decoding phase, the central server will use those

information to compute traffic flow sizes. In the following,

we first illustrate the two measurement phases, and then

mathematically analyze the performance of our scheme.

A. Online Coding Phase

In our scheme, each RSE Rx maintains a counter nx,

which keeps track of the total number of vehicles passing by

during the current measurement period. Rx also maintains a

bit array Bx with a fixed length m (m > 1) to mask vehicle

identities. At the beginning of each measurement period, nx

and all the bits in Bx are set to zeros. In addition, each

vehicle v has a logical bit array LBv , which consists of s
(1 < s < m) bits randomly selected from Bx. The indices

of these bits in Bx are H(v ⊕Kv ⊕X[0]),..., H(v ⊕Kv ⊕
X[s − 1]), where ⊕ is the bitwise XOR, H(...) is a hash

function whose range is [0,m), X is an integer array of

randomly chosen constants whose purpose is to arbitrarily

alter the hash result, and Kv is the private key of v whose

purpose is to protect the privacy of its logical bit array.

The online coding phase is quite simple. RSEs broadcast

queries in pre-set intervals (e.g., once a second), ensuring

that each passing vehicle receives at least one query and

meanwhile giving enough time for the vehicle to reply.

Collisions can be resolved through well-established CSMA

1The identity of a vehicle may be revealed by a photograph triggered by
the vehicle rushing a red light or by a police car stopping the vehicle. When
the identity is combined with the trajectory transmitted by the vehicle, the
entire traveling path of the driver will be revealed.

or TDMA protocols, which are not the focus of this paper.

Every query that an RSE sends out includes the RSE’s RID

and its public-key certificate. Suppose a vehicle, whose ID

is v, receives a query from an RSE, whose ID is Rx. The

vehicle first verifies the certificate, and then uses the RSE’s

public key to authenticate the RSE. After verifying that Rx

is from the trustworthy authority, the vehicle v will randomly

select a bit from its logical bit array LBv by computing an

index b = H(v⊕Kv⊕X[H(Rx)mod s]). The vehicle v then

sends the resulting index b to the RSE Rx. Upon receiving

the index b, Rx will first increase its counter nx by 1, and

then set the bth bit in Bx to 1:

Bx[H(v ⊕Kv ⊕X[H(Rx)mod s])] = 1. (1)

B. Offline Decoding Phase

At the end of each measurement period, all RSEs will

send their counters and bit arrays to the central server, which

then performs the offline measurement. We employs the

maximum likelihood estimation (MLE) [10] to measure the

sizes of traffic flows based on the counters and bit arrays.

Suppose the set of vehicles that pass RSE Rx (Ry) is

denoted as Sx (Sy) with cardinality |Sx| = nx (|Sy| = ny).

Clearly, the set of vehicles that pass both RSE Rx and Ry is

Sx∩Sy . Denote its cardinality as nc, which is the value that

we want to measure. Furthermore, denote by S the subset

of vehicles in Sx∩Sy that happen to set the same bit in Bx

and By , where Bx and By are the bit arrays at Rx and Ry ,

respectively. Let no be the cardinality of S, i.e., no = |S|.
Clearly, S ⊆ Sx ∩ Sy and 0 ≤ no ≤ nc. For any vehicle, it

has the same probability 1
s to set any bit in its s-bit logical

bit array. As a result, the probability for an arbitrary vehicle

v from Sx ∩Sy to select the same bit in both Bx and By is

s× 1
s× 1

s = 1
s . Therefore, the number of such vehicles, no, is

binomially distributed according to B(nc,
1
s ). Accordingly,

the probability for no = z(0 ≤ z ≤ nc) is

P (no = z) =

(
nc

z

)
(
1

s
)z(1− 1

s
)nc−z. (2)

Given the counters nx and ny , and bit arrays Bx and By ,

we measure nc as follows: First, take a bitwise AND of Bx

and By , and denote the resulting bit array as Bc. Namely,

Bc[i] = Bx[i] ∧ By[i], ∀i ∈ [0,m− 1]. (3)

We can easily find out the number of 0’s in Bc. Suppose

it is denoted by Uc. In the following, we will analyze the

probability for an arbitrary bit in Bc to remain ‘0’ after the

online coding phase, and use it to establish the likelihood

function for us to observe Uc ‘0’ bits in Bc. Maximizing that

likelihood function with respect to nc will give the MLE

estimate of nc.

Clearly, the event for an arbitrary bit b in Bc to remain

‘0’ after online coding is equivalent to the combination of
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the following two events: (1) Event 1: None of the vehicles
in S has chosen b at Rx and Ry . If a vehicle v ∈ S chooses

b, then bit b in Bx and By are both set to ‘1’ by v (hence

bit b in Bc is also ‘1’). Since each vehicle has probability
1
m to set bit b to ‘1’, the probability for the vehicle not to

choose bit b is 1− 1
m . There are no vehicles in S. Therefore,

the probability for the first event to happen is

q1 = (1− 1

m
)no . (4)

(2) Event 2: Either none of the vehicles in Sx−S has chosen
b at Rx or none of the vehicles in Sy−S has chosen b at Ry .
Otherwise, bit b in both Bx and By will be ‘1’ (hence bit

b in Bc is ‘1’). The probability for bit b not chosen by any

vehicle in Sx − S is (1− 1
m )nx−no , and the probability for

bit b not chosen by any vehicle in Sy −S is (1− 1
m )ny−no .

Therefore, the probability for the second event to happen is

q2 = 1− (1− (1− 1

m
)nx−no)× (1− (1− 1

m
)ny−no)

= (1− 1

m
)nx−no + (1− 1

m
)ny−no

−(1− 1

m
)nx+ny−2×no . (5)

Combining above analysis, the conditional probability for

bit b in Bc to remain ‘0’ given no = z is q1 × q2, namely,

q(nc|no = z) = (1− 1

m
)nx + (1− 1

m
)ny

−(1− 1

m
)nx+ny−z. (6)

Given q(nc|no = z) and the distribution of no, the overall

probability q(nc) for bit b in Bc to remain ‘0’ is

q(nc) =

nc∑
z=0

q(nc|no = z)× P (no = z)

= (1− 1

m
)nx + (1− 1

m
)ny − (1− 1

m
)nx+ny

×
( 1

s + (1− 1
s )(1− 1

m )

1− 1
m

)nc

. (7)

Knowing that each bit in Bc has a probability q(nc) to

remain ‘0’, we can establish the likelihood function for us

to observe Uc ‘0’ bits in Bc (hence m−Uc ‘1’ bits in Bc):

L = (q(nc))
Uc × (1− q(nc))

m−Uc . (8)

The MLE estimate of nc is the optimal value of nc that

maximizes the likelihood function in (8):

n̂c = argmax
nc

{L} (9)

To find n̂c, we take logarithm on both sides of (8):

lnL = Uc × ln q(nc) + (m− Uc)× ln(1− q(nc)). (10)

Take the first order derivative of (10), we have:

d lnL

dnc
=

(
Uc

q(nc)
− m− Uc

1− q(nc)

)
× q′(nc), (11)

where q′(nc) can be computed from (7) as follows:

q′(nc) =
dq(nc)

dnc

= −(1− 1

m
)nx+ny ×

( 1
s + (1− 1

s )(1− 1
m )

1− 1
m

)nc

× ln

( 1
s + (1− 1

s )(1− 1
m )

1− 1
m

)
. (12)

To compute n̂c, we set the right side of (11) to 0:

(
Uc

q(nc)
− m− Uc

1− q(nc)

)
× q′(nc) = 0. (13)

Observe from (12) that q′(nc) cannot be 0 when m > 1 and

s > 1. Therefore, we have:

Uc

q(nc)
− m− Uc

1− q(nc)
= 0. (14)

Substituting (7) to (14), we obtain the MLE estimator n̂c of

the desired traffic flow size nc as follows:

n̂c =
1

ln

(
1
s+(1− 1

s )(1− 1
m )

1− 1
m

)
[
− (nx + ny) ln(1− 1

m
)

+ ln

(
(1− 1

m
)nx + (1− 1

m
)ny − Uc

m

)]
. (15)

C. Privacy Guarantee

The previous two subsections give a detailed description

of the two measurement phases of our scheme. In this

subsection, we evaluate the privacy that our scheme

preserves. Note that in our scheme, the only information

that a vehicle v ever transmits to an RSE en route is an

index of a bit b randomly selected from its s-bit logical bit

array, LBv . From the tracker’s point of view, it can only

identify the trace of a vehicle passing by two RSEs Rx and

Ry through the observation of the bits that are set to ‘1’

in both Bx and By; these bits will be ‘1’ in Bc. Therefore,

the preserved privacy of our scheme is actually a conditional

probability which tells to what degree an observed ‘1’ in Bc

829



� � �� �� ��
�

���

���

���

��	

�


�������

�
��

�
�

�
���

��
��

��
�

�

�

�����

�����

������

� �� �� ��
�

����

����

����

����


�������

�
��

�
�

�
���

��
��

��
�

�

�

�����

�����

������

� � �� �� ��
�

���

���

���

��	

�


�������

�
��
�
�

�
�
 �

!
��

��
�"

#�
�

�

�

�����

�����

������

Figure 1. nx = ny = n = 50, 000, nc = 5, 000; First Plot: probability P (A) when m varies from 0.1n to 20n, controlled by different s = 2, 5, 10;
Second Plot: a zoom-in of the first plot when m varies from 5n to 20n; Third Plot: probability P (E|A) when m varies from 0.1n to 20n, controlled by
different s = 2, 5, 10.

does not represent a common vehicle passing by both Rx

and Ry . We derive this conditional probability below.

Firstly, consider the probability for the tracker to observe

an arbitrary bit, b, to be set to ‘1’ in both Bx and By (event

A), P (A). Obviously, the probability P (A) equals 1 minus

q(nc) given our analysis in Section IV-B:

P (A) = 1− (1− 1

m
)nx − (1− 1

m
)ny + (1− 1

m
)nx+ny

×
( 1

s + (1− 1
s )(1− 1

m )

1− 1
m

)nc

(16)

Secondly, consider the conditional probability for such a

bit, b, to not represent a common vehicle passing both Rx

and Ry (event E), P (E|A). This is the privacy p that we

want to derive. Note that event E happens if and only if

bit b in Bx is set only by vehicles passing only RSE Rx

(i.e., in set Sx−Sy), and bit b in By is set only by vehicles

passing only RSE Ry (i.e., in set Sy − Sx). Denote these

two events as Ex and Ey , respectively. There are nx (ny)

vehicles passing Rx (Ry), and nc vehicles among them pass

both Rx and Ry . Since each vehicle has a probability 1
m to

set bit b to ‘1’, the probability for Ex (Ey) to happen is:

P (Ex) = (1− (1− 1

m
)nx−nc)× (1− 1

m
)nc , (17)

P (Ey) = (1− (1− 1

m
)ny−nc)× (1− 1

m
)nc . (18)

Combining the above analysis, we have the formula for

the preserved privacy of our scheme as follows:

p = P (E|A) =
P (Ex)× P (Ey)

P (A)

=
1

P (A)
× ((1− 1

m
)nc − (1− 1

m
)nx)

×((1− 1

m
)nc − (1− 1

m
)ny ), (19)

where P (A) is given in (16).

Observe that there are 2 parameters, s and m, that

determine the value of P (E|A). Among them, s only

appears in the denominator P (A), and it influences P (E|A)
through varying the value of P (A). m influences both

the denominator and the numerator. In the following, we

consider the influence of s and m on P (E|A) by first

examining the influence of s on P (A) (hence that on

P (E|A)) under various values of m, and then analyzing

how m determines the value of P (E|A) given values for s.

1) Influence of s on P (A): To examine how s effects

P (A), we take partial derivative of (16) with respect to s

∂P (A)

∂s
= −(1− 1

m
)nx+ny × nc

(m− 1)s2
Cnc−1. (20)

where C =
1
s+(1− 1

s )(1− 1
m )

1− 1
m

.

Clearly,
∂P (A)

∂s < 0. Therefore, with the increment of

s, the value of P (A) decreases, and in turn, the value of

P (E|A) increases. In other words, the preserved privacy

will be better with a larger value of s. The numerical

results are shown in the first two plots of Figure 1 where

nx = ny = n = 50, 000, nc = 5, 000, and s = 2, 5, 10,

corresponding to three curves in each plot. Clearly, as s
increases, the probability P (A) decreases.

Another observation from the numerical results gives

that when s > 5, the difference in probability P (A)
under different s becomes quite small. For instance, when

m ∈ [5n, 20n], the difference in P (A) when s = 5 and

s = 10 is smaller than 0.0005 (see the two lower curves in

the second plot of Figure 1). When n > 10, that difference

becomes negligible. Therefore, when we analyze the effect

of m on P (E|A) in the following subsection, and set up the

parameters for our simulations, we only consider the cases

when s = 2, 5, 10, with established understanding that larger

values of s will only make negligible differences.

2) Influence of m on P (E|A): To examine the effects of

m on P (E|A), we take the partial derivative of (19) with

respect to m and obtain the following:
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∂P (E|A)

∂m
=

∂P (E)
∂m × P (A)− ∂P (A)

∂m × P (E)

P (A)2
(21)

where P (E) = P (Ex) × P (Ey). P (Ex) and P (Ey) are

given in (17) and (18), respectively. Therefore, the partial

derivative of P (E) with respect to m is:

∂P (E)

∂m
=

m− 1

m3

[
(nx + ny)(1− 1

m
)nx+ny

+ 2nc(1− 1

m
)2nc − (nc + nx)(1− 1

m
)nc+nx

− (nc + ny)(1− 1

m
)nc+ny

]
. (22)

In addition, from (16), we can compute the derivative of

P (A) with respect to m:

∂P (A)

∂m
=

1

m2

[
− nx(1− 1

m
)nx−1 − ny(1− 1

m
)ny−1+

(1− 1

m
)nx+ny−2 · Cnc ·

(
(nx + ny)(1− 1

m
)− nc

s · C
)]

(23)

Through analysis, we know that both
∂P (E)
∂m and

∂P (A)
∂m

are negative when m exceeds a certain value, which means

both P (E) and P (A) will decrease with the increment of

m afterwards. Intuitively, increasing m gives each vehicle

a smaller chance 1
m to set an arbitrary bit, b. Hence, P (E)

and P (A) also drop. The effects that m has on P (E|A) are

twofold: on the one hand, the increment of m decreases the

denominator P (A), which pulls the privacy up; on the other

hand, the increment of m decreases the numerator P (E),
which drags the privacy down. The combination of these

two effects gives that the partial derivative of P (E|A) with

respect to m can be positive, negative, or 0, according to

(21). Therefore, given s, we can choose an optimal m to

achieve the best degree of privacy. The optimal m is obtained

by setting the right side of (21) to 0.

The third plot of Figure 1 shows the numerical results for

the preserved privacy under different m when nx = ny =
n = 50, 000, nc = 5, 000, and s = 2, 5, 10. Clearly, along

each curve (controlled by s), there is an optimal value of m
that gives the optimal privacy, p. For instance, m = 3.8n
gives the optimal privacy p = 0.7661 when s = 10. Another

observation is, when s is large (5 or 10), there always exists a

smooth interval of m near its extreme point that can achieve

comparable privacy as the optimal. For example, when s =
10, the values of m within the interval [3.8n, 13.2n] achieves

privacy that is within 5% of the optimal privacy 0.7661. In

practice, this smooth interval for privacy will allow us to

adjust the value of m to achieve better measurement results

while preserving comparable privacy.

Table I
VALUES FOR m TO ACHIEVE OPTIMAL p UNDER DIFFERENT s.

s 2 5 10
optimal m 1.7n 2.7n 3.8n
optimal p 0.7258 0.7513 0.7661

D. Computation Overhead

In our scheme, when a vehicle v passes an RSE Rx, the

vehicle v only needs to compute two hashes to obtain an

index of a random bit in its logical array LBv , and the RSE

Rx only needs to set 1 bit in its bit array Bx, as described in

Section IV-A. Therefore, the computation overhead for each

vehicle per RSE as well as that for each RSE per vehicle

are both O(1). As for the central server, in order to compute

a traffic flow size between a pair of locations, it only needs

to do a bitwise AND over two m-bit bit arrays, count the

number of ‘0’ in the resulting bit array, and use (15) to

compute the MLE estimator. Therefore, the computation

overhead for the central server is also O(1).

V. SIMULATION

In this section, we evaluate the performance of our

measurement scheme through simulations. The simulations

are performed under five system parameters, nx, ny , nc,

s, and m. For a pair of RSEs, Rx and Ry , nx (ny) is

the number of vehicles passing by Rx (Ry). There are nc

vehicles passing both Rx and Ry , which means the true

traffic flow size is nc. s is the number of bits that each

vehicle chooses in its logical bit array, and m is the number

of bits in the RSEs’ bit array. In the simulation, we choose

the five parameters as follows: nx = ny = n = 50, 000,

100, 000, or 500, 000, and nc varies from 1%n to 50%n,

with step size of 0.1%n; s = 2, 5, 10, and m is chosen to

achieve the optimal privacy p, as determined in Section IV-C.

Table I lists the values for the bit array size m to achieve

the optimal privacy p under different values of s.

Figure 2, 3, and 4 show our simulation results when

n = 50, 000, 100, 000, and 500, 000, respectively. For each

figure, there are three plots, corresponding to the results of

three sets of simulations controlled by parameter s, where

s = 2, 5, and 10. Each plot shows the measured traffic

flow sizes n̂c (y-axis) with respect to different true traffic

flow sizes nc (x-axis) under a given setting of n, s, and

m, where m is chosen as described in Table I so that the

optimal privacy is achieved. We also draw the equality line

y = x in each plot for reference. Clearly, the closer a point

is to the equality line, the smaller difference between the

measured traffic flow and the real traffic flow, and in turn,

the more accurate the measurement result.

From the figures, one can see that our measurement

scheme is quite accurate because most of the points in

all plots of all figures lie closely to the equality line.

In particular, given other parameters, our MLE estimator

produces almost perfect results when s = 2 (the first plot in
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Figure 2. Measurement accuracy with optimal privacy, nx = ny = n = 50, 000, nc = [0.01n, 0.5n]. The x-axis shows true traffic flow sizes, and the
y-axis shows the corresponding measured traffic flow sizes. The three plots are controlled by s. First Plot: s = 2; Second Plot: s = 5; Third Plot: s = 10.
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Figure 3. Measurement accuracy with optimal privacy, nx = ny = n = 100, 000, nc = [0.01n, 0.5n]. The x-axis shows true traffic flow sizes, and the
y-axis shows the corresponding measured traffic flow sizes. The three plots are controlled by s. First Plot: s = 2; Second Plot: s = 5; Third Plot: s = 10.

� ��� � ��� � ���

$���
�

�

���

�

���

�

���
$���

�

%&������

���
��'���(&

)
&

�
�
*

�&
+

��
��




��

�

��

'
��

�(
&

�

�

�����

� ��� � ��� � ���

$���
�

�

���

�

���

�

���
$���

�

%&������

���
��'���(&

)
&

�
�
*

�&
+

��
��




��

�

��

'
��

�(
&

�

�

�����

� ��� � ��� � ���

$���
�

�

���

�

���

�

���
$���

�

%&������

���
��'���(&

)
&

�
�
*

�&
+

��
��




��

�

��

'
��

�(
&

�

�

������

Figure 4. Measurement accuracy with optimal privacy, nx = ny = n = 500, 000, nc = [0.01n, 0.5n]. The x-axis shows true traffic flow sizes, and the
y-axis shows the corresponding measured traffic flow sizes. The three plots are controlled by s. First Plot: s = 2; Second Plot: s = 5; Third Plot: s = 10.

Figure 2, 3, and 4). When s becomes larger, the variant

for our estimator also becomes larger, producing relatively

more points not close to the equality line (the third plot in

Figure 2, 3, and 4), which indicates larger values of s yield

less accurate measurement results.

Recall that a larger value of s brings better privacy

(Table I). For example, the optimal privacy is 0.7661 when

s = 10, better than the optimal privacy of 0.7258 when

s = 2. This implies a tradeoff between the preserved privacy

and the measurement accuracy. From Section IV-C, we know

when s is large, there always exists a smooth interval of m

near its extreme point that can achieve comparable privacy as

the optimal. In reality, one can choose a relatively large value

for s (e.g., 5 or 10), and adjust the value of m to achieve

better measurement results while still preserving comparable

privacy as the optimal.

Finally, the measurement results are more accurate with

larger values of n. There are fewer points deviating from

the equality line n̂c = nc in the three plots of Figure 4 than

those in the corresponding plots of Figure 2. This is also

a natural phenomenon given that the measurement result is

obtained through an MLE estimator.

832



VI. RELATED WORK

A. Transportation Traffic Measurement

In the area of transportation traffic measurement, various

prediction models have been proposed to measure “point”

traffic statistics, using data recorded by automatic traffic

recorders (ATR) installed at road sections. For example,

the multiple linear regression model in [2], artificial neural

network in [3], and spatial statistical method in [4], etc.

Those solutions, though elegant, are not appropriate for

“point-to-point” transportation traffic measurement. The

recent work in [5] tries to infer “point-to-point” statistics

from “point” data, but the high computation overhead limits

its practicability. We prefer a more accurate and efficient

direct-measurement approach that should also address the

privacy concern. Although Google recently announced to

provide real-time traffic data service in Google maps [11],

their approach cannot assure vehicle’s privacy since it uses

GPS and Wi-Fi in phones to track locations [12].

B. Network Traffic Measurement

Another branch of research that relates to (but is

also significantly different from) ours is network traffic

measurement, where researchers have proposed various

methods for traffic flow measurement. Though having the

same name, their problem is different from ours: to measure

the network traffic between two network routers. The

solutions can be summarized into two categories. One is

indirect estimation based on link load and network routing,

by employing statistical techniques [13] [14]. These methods

cannot achieve high accuracy since their estimations are

based on the unknown traffic volume. The other is direct

measurement by different counting methods [15] [16]. In

particular, Li et al. [16] develop a bitmap-based counting

method for traffic flow measurement, which is most related

to our work. However, all these solutions are not appropriate

for our problem, because they measure traffic in network

environment where the privacy of packets is not a concern,

and counting can be done directly based on the packet IDs.

In our problem, the privacy of vehicles is the major concern.

Therefore, the solutions must incorporate randomization and

de-identification techniques to protect vehicles’ privacy, and

do counting based on information that looks totally random.

VII. CONCLUSION

In this paper, we focus on the problem of privacy-

preserving “point-to-point” transportation traffic monitoring

in intelligent cyber-physical road systems. We formalize

“point-to-point” traffic as traffic flows, and quantify privacy

as a probability. We propose a novel scheme which allows

the collection of aggregate traffic flow data while preserving

the optimal privacy of individual vehicles. The proposed

scheme utilizes bit arrays to collect “masked” data and

adopts maximum likelihood estimation (MLE) to obtain the

measurement result. Its feasibility and scalability are shown

by both mathematical proofs and simulations.
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