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Abstract—In this paper, we consider an important
problem of privacy-preserving point-to-point traffic volume
measurement in vehicular cyber physical systems (VCPS),
whose focus is utilizing VCPS to enable automatic traffic data
collection, and measuring point-to-point traffic volume while
preserving the location privacy of all participating vehicles. The
novel scheme that we propose tackles the efficiency, privacy,
and accuracy problems encountered by previous solutions.
Its applicability is demonstrated through both mathematical
and numerical analysis. The simulation results also show its
superior performance.

I. INTRODUCTION

Point-to-point traffic volume measurement is critical
in transportation engineering. It estimates the number
of vehicles traveling between two arbitrary points
(geographical locations) in the road system during the
measurement period, and provides essential input to a
variety of transportation studies such as estimating traffic
link flow distribution for investment plan, calculating
road exposure rates for safety analysis, and characterizing
turning movements at intersections for signal timing
determination [1]. In this paper, we consider the important
problem of privacy-preserving point-to-point traffic volume
measurement in vehicular cyber physical systems (VCPS),
whose focus is utilizing VCPS to enable automatic traffic
data collection, and measuring point-to-point traffic volume
while preserving the location privacy of all participating
vehicles.

VCPS has emerged as one of the most promising
research areas in road networks. It integrates the latest
technologies in wireless communications and on-board
computer processing into transportation systems to enhance
road safety and improve driving experience [2] [3]. In
particular, IEEE has standardized Dedicated Short Range
Communications (DSRC) under IEEE 802.11p [4], which
supports transmitting/receiving messages between vehicles
and roadside units (RSU). A great advantage that VCPS
provides is automatic traffic data collection. For example,
vehicles can report information to RSUs en route, and those

information can be automatically collected and used for
traffic volume measurement. However, challenges remain
to be tackled before the beauty of VCPS can be fully
appreciated by its large audience. As more and more people
concern about their location privacy, any traffic measurement
scheme that targets at being widely accepted and applied
in VCPS should put travellers’ privacy in the top priority.
The transportation authorities from different countries also
put forward a number of principles to protect drivers’
privacy. For instance, the “anonymity by design” principle
required by IntelliDrive [5] from USDOT [6] aims at privacy
protection in the first place. Keeping the requirement of
privacy preservation in mind, having the vehicles report
their unique identifier such as their Vehicle Identification
Numbers (VIN) is clearly not acceptable. Other permanently
or temporarily fixed numbers also bare the potential of
giving away the vehicles’ moving trajectory. The challenge
of addressing the privacy concerns of travellers while
measuring point-to-point traffic volume opens the door to an
interesting research problem: How to design a measurement
scheme in which a vehicle never transmits any unique
identifier (to protect their privacy from being pried via this
unique ID), yet the random and de-identified information
that the vehicle submits still supports the measurement of
traffic volume between different locations?

This challenging problem has been partially solved by
[7], [8] and [9]. [7] infers point-to-point statistics from point
data, and [8] uses encryption method to preserve vehicle’s
privacy. However, their practicability are both limited by
the high computation overhead. [9] utilizes bit arrays to
collect “masked” data and is much more efficient. However,
the solution assumes same traffic volume for all RSUs,
and requires same length for all bit arrays in different
RSUs, which greatly hurts its applicability. In reality, the
traffic volume in different RSUs varies a lot. For example,
according to the 2012 yearly traffic volume report from
New York State Department of Transportation [10], major
intersections in New York have hundreds of thousands of
cars passing by every day, while light-traffic intersections
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only have a few hundreds of cars passing by during the
same period. Considering this more realistic situation where
traffic volume in different places actually differs a lot, the
performance of [9] decreases dramatically in terms of both
drivers’ location privacy and measurement accuracy, which
also limits its practicability.

To fit in the more realistic transportation model
where different RSUs face different traffic volume, we
propose a novel scheme for privacy-preserving point-to-
point traffic volume measurement, which achieves better
privacy for vehicles, more accurate measurement results,
and comparable computation overhead with the previous
best scheme. It utilizes variable-length bit arrays to encode
traffic data reported by vehicles, and a novel “unfolding”
technique to support traffic measurement based on those
varied-length bit arrays. The measurement accuracy and
preserved privacy are analyzed through both mathematical
and numerical means, which demonstrate its applicability.
The simulation results also show its superior performance.

II. PROBLEM STATEMENT

A. Problem Definition

We consider a vehicular cyber-physical system involving
three groups of entities: vehicles, roadside units (RSU), and
a central server. Vehicles and RSUs each has a unique
ID, and is equipped with computing and communication
capabilities. Vehicles can communicate with RSUs in real
time via DSRC [4]. RSUs are connected to the central
server through wired or wireless means, and they report
information collected from vehicles to the central server
periodically.

The problem is given two arbitrary locations where RSUs
are installed, to measure the number of vehicles that pass
by both locations while protecting vehicles’ location privacy.
We need a solution in which a vehicle never transmits any
unique identifier to protect their location privacy. Ideally, the
information transmitted by the vehicles to the RSUs looks
totally random, out of which neither the identity nor the
trajectory of any vehicle can be pried with high probability.

We assume RSUs are semi-honest: On the one hand,
all RSUs are from trustworthy authorities, which can be
enforced by authentication based on PKI. The vehicles can
use the public-key certificate broadcasted by RSUs, which
they obtained from the trusted third parties, to verify the
RSUs. On the other hand, the authorities may exploit the
information collected by RSUs to track individual vehicles
when they need to do so. For instance, if a vehicle transmits
any unique identifier upon each query, that identifier can be
used for tracking purpose.

Note that there are also other ways to track a vehicle,
for example, tailgating the vehicle, or setting cameras
near RSUs to take photos and using image processing to
recognize it. These methods are beyond the scope of this

paper. In this paper, we focus on preventing automatical
tracking caused by the traffic measurement scheme itself.

We also assume that a special MAC protocol is applied to
support privacy preservation such that the MAC address of
a vehicle is not fixed. Vehicles may pick an MAC address
randomly from a large space for one-time use when needed.

B. Performance Metrics

We consider three performance metrics: computation
overhead, measurement accuracy, and preserved privacy.

1) Computation Overhead: It includes computation
overhead for each vehicle per RSU en route, and for each
RSU per passing vehicle, and for the central server to
measure the traffic volume between a pair of RSUs.

2) Measurement Accuracy: Let 𝑛𝑐 be the actual traffic
volume between a pair of locations and �̂�𝑐 be the estimator
for 𝑛𝑐. We measure the accuracy of a scheme by evaluating
the bias and standard deviation of �̂�𝑐

𝑛𝑐
. Clearly, a good

measurement scheme should have close-to-zero bias and
relatively small standard deviation.

3) Preserved Privacy: We use same privacy definition
as [9], which is a probability 𝑝 satisfying the requirement
that the probability for any “trace” of any vehicle not to be
identified must be at least 𝑝, where a trace of a vehicle is a
pair of RSUs it has passed. Clearly, larger values of 𝑝 mean
better privacy because the tracker will have less chance to
link traces of a vehicle to obtain its trajectory.

III. RELATED WORK

Research in transportation traffic measurement can be
briefly summarized into two categories, measurement of
“point” statistics and measurement of “point-to-point”
statistics. In the past, the research focus is on estimation
of “point” statistics such as annual average daily traffic
(AADT), which tell the number of vehicles traversing a
specific point (location), and various predication models
[11], [12], [13], [14], [15], [16] have been proposed to
measure them using data recorded by RSUs such as
automatic traffic recorders (ATR) installed at road sections.
For example, Mohamad et al. develop a multiple linear
regression model which incorporates demographic variables
to measure AADT for country roads in [11], and Lam et
al. adopt artificial neural network to estimate AADT by
using short period counts for urban areas in [12]. Other
research efforts that belong to this category include the
spatial statistical method proposed by Eom et al. in [13], the
support vector regression model presented by Neto et al. in
[14], the absolute deviation penalty procedure designed by
Yang et al. in [15], and the regression and Bayesian based
model derived by Tsapakis et al. in [16], etc.

Recently, the estimation of “point-to-point” traffic
statistics start to draw attention of researchers, especially
when the location privacy of travellers is involved. For
example, Lou and Yin propose to infer point-to-point traffic
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statistics from point data [7], but its practicability is limited
by high computation overhead. Our previous work [8]
improves the measurement efficiency to 𝑂(𝑛2) through
encryption method, but it is still not enough for large-
scale road networks. Google announced to provide real-time
traffic data service in Google maps [17], but their approach
cannot assure vehicle’s privacy since it uses GPS and Wi-Fi
in phones to track locations [18]. Motivated by [19] and [20]
targeting at network measurement, we propose an efficient
solution in [9] and [21], which utilize bit arrays to collect
“masked” traffic data. To the best of our knowledge, the
solution provided in [9] is the best state of art that addresses
the privacy concerns of drivers and passengers while trying
to measure the traffic volume between two arbitrary road
locations. Assuming same traffic volume for all RSUs,
the scheme uses same-length bit arrays, so they can be
pairwise compared to obtain statistical results determined by
the actual traffic volume, which can then be estimated by
reversing the process. The scheme works perfectly when the
traffic volume of all RSUs are comparable. However, when
it comes to the more realistic situation where RSUs face
different traffic volume, the performance of [9] decreases
dramatically in terms of both location privacy of individual
vehicles and measurement accuracy of aggregate traffic data,
which limits its practicability. The scheme that we propose
has comparable efficiency with [9] and furthermore, it can
easily fit in the more realistic transportation model and
achieve far better privacy and accuracy than [9].

IV. NOVEL SCHEME OF PRIVACY-PRESERVING

POINT-TO-POINT TRAFFIC MEASUREMENT

A. Motivation

The solution in [9] uses same-length bit arrays to encode
traffic data, and it only works when the traffic volume of all
RSUs are comparable. When it comes to the more realistic
situation where the number of cars passing by different
RSUs actually varies a lot, its performance decreases
dramatically. The problem lies in the great difficulty of
determining an appropriate fixed bit array size, 𝑚. If a large
𝑚 is chosen to accommodate the large traffic volume in
major intersections, it will greatly hurt the privacy for the
cars passing by light-traffic RSUs (will explain more later in
Section VI). If a small𝑚 is chosen to provide relatively good
privacy for all cars, the accuracy for measuring the traffic
volume between heavy-traffic RSUs will be dramatically
decreased (will explain more later in Section VII).

Can one achieve the goal of both obtaining sound
measurement results and maintaining good privacy for
all cars? The solution with fixed-length bit arrays is
not applicable, so how about varied-length bit arrays?
Intuitively, to maintain good privacy, light-traffic RSUs
should have smaller bit arrays, and to achieve sound
measurement results, heavy-traffic RSUs should have larger
bit arrays. In other words, the sizes of bit arrays should be

related to the traffic volume of corresponding RSUs. This
motivates our design of a novel measurement scheme based
on varied-length bit arrays. To enable comparison of bit
arrays, we propose an “unfolding” technique, and require
the size of all bit arrays to be power of 2, i.e., 𝑚 must be
in the form of 2𝑘.

B. Online Coding Phase

Our scheme consists of two phases: online coding phase
for storing de-identified vehicle information in bit arrays
of RSUs, and offline decoding phase for measuring traffic
volume between RSUs based on the reported bit arrays. Now
we explain the first phase.

In our scheme, each RSU 𝑅𝑥 maintains a counter 𝑛𝑥,
which keeps track of the total number of passing vehicles
during the current measurement period. 𝑅𝑥 also maintains
a bit array 𝐵𝑥 with length 𝑚𝑥 to mask vehicle identities.
We require the lengths of bit arrays to be power of 2,
i.e., 𝑚𝑥 must be in the form of 2𝑘, whose purpose will
be explained later. In order for 𝑚𝑥 to reflect the relation
with the traffic volume in 𝑅𝑥, we determine its value as
𝑚𝑥 = 2𝑐𝑒𝑖𝑙(log2(�̄�𝑥×𝑓)), where �̄�𝑥 is the history average
“point” traffic volume in 𝑅𝑥, 𝑓 is a global parameter
determined by history traffic data and same for all RSUs,
and 𝑐𝑒𝑖𝑙(𝑡) is a function which returns the smallest integer
that is not less than 𝑡. Clearly, 𝑚𝑥 is the smallest integer
that is power of 2 and no less than �̄�𝑥×𝑓 . At the beginning
of each measurement period, 𝑛𝑥 and all bits in 𝐵𝑥 are set
to zeros.

In addition, each vehicle 𝑣 has a logical bit array 𝐿𝐵𝑣 ,
which consists of 𝑠 bits randomly selected from the largest
bit array 𝐵𝑜 among all RSUs, where 𝑠≪ 𝑚𝑜. The indices
of these bits in 𝐵𝑜 are 𝐻(𝑣⊕𝐾𝑣 ⊕𝑋[0]), ..., 𝐻(𝑣⊕𝐾𝑣 ⊕
𝑋[𝑠 − 1]), where ⊕ is the bitwise XOR, 𝐻(...) is a hash
function whose range is [0,𝑚𝑜), 𝑋 is an integer array of
randomly chosen constants to arbitrarily alter the hash result,
and 𝐾𝑣 is the private key of 𝑣 whose purpose is to protect
its privacy.

Given above notations and data structures, the online
coding phase works as follows. RSUs broadcast queries in
pre-set intervals (e.g., once a second), ensuring that each
passing vehicle receives at least one query and meanwhile
giving enough time for the vehicle to reply. Every query
that an RSU sends out includes the RSU’s RID, its public-
key certificate, and the size of its bit array. Suppose a
vehicle, whose ID is 𝑣, receives a query from an RSU,
whose ID is 𝑅𝑥 and bit array size is 𝑚𝑥. It first verifies
the certificate to authenticate the RSU. After verifying that
𝑅𝑥 is from the trustworthy authority, 𝑣 will randomly select
a bit from its logical bit array 𝐿𝐵𝑣 by computing an index
𝑏 = 𝐻(𝑣 ⊕ 𝐾𝑣 ⊕ 𝑋[𝐻(𝑅𝑥)𝑚𝑜𝑑 𝑠]). Then 𝑣 generates an
index 𝑏𝑥 in the range of [0,𝑚𝑥) corresponding to 𝑏 by
a modulus operation, 𝑏𝑥 = 𝑏𝑚𝑜𝑑𝑚𝑥, and sends 𝑏𝑥 to
𝑅𝑥. Upon receiving the index 𝑏𝑥, 𝑅𝑥 will first increase
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its counter 𝑛𝑥 by 1, and then set the 𝑏𝑥th bit in 𝐵𝑥 to 1.
Therefore, the overall effect that 𝑣 produces on 𝑅𝑥 is:

𝑛𝑥 = 𝑛𝑥 + 1, (1)

𝐵𝑥[𝐻(𝑣 ⊕𝐾𝑣 ⊕𝑋[𝐻(𝑅𝑥)𝑚𝑜𝑑 𝑠])𝑚𝑜𝑑𝑚𝑥] = 1. (2)

C. Offline Decoding Phase

At the end of each measurement period, all RSUs will
send their counters and bit arrays to the central server, which
first updates the history average “point” traffic volume for
the RSUs to take into account the traffic data in the current
measurement period, and then measures the “point-to-point”
traffic volume between two arbitrary RSUs based on the
reported counters and bit arrays.

Suppose the set of vehicles that pass RSU 𝑅𝑥 (𝑅𝑦) is
denoted as 𝑆𝑥 (𝑆𝑦) with cardinality ∣𝑆𝑥∣ = 𝑛𝑥 (∣𝑆𝑦∣ = 𝑛𝑦).
Clearly, the set of vehicles that pass both RSU 𝑅𝑥 and 𝑅𝑦

is 𝑆𝑥∩𝑆𝑦 . Denote its cardinality as 𝑛𝑐, i.e., ∣𝑆𝑥∩𝑆𝑦∣ = 𝑛𝑐,
which is the value that we want to measure. Denote the
size of the bit array 𝐵𝑥 (𝐵𝑦) stored in RSU 𝑅𝑥 (𝑅𝑦) as
𝑚𝑥 (𝑚𝑦). Without loss of generality, we assume that 𝑚𝑥 ≤
𝑚𝑦 (otherwise, change the role of 𝑅𝑥 and 𝑅𝑦). Given the
counters 𝑛𝑥 and 𝑛𝑦 , and bit arrays 𝐵𝑥 and 𝐵𝑦 , the server
measures 𝑛𝑐 as follows:

First, the central server expands the two bit arrays
𝐵𝑥 and 𝐵𝑦 to the same size. To enable traffic volume
measurement based on different-sized bit arrays, we propose
an “unfolding” technique, which is expanding the bit arrays
to the same size by duplicating their content. Here we only
need to expand the smaller bit array 𝐵𝑥 to the size of the
larger bit array 𝐵𝑦 , since 𝑚𝑥 and 𝑚𝑦 are both power of
2 and 𝑚𝑥 ≤ 𝑚𝑦 , and for any two numbers that are power
of 2, the division result of the larger value over the smaller
value must be an integer. Therefore, we can expand 𝐵𝑥 by
duplicating its content for 𝑚𝑦

𝑚𝑥
times to create a new bit array

of size 𝑚𝑦 . We call it the “unfolded” bit array of 𝐵𝑥, and
denote it as 𝐵𝑢

𝑥 . More specifically,

𝐵𝑢
𝑥 [𝑖] = 𝐵𝑥[𝑖𝑚𝑜𝑑𝑚𝑥], ∀𝑖 ∈ [0,𝑚𝑦). (3)

Second, the central server takes a bitwise OR of 𝐵𝑢
𝑥 and

𝐵𝑦 , and the resulting bit array is denoted as 𝐵𝑐:

𝐵𝑐[𝑖] = 𝐵
𝑢
𝑥 [𝑖] ∨ 𝐵𝑦[𝑖], ∀𝑖 ∈ [0,𝑚𝑦). (4)

The bitwise OR operation is granted since the two bit arrays,
𝐵𝑢

𝑥 and 𝐵𝑦 , are of the same size. Figure 1 shows an example
of the unfolding and bitwise-OR operation. In this example,
𝐵𝑥 is unfolded to 𝐵𝑢

𝑥 , and a bitwise-OR is performed on
𝐵𝑢

𝑥 and 𝐵𝑦 to produce 𝐵𝑐.
Finally, given 𝐵𝑐, 𝐵𝑥 (𝐵𝑢

𝑥 ), and 𝐵𝑦, the central server
uses the following formula to estimate the point-to-point
traffic volume between 𝑅𝑥 and 𝑅𝑦:

𝑛𝑐 =
ln(𝑉𝑐)− ln(𝑉𝑥)− ln(𝑉𝑦)

ln(1− 𝑠−1
𝑠 × 1

𝑚𝑦
)− ln(1− 1

𝑚𝑦
)

(5)

Fig. 1. An example of unfolding and bitwise-OR operation.

where 𝑉𝑐, 𝑉𝑥, and 𝑉𝑦 are random variables (R.V.) which
represent the fraction of bits whose values are zeros in 𝐵𝑐,
𝐵𝑥, and 𝐵𝑦 , correspondingly. Their values can be easily
found by counting the number of zeros in 𝐵𝑐, 𝐵𝑥, and 𝐵𝑦,
denoted by 𝑈𝑐, 𝑈𝑥, and 𝑈𝑦 respectively (note 𝑈𝑐, 𝑈𝑥, and
𝑈𝑦 are also R.V.s), and dividing them by the corresponding
bit array size 𝑚𝑦 , 𝑚𝑥, and 𝑚𝑦 . That is, 𝑉𝑐 =

𝑈𝑐

𝑚𝑦
, 𝑉𝑥 = 𝑈𝑥

𝑚𝑥
,

and 𝑉𝑦 =
𝑈𝑦

𝑚𝑦
. Note that the fraction of zero bits in 𝐵𝑢

𝑥 is
the same as 𝐵𝑥.

D. Derivation of the MLE Estimator 𝑛𝑐
Now we follow the standard maximum likelihood estimate

(MLE) method [22] to derive 𝑛𝑐 given by (5). Its accuracy
will be analyzed in Section V. We first derive the probability
𝑞(𝑛𝑐) for an arbitrary bit in 𝐵𝑐 to be ‘0’, and use 𝑞(𝑛𝑐) to
establish the likelihood function ℒ to observe 𝑈𝑐 ‘0’ bits in
𝐵𝑐. Finally, maximizing ℒ with respect to 𝑛𝑐 will lead to
the MLE estimator, 𝑛𝑐.

Consider an arbitrary bit 𝑏 in 𝐵𝑐. Let 𝐴𝑏 be the event that
the 𝑏th bit in 𝐵𝑐 remains ‘0’, then 𝑞(𝑛𝑐) is the probability
for 𝐴𝑏 to occur. Since the set of all vehicles passing 𝑅𝑥

and/or 𝑅𝑦 (i.e., 𝑆𝑥 ∪ 𝑆𝑦) can be partitioned into three sets,
𝑆𝑥 ∩ 𝑆𝑦 , 𝑆𝑥 − 𝑆𝑦 , and 𝑆𝑦 − 𝑆𝑥, it is clear that event 𝐴𝑏 is
equivalent to the combination of the following three events:

(I) Event 𝐸1: For vehicles passing both 𝑅𝑥 and 𝑅𝑦 (i.e.,
in the set 𝑆𝑥∩𝑆𝑦), none of them have chosen bit (𝑏𝑚𝑜𝑑𝑚𝑥)
in 𝐵𝑥 or bit 𝑏 in 𝐵𝑦 . Otherwise, according to (3) and (4),
bit 𝑏 in 𝐵𝑐 will be ‘1’. For any vehicle, it has the same
probability 1

𝑠 to select any bit in its 𝑠-bit logical bit array.
So the probability for an arbitrary vehicle 𝑣 from 𝑆𝑥 ∩ 𝑆𝑦
to select the same bit from its logical bit array in both 𝑅𝑥

and 𝑅𝑦 is 𝑠 × 1
𝑠 × 1

𝑠 = 1
𝑠 . In other words, if 𝑣 chooses

(𝑏′𝑚𝑜𝑑𝑚𝑥) ∕= (𝑏𝑚𝑜𝑑𝑚𝑥) in 𝑅𝑥, it has a probability of 1
𝑠

to choose the same bit 𝑏′ in 𝑅𝑦 (hence will not set bit 𝑏 in
𝐵𝑦), and probability of 1 − 1

𝑠 to choose a separate bit 𝑏′′

randomly from 𝐵𝑦 . The probability for 𝑏′′ ∕= 𝑏 is 1 − 1
𝑚𝑦

,
and the probability for 𝑣 to choose (𝑏′𝑚𝑜𝑑𝑚𝑥) in 𝐵𝑥 is
1− 1

𝑚𝑥
. There are 𝑛𝑐 cars in set 𝑆𝑥 ∩𝑆𝑦 , so the probability

of 𝐸1 is

𝑃1 =

{(
1− 1

𝑚𝑥

)[
1

𝑠
+

(
1− 1

𝑠

)(
1− 1

𝑚𝑦

)]}𝑛𝑐

=

(
1− 1

𝑚𝑥

)𝑛𝑐
(
1− 𝑠− 1

𝑠
× 1

𝑚𝑦

)𝑛𝑐

(6)

(II) Event 𝐸2: For vehicles passing only 𝑅𝑥 (i.e., in the
set 𝑆𝑥 − 𝑆𝑦), none of them have chosen bit (𝑏𝑚𝑜𝑑𝑚𝑥) in
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𝐵𝑥. Otherwise, from (3), bit 𝑏 in 𝐵𝑢
𝑥 is ‘1’ (so bit 𝑏 in 𝐵𝑐 is

‘1’). Since each vehicle in 𝑆𝑥−𝑆𝑦 has probability 1
𝑚𝑥

to set
bit (𝑏𝑚𝑜𝑑𝑚𝑥), and there are 𝑛𝑥 − 𝑛𝑐 vehicles in 𝑆𝑥 − 𝑆𝑦 ,
the probability of 𝐸2 is

𝑃2 =

(
1− 1

𝑚𝑥

)𝑛𝑥−𝑛𝑐

. (7)

(III) Event 𝐸3: For vehicles passing only 𝑅𝑦 (i.e., in
the set 𝑆𝑦 − 𝑆𝑥), none of them have chosen bit 𝑏 in 𝐵𝑦 .
Otherwise, bit 𝑏 in 𝐵𝑦 will be ‘1’ (hence bit 𝑏 in 𝐵𝑐 is also
‘1’). Similarly, we can derive its probability as

𝑃3 =

(
1− 1

𝑚𝑦

)𝑛𝑦−𝑛𝑐

. (8)

Combining above analysis, we can obtain the overall
probability 𝑞(𝑛𝑐) for bit 𝑏 in 𝐵𝑐 to remain ‘0’ as follows:

𝑞(𝑛𝑐) = 𝑃1 × 𝑃2 × 𝑃3

=

(
1− 1

𝑚𝑥

)𝑛𝑥
(
1− 1

𝑚𝑦

)𝑛𝑦
(1− 𝑠−1

𝑠𝑚𝑦

1− 1
𝑚𝑦

)𝑛𝑐

(9)

Since the bits in any logical bit array are selected from the
largest physical bit array uniformly at random, the vehicles
in set 𝑆𝑥 (𝑆𝑦) have the same probability of 1

𝑚𝑥
( 1
𝑚𝑦

) to
choose any bit in 𝐵𝑥 (𝐵𝑦). For any bit in 𝐵𝑥 (𝐵𝑦), the
probability for it to be ‘0’ after 𝑛𝑥 (𝑛𝑦) vehicles each
choosing a random bit from 𝐵𝑥 (𝐵𝑦) is

𝑞(𝑛𝑥) =

(
1− 1

𝑚𝑥

)𝑛𝑥

, (10)

𝑞(𝑛𝑦) =

(
1− 1

𝑚𝑦

)𝑛𝑦

. (11)

Therefore, the number of zero bits in 𝐵𝑥 follows a binomial
distribution 𝑈𝑥 ∼ 𝐵(𝑚𝑥, 𝑞(𝑛𝑥)) = 𝐵(𝑚𝑥, (1 − 1

𝑚𝑥
)𝑛𝑥),

while the number of zero bits in 𝐵𝑦 follows another
binomial distribution 𝑈𝑦 ∼ 𝐵(𝑚𝑦, 𝑞(𝑛𝑦)) = 𝐵(𝑚𝑦, (1 −
1

𝑚𝑦
)𝑛𝑦 ). From the property of binomial distribution [22],

and 𝑉𝑥 = 𝑈𝑥

𝑚𝑥
and 𝑉𝑦 =

𝑈𝑦

𝑚𝑦
, the expected values for 𝑉𝑥 and

𝑉𝑦 are

𝐸(𝑉𝑥) = 𝐸

(
𝑈𝑥

𝑚𝑥

)
=
𝑚𝑥(1− 1

𝑚𝑥
)𝑛𝑥

𝑚𝑥
= 𝑞(𝑛𝑥), (12)

𝐸(𝑉𝑦) = 𝐸

(
𝑈𝑦

𝑚𝑦

)
=
𝑚𝑦(1− 1

𝑚𝑦
)𝑛𝑦

𝑚𝑦
= 𝑞(𝑛𝑦). (13)

Substituting (12) and (13) to (9), and replacing 𝐸(𝑉𝑥) and
𝐸(𝑉𝑦) by their instance values, 𝑉𝑥 and 𝑉𝑦 , we have the
following instance value for 𝑞(𝑛𝑐):

𝑞(𝑛𝑐) = 𝑉𝑥 × 𝑉𝑦 ×
(1− 𝑠−1

𝑠 × 1
𝑚𝑦

1− 1
𝑚𝑦

)𝑛𝑐

. (14)

Given the probability for each bit in 𝐵𝑐 to be ‘0’ as 𝑞(𝑛𝑐),
we can establish the likelihood function ℒ for us to observe
𝑈𝑐 ‘0’ bits in 𝐵𝑐 (so 𝑚𝑦 − 𝑈𝑐 ‘1’ bits in 𝐵𝑐):

ℒ = (𝑞(𝑛𝑐))
𝑈𝑐 × (1− 𝑞(𝑛𝑐))𝑚𝑦−𝑈𝑐 . (15)

The MLE estimator of 𝑛𝑐 is the optimal value of 𝑛𝑐 that
maximizes the likelihood function in (15). To find 𝑛𝑐, we
take logarithm on both sides of (15), and then take the first
order derivative to obtain:

𝑑 lnℒ
𝑑𝑛𝑐

=

(
𝑈𝑐

𝑞(𝑛𝑐)
− 𝑚𝑦 − 𝑈𝑐

1− 𝑞(𝑛𝑐)
)
× 𝑞′(𝑛𝑐), (16)

where 𝑞′(𝑛𝑐) can be computed from (9) as follows:

𝑞′(𝑛𝑐) = 𝑞(𝑛𝑐)× ln

(1− 𝑠−1
𝑠 × 1

𝑚𝑦

1− 1
𝑚𝑦

)
. (17)

Since 𝑞′(𝑛𝑐) cannot be 0 when 𝑚𝑥 > 1, 𝑚𝑦 > 1, and
𝑠 < 𝑚𝑦 , setting the right side of (16) to 0 gives

𝑞(𝑛𝑐) =
𝑈𝑐

𝑚𝑐
= 𝑉𝑐. (18)

Substituting (18) to (14) and reordering the items, we obtain
the MLE estimator 𝑛𝑐 as described in (5).

E. Computation Overhead

We conclude this section by a discussion about the
computation overhead of our scheme. We compare it with
the best state of art [9]. The other two performance metrics
will be analyzed in the following two sections.

Clearly, the computation overhead for the vehicles and
RSUs of our novel scheme are comparable to [9]. In our
novel scheme, when a vehicle 𝑣 passes an RSU 𝑅𝑥, the
vehicle 𝑣 only needs to compute two hashes to obtain an
index of a random bit, and the RSU 𝑅𝑥 only needs to set 1
bit in its bit array 𝐵𝑥, as described in Section IV-B. So the
computation overhead for each vehicle per RSU as well as
for each RSU per vehicle are both 𝑂(1).

As for the central server, the task it performs is a little bit
more complicated than [9], but the computation overhead is
comparable. First, the server expands the smaller bit array
𝐵𝑥 to 𝐵𝑢

𝑥 , which has the same size as 𝐵𝑦, by duplicating
its content. This operation costs 𝑂(𝑚𝑦) time. Second, it
performs a bitwise OR over two 𝑚𝑦-bit bit arrays, 𝐵𝑢

𝑥 and
𝐵𝑦 , to create a new bit array 𝐵𝑐 of size 𝑚𝑦 , which also
costs 𝑂(𝑚𝑦) time. Last, the server counts the number of
zeros in 𝐵𝑥, 𝐵𝑦 , and 𝐵𝑐, which takes 𝑂(𝑚𝑦) time as well.
Therefore, the overall computation overhead for the server to
measure the traffic volume between a pair of RSUs, 𝑅𝑥 and
𝑅𝑦 , is 𝑂(𝑚𝑦), where 𝑚𝑦 is the size of the larger bit array
of the two RSUs. Since [9] assumes that 𝑚𝑥 = 𝑚𝑦 = 𝑚
and its computation overhead for the server is 𝑂(𝑚), one
can see that our novel scheme indeed achieves comparable
computation overhead as [9].
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V. ANALYSIS ON MEASUREMENT ACCURACY

In this section, we analyze the measurement accuracy of
the MLE estimator 𝑛𝑐 mathematically. According to (5), 𝑛𝑐
involves three random variables 𝑉𝑐, 𝑉𝑥, and 𝑉𝑦 . Therefore,
we first study the mean and variance of 𝑉𝑐, 𝑉𝑥, and 𝑉𝑦 , based
on which we derive the formula for the bias and standard
deviation of 𝑛𝑐.

A. Mean and Variance of 𝑉𝑐, 𝑉𝑥, and 𝑉𝑦
The mean values of 𝑉𝑥 and 𝑉𝑦 are given in (12) and (13).

Their variance can be computed from the variance of 𝑈𝑥 and
𝑈𝑦 . Since 𝑈𝑥 and 𝑈𝑦 each follows a binomial distribution
as mentioned in Section IV-C, we have

𝑉 𝑎𝑟(𝑉𝑥) =
𝑉 𝑎𝑟(𝑈𝑥)

𝑚𝑥
2

=
𝑞(𝑛𝑥)× (1− 𝑞(𝑛𝑥))

𝑚𝑥
, (19)

𝑉 𝑎𝑟(𝑉𝑦) =
𝑉 𝑎𝑟(𝑈𝑦)

𝑚𝑦
2

=
𝑞(𝑛𝑦)× (1− 𝑞(𝑛𝑦))

𝑚𝑦
, (20)

where 𝑞(𝑛𝑥) and 𝑞(𝑛𝑦) are given by (10) and (11).
Since the probability for any bit in 𝐵𝑐 to be ‘0’

is 𝑞(𝑛𝑐), the number of zeros in 𝐵𝑐 also follows a
binomial distribution 𝑈𝑐 ∼ 𝐵(𝑚𝑐, 𝑞(𝑛𝑐)) = 𝐵(𝑚𝑦, 𝑞(𝑛𝑐)).
Therefore, the mean of 𝑈𝑐 is 𝑚𝑦 × 𝑞(𝑛𝑐) and the variance
of 𝑈𝑐 is 𝑚𝑦 × 𝑞(𝑛𝑐) × (1 − 𝑞(𝑛𝑐)). Since 𝑉𝑐 = 𝑈𝑐

𝑚𝑦
, the

mean and variance of 𝑉𝑐 can be derived accordingly:

𝐸(𝑉𝑐) = 𝐸

(
𝑈𝑐

𝑚𝑦

)
=
𝑚𝑦 × 𝑞(𝑛𝑐)

𝑚𝑦
= 𝑞(𝑛𝑐), (21)

𝑉 𝑎𝑟(𝑉𝑐) =
𝑉 𝑎𝑟(𝑈𝑐)

𝑚𝑦
2

=
𝑞(𝑛𝑐)× (1− 𝑞(𝑛𝑐))

𝑚𝑦
, (22)

where 𝑞(𝑛𝑐) is given by (9).

B. Mean and Variance of ln(𝑉𝑐), ln(𝑉𝑥), and ln(𝑉𝑦)

Now we derive the mean and variance of ln(𝑉𝑐), ln(𝑉𝑥),
and ln(𝑉𝑦). First, we define a function 𝑓(𝑉 ) = ln𝑉 , and
expand the function by its Taylor series about the mean value
of 𝑉 , denoted as 𝑤 = 𝐸(𝑉 ), to obtain

𝑓(𝑉 ) = 𝑓(𝑤) + (𝑉 − 𝑤)𝑓 ′(𝑤) + 1

2
(𝑉 − 𝑤)2𝑓 ′′(𝑤)...

= ln(𝑤) +
𝑉 − 𝑤
𝑤

− (𝑉 − 𝑤)2
2𝑤2

... (23)

To get the expected value of ln(𝑉 ), we truncate (23) after
the third term since expected value of the second term is 0,
and the third term is the first nonzero bias:

𝐸(ln(𝑉 )) = ln(𝑤)− 𝐸((𝑉 − 𝑤)
2)

2𝑤2
= ln(𝑤)− 𝑉 𝑎𝑟(𝑉 )

2𝑤2
.

(24)

According to (24), we can compute the mean of ln(𝑉𝑐),
ln(𝑉𝑥), and ln(𝑉𝑦) based on the mean and variance values
of 𝑉𝑐, 𝑉𝑥, and 𝑉𝑦. Below are the results:

𝐸(ln(𝑉𝑥)) = ln(𝑞(𝑛𝑥))− 1

2𝑚𝑥
× 1− 𝑞(𝑛𝑥)

𝑞(𝑛𝑥)
, (25)

𝐸(ln(𝑉𝑦)) = ln(𝑞(𝑛𝑦))− 1

2𝑚𝑦
× 1− 𝑞(𝑛𝑦)

𝑞(𝑛𝑦)
, (26)

𝐸(ln(𝑉𝑐)) = ln(𝑞(𝑛𝑐))− 1

2𝑚𝑦
× 1− 𝑞(𝑛𝑐)

𝑞(𝑛𝑐)
. (27)

To get the variance, we truncate (23) after two terms:

𝑉 𝑎𝑟(ln(𝑉 )) = 𝑉 𝑎𝑟

(
ln(𝑤) +

𝑉 − 𝑤
𝑤

)
=
𝑉 𝑎𝑟(𝑉 )

𝑤2
. (28)

Again, according to (28), we can compute the variance of
ln(𝑉𝑐), ln(𝑉𝑥), and ln(𝑉𝑦) based on the mean and variance
values of 𝑉𝑐, 𝑉𝑥, and 𝑉𝑦 . Below are the results:

𝑉 𝑎𝑟(ln(𝑉𝑥)) =
𝑉 𝑎𝑟(𝑉𝑥)

(𝐸(𝑉𝑥))2
=

1

𝑚𝑥
× 1− 𝑞(𝑛𝑥)

𝑞(𝑛𝑥)
, (29)

𝑉 𝑎𝑟(ln(𝑉𝑦)) =
𝑉 𝑎𝑟(𝑉𝑦)

(𝐸(𝑉𝑦))2
=

1

𝑚𝑦
× 1− 𝑞(𝑛𝑦)

𝑞(𝑛𝑦)
, (30)

𝑉 𝑎𝑟(ln(𝑉𝑐)) =
𝑉 𝑎𝑟(𝑉𝑐)

(𝐸(𝑉𝑐))2
=

1

𝑚𝑦
× 1− 𝑞(𝑛𝑐)

𝑞(𝑛𝑐)
. (31)

C. Mean and Variance of 𝑛𝑐

Based on the mean of ln(𝑉𝑐), ln(𝑉𝑥), and ln(𝑉𝑦) derived
previously, we obtain the mean of 𝑛𝑐:

𝐸(𝑛𝑐) =
𝐸(ln(𝑉𝑐))− 𝐸(ln(𝑉𝑥))− 𝐸(ln(𝑉𝑦))
ln(1− 𝑠−1

𝑠 × 1
𝑚𝑦

)− ln(1− 1
𝑚𝑦

)
, (32)

where 𝐸(ln(𝑉𝑐)), 𝐸(ln(𝑉𝑥)), and 𝐸(ln(𝑉𝑦)) are given in
(25), (26), and (27). The estimation bias is

𝐵𝑖𝑎𝑠

(
𝑛𝑐
𝑛𝑐

)
= 𝐸

(
𝑛𝑐
𝑛𝑐

)
− 1 =

𝐸(𝑛𝑐)

𝑛𝑐
− 1. (33)

We can also derive the variance of 𝑛𝑐 as

𝑉 𝑎𝑟(𝑛𝑐) =
𝐶 +𝐷[

ln

(
1− 𝑠−1

𝑠 × 1
𝑚𝑦

)
− ln

(
1− 1

𝑚𝑦

)]2
(34)

where 𝐷 = 𝑉 𝑎𝑟(ln(𝑉𝑐)) + 𝑉 𝑎𝑟(ln(𝑉𝑥)) + 𝑉 𝑎𝑟(ln(𝑉𝑦)),
and 𝐶 = −𝐶1 − 𝐶2 + 𝐶3 with 𝐶1 = 𝐶𝑜𝑣(ln(𝑉𝑐), ln(𝑉𝑥)),
𝐶2 = 𝐶𝑜𝑣(ln(𝑉𝑐), ln(𝑉𝑦)), and 𝐶3 = 𝐶𝑜𝑣(ln(𝑉𝑥), ln(𝑉𝑦)).
The three covariance terms can be derived by expanding the
Taylor series of ln(𝑉𝑐), ln(𝑉𝑥), and ln(𝑉𝑦) about the mean
values of 𝑉𝑐, 𝑉𝑥, and 𝑉𝑦 . For example, 𝐶1 is derived as

𝐶1 = −𝐸(ln(𝑉𝑐))𝐸(ln(𝑉𝑥)) + 𝐸(ln(𝑉𝑐) ln(𝑉𝑥))
= −𝐸(ln(𝑉𝑐))𝐸(ln(𝑉𝑥))− ln(𝐸(𝑉𝑐)) ln(𝐸(𝑉𝑥))

+ ln(𝐸(𝑉𝑐))𝐸(ln(𝑉𝑥)) + ln(𝐸(𝑉𝑥))𝐸(ln(𝑉𝑐))(35)

Substituting the formula of 𝐸(𝑉𝑐), 𝐸(𝑉𝑥), 𝐸(ln(𝑉𝑐)),
and 𝐸(ln(𝑉𝑥)), which we have already computed,
we can obtain 𝐶𝑜𝑣(ln(𝑉𝑐), ln(𝑉𝑥)). 𝐶𝑜𝑣(ln(𝑉𝑐), ln(𝑉𝑦))
and 𝐶𝑜𝑣(ln(𝑉𝑥), ln(𝑉𝑦)) can be derived similarly. After
obtaining the covariances, we can compute the variance
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of 𝑛𝑐 based on (34). Finally, given 𝑉 𝑎𝑟(𝑛𝑐), the standard
deviation of 𝑛𝑐

𝑛𝑐
is computed as follows:

𝑆𝑡𝑑𝐷𝑒𝑣

(
𝑛𝑐
𝑛𝑐

)
=

√
𝑉 𝑎𝑟(𝑛𝑐)

𝑛𝑐
. (36)

VI. ANALYSIS ON PRESERVED PRIVACY

We evaluate the preserved privacy of our novel scheme
using the same definition as [9], which is the conditional
probability that tells to what degree observing a same bit to
be set in both bit arrays of two RSUs does not represent a
common vehicle passing by both RSUs. The reason is that,
the only information a vehicle 𝑣 ever reports to an RSU is a
bit index drawn from the same common pool uniformly at
random. Therefore, the tracker can only identify the trace of
a common vehicle through the observation of the bits that
are chosen by the vehicles to be set as ‘1’ in both RSUs.

A. Derivation of the Preserved Privacy

First, consider the probability for an arbitrary bit, 𝑏, to
be ‘1’ in both 𝐵𝑢

𝑥 and 𝐵𝑦 (event A), 𝑃 (𝐴). Denote its
complementary event as 𝐴. Clearly, 𝑃 (𝐴) = 1 − 𝑃 (𝐴).
Denote by 𝑆 the subset of vehicles in 𝑆𝑥 ∩ 𝑆𝑦 that happen
to choose the same bit in its logical bit array at both 𝑅𝑥

and 𝑅𝑦 . Let 𝑛𝑠 be the cardinality of 𝑆, i.e., 𝑛𝑠 = ∣𝑆∣.
Clearly, 𝑆 ⊆ 𝑆𝑥 ∩ 𝑆𝑦 and 0 ≤ 𝑛𝑠 ≤ 𝑛𝑐. As we mentioned
earlier, the probability for 𝑣 ∈ 𝑆𝑥 ∩ 𝑆𝑦 to select the same
bit at both 𝑅𝑥 and 𝐵𝑦 is 1

𝑠 . Therefore, the number of such
vehicles, 𝑛𝑠, is binomially distributed according to 𝐵(𝑛𝑐, 1𝑠 ).
The probability for 𝑛𝑠 = 𝑧 (0 ≤ 𝑧 ≤ 𝑛𝑐) is

𝑃 (𝑛𝑠 = 𝑧) =

(
𝑛𝑐
𝑧

)(
1

𝑠

)𝑧(
1− 1

𝑠

)𝑛𝑐−𝑧

. (37)

Clearly, event 𝐴 is equivalent to the combination of the
following two events: (1) Event 𝐸4: None of the vehicles in
𝑆 has chosen 𝑏 at 𝑅𝑥 and 𝑅𝑦. Otherwise, bit (𝑏𝑚𝑜𝑑𝑚𝑥)
in 𝐵𝑥 (hence bit 𝑏 in 𝐵𝑢

𝑥 ) and bit 𝑏 in 𝐵𝑦 are both set to
‘1’. Clearly, the probability of 𝐸4 is

𝑞4 =

(
1− 1

𝑚𝑦

)𝑛𝑠

. (38)

(2) Event 𝐸5: Either none of the vehicles in 𝑆𝑥 − 𝑆 has
chosen (𝑏𝑚𝑜𝑑𝑚𝑥) at 𝑅𝑥 or none of the vehicles in 𝑆𝑦−𝑆
has chosen 𝑏 at 𝑅𝑦. Otherwise, the two corresponding bits
are both set to ‘1’. Clearly, the probability of 𝐸5 is

𝑞5 = 1−
[
1−

(
1− 1

𝑚𝑥

)𝑛𝑥−𝑛𝑠
][

1−
(
1− 1

𝑚𝑦

)𝑛𝑦−𝑛𝑠
]

(39)

Combining above analysis, the probability of event 𝐴 is

𝑃 (𝐴) =

𝑛𝑐∑
𝑧=0

𝑞4(𝑛𝑠∣𝑛𝑠 = 𝑧)𝑞5(𝑛𝑠∣𝑛𝑠 = 𝑧)𝑃 (𝑛𝑠 = 𝑧)

=

(
1− 1

𝑚𝑥

)𝑛𝑥

× 𝐶𝑛𝑐
4 +

(
1− 1

𝑚𝑦

)𝑛𝑦

−
(
1− 1

𝑚𝑥

)𝑛𝑥
(
1− 1

𝑚𝑦

)𝑛𝑦

× 𝐶𝑛𝑐
5 , (40)

where 𝐶4 and 𝐶5 are both constants with values 𝐶4 = 1
𝑠 ×

1− 1
𝑚𝑦

1− 1
𝑚𝑥

+
(
1− 1

𝑠

)
, and 𝐶5 = 1

𝑠 × 1
1− 1

𝑚𝑥

+
(
1− 1

𝑠

)
.

Secondly, consider the conditional probability for such a
bit, 𝑏, to not represent a common vehicle passing both 𝑅𝑥

and 𝑅𝑦 (event 𝐸), 𝑃 (𝐸∣𝐴). Note that event 𝐸 happens if
and only if bit (𝑏𝑚𝑜𝑑𝑚𝑥) in 𝐵𝑥 (hence bit 𝑏 in 𝐵𝑢

𝑥 ) is set
only by vehicles passing only RSU 𝑅𝑥 (i.e., in 𝑆𝑥 − 𝑆𝑦),
and bit 𝑏 in 𝐵𝑦 is set only by vehicles passing only RSU
𝑅𝑦 (i.e., in 𝑆𝑦 − 𝑆𝑥). Denote these two events as 𝐸𝑥 and
𝐸𝑦 , respectively. We can easily derive their probability as:

𝑃 (𝐸𝑥) =

(
1−

(
1− 1

𝑚𝑥

)𝑛𝑥−𝑛𝑐
)
×

(
1− 1

𝑚𝑥

)𝑛𝑐

, (41)

𝑃 (𝐸𝑦) =

(
1−

(
1− 1

𝑚𝑦

)𝑛𝑦−𝑛𝑐
)
×

(
1− 1

𝑚𝑦

)𝑛𝑐

. (42)

Therefore, the preserved privacy of our novel scheme is:

𝑝 = 𝑃 (𝐸∣𝐴) = 𝑃 (𝐸𝑥)× 𝑃 (𝐸𝑦)

𝑃 (𝐴)

=
1

1− 𝑃 (𝐴) ×
[(

1− 1

𝑚𝑥

)𝑛𝑐

−
(
1− 1

𝑚𝑥

)𝑛𝑥
]

×
[(

1− 1

𝑚𝑦

)𝑛𝑐

−
(
1− 1

𝑚𝑦

)𝑛𝑦
]
, (43)

where 𝑃 (𝐴) is given in (40). Note that if we set 𝑚𝑥 =
𝑚𝑦 = 𝑚 in (43), we get the same formula as [9], which
means that [9] is just a special case of our novel scheme.

B. Privacy Comparison with the Best State of Art

Note that the scheme in [9] works only if all bit arrays
are of the same size. We have mentioned that if a large 𝑚
is chosen to accommodate heavy-traffic RSUs, the privacy
of cars passing light-traffic RSUs will be greatly hurt. Here
we explain more through numerical analysis.

The first plot of Figure 2 shows the privacy 𝑝 of [9] when
𝑚 varies from 0.1𝑛 to 50𝑛, controlled by 𝑠 = 2, 5, 10,
where 𝑛𝑥 = 𝑛𝑦 = 𝑛. From the plot, one can see that
the privacy of [9] is actually determined by the ratio 𝑓
(called load factor) of 𝑚 over 𝑛, and the optimal privacy
is achieved at the optimal load factor 𝑓∗ (approximately
from 2 to 4). An important observation is that, when 𝑚 is
fixed, the privacy will vary a lot given different 𝑛 (hence
different 𝑓 ). If we choose a large 𝑚 to accommodate RSUs
with large 𝑛, say 𝑛 = 𝑛′ = 500, 000, and 𝑚 = 𝑓1𝑛

′ = 2𝑛′,
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Fig. 2. Preserved privacy. First Plot: the privacy of both schemes with equal 𝑚; Second Plot: the privacy of our novel scheme when 𝑛𝑦 = 10𝑛𝑥;
Third Plot: the privacy of our novel scheme with 𝑛𝑦 = 50𝑛𝑥.

then the privacy of cars passing RSUs with smaller 𝑛, say
𝑛 = 𝑛′′ = 𝑛′

25 = 20, 000, will be greatly hurt since the
load factor for those RSUs will be 𝑓2 = 25𝑓1 = 50 (see the
rightmost point of the three curves). Specifically, the privacy
suffers most for small values of 𝑠. For example, when 𝑠 = 2,
the privacy is only about 0.2. One can expect more drop in
privacy for cars passing RSUs with less traffic. To guarantee
a minimum privacy of cars regardless of RSUs, the value of
𝑚 should be determined by the least traffic volume among
all RSUs, 𝑛𝑚𝑖𝑛. For example, 𝑚 should be no larger than
15𝑛𝑚𝑖𝑛 to guarantee a minimum privacy of 0.5 when 𝑠 = 2.
However, this brings another problem: the measurement
accuracy for heavy-traffic RSUs will dramatically decrease
(more on Section VII).

The problem of plummeted privacy in [9] originates from
the fact that different RSUs have different traffic volume,
and using same-length bit arrays will cause “unbalanced
load factors”. Below, we show that by using variable-length
bit arrays so that their load factors are comparable, our novel
scheme not only solves the plummeted privacy problem in
[9], but also improves the optimal privacy when the traffic
volume differs.

Figure 2 shows the privacy 𝑝 of our novel scheme when
the load factor varies from 0.1 to 50. Note that we use
the same load factor 𝑓 for all RSUs (so the lengths of
bit arrays will vary given different traffic volume 𝑛 at
different RSUs). When the traffic volume of 𝑅𝑥 and 𝑅𝑦 are
comparable, their bit arrays will have the same length, i.e.,
𝑚𝑥 = 𝑚𝑦 = 𝑚, so the privacy formula for both schemes
will be the same, resulting in the same graph as shown in
the first plot of Figure 2. We stress that for our new scheme,
since all RSUs use the same load factor 𝑓 , the privacy of
all cars, regardless of the traffic volume of RSUs that they
pass, will always be comparable as the optimal privacy if
𝑓 = 𝑓∗. For example, when 𝑠 = 5, the privacy of the cars
passing comparable-traffic RSUs will be more than 0.75.
For RSUs with different traffic volume, the novel scheme
has another advantage, which is improving the privacy of
the cars passing those RSUs. The second and the third plot
of Figure 2 show the privacy that our novel scheme preserves
for cars passing RSUs with different traffic volume where
𝑛𝑦 = 10𝑛𝑥 and 𝑛𝑦 = 50𝑛𝑥, respectively. One can see that

given 𝑓 = 𝑓∗, both plots show better optimal privacy than
comparable-traffic RSUs. For instance, given 𝑓 = 3 when
𝑠 = 5, the optimal privacy is 0.89 for 𝑛𝑦 = 10𝑛𝑥 , and
0.91 for 𝑛𝑦 = 50𝑛𝑥, both greater than the optimal privacy
of 0.75 for 𝑛𝑥 = 𝑛𝑦 . The improved privacy originates
from the variable-length bit arrays. During the “unfolding”
process, the content of 𝐵𝑥 is duplicated to generate 𝐵𝑢

𝑥 .
This effectively creates more common ‘1’ bits in 𝐵𝑢

𝑥 and
𝐵𝑦 that are not caused by common cars, thus adding one
more level of “mask” for the traces of common vehicles.

VII. SIMULATION

We compare the performance of our novel scheme with
the best state of art [9] through simulations. There are two
sets of simulations: the first set of simulations considers
a real Sioux Falls road network with known vehicle trip
tables, while the second set considers a larger network with
randomly generated traffic.

A. Simulation Results of the Sioux Falls Network

We first consider a real road network of Sioux Falls with
known vehicle trip tables. First published by Lebranc etc.
in [23], the Sioux Falls network has made its appearance in
thousands of conference papers, journals and books (e.g.,
[24], [25], [26]). As illustrated by Figure 3, the Sioux
Falls network contains 24 nodes (RSUs) with 76 arcs (road
segments). In our simulations, we generate traffic according
to the known vehicle trip table in [23] under the Sioux Falls
network, and compute the daily point-to-point traffic volume
between each pair of nodes using both the scheme in [9] and
our novel scheme. The parameters for the two schemes are
determined as follows. For both schemes, the number of bits
in the logical bit array of each vehicle, 𝑠, is set to 2, 5, 10
as [9]. 𝑓 and 𝑚 are chosen to guarantee a minimum privacy
of at least 0.5. Recall that 𝑓 is the fixed load factor for all
bit arrays in our novel scheme, and 𝑚 is the fixed bit array
length in [9].

Table I shows the simulation results of eight typical node
pairs in the Sioux Falls network of our novel scheme and
the scheme in [9] under 𝑠 = 2. Note that the unit for the
traffic volume is thousands of vehicles/day. Also, since node
10 has the largest traffic volume among all 24 nodes, it is
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TABLE I
SIMULATION RESULTS FOR THE SIOUX FALLS NETWORK OF OUR NOVEL SCHEME AND [9]. THE UNIT FOR THE TRAFFIC VOLUME IS THOUSANDS OF

VEHICLES/DAY. 𝑅𝑦 = 10, 𝑛𝑦 = 451. RSUS ARE SORTED ACCORDING TO THE TRAFFIC DIFFERENCE RATIO AGAINST 𝑅𝑦 , I.E., 𝑑 =
𝑛𝑦

𝑛𝑥
. THE ERROR

RATIO FOR BOTH SCHEME IS DEFINED AS 𝑟 =
∣𝑛𝑐−𝑛𝑐∣

𝑛𝑐
× 100%.

𝑅𝑥 15 12 7 24 6 18 2 3
𝑛𝑥 213 140 121 78 76 47 40 28
Traffic difference ratio, 𝑑 2.117 3.221 3.727 5.782 5.934 9.596 11.275 16.107
𝑛𝑐 40 20 19 8 8 7 6 3
𝑛𝑐 (scheme in [9]) 40.048 19.881 19.195 7.215 7.517 6.106 6.637 2.638
𝑛𝑐 (our novel scheme) 39.950 19.972 18.982 7.976 7.988 6.979 5.999 3.005
Error ratio, 𝑟 (scheme in [9]) 0.120% 0.595% 1.026% 9.813% 6.037% 12.771% 10.617% 12.067%
Error ratio, 𝑟 (our novel scheme) 0.125% 0.140% 0.095% 0.300% 0.150% 0.300% 0.017% 0.167%

1 2

3 64 5

12 1611 10

79 8

18

17

1914 15

13 2024 21

23 22

Fig. 3. Sioux Falls Network

chosen to be RSU 𝑅𝑦 with 𝑛𝑦 = 451. The other RSU 𝑅𝑥

in each pair is randomly selected from the remaining nodes,
and they are sorted according to their traffic difference ratio
against 𝑅𝑦 (i.e., 𝑑 = 𝑛𝑦

𝑛𝑥
). The point-to-point traffic volume

between each pair of 𝑅𝑥 and 𝑅𝑦 is measured by both our
novel scheme and the scheme in [9], and the error ratio
against the real traffic volume 𝑛𝑐, i.e., 𝑟 = ∣𝑛𝑐−𝑛𝑐∣

𝑛𝑐
×100%,

is also calculated to better show the results. Clearly, the
smaller the error ratio, the better the measurement result.

From Table I, one can see that when the traffic difference
ratio 𝑑 is small (i.e., the traffic volume of 𝑅𝑥 and 𝑅𝑦

are comparable), e.g., 𝑛𝑦 ≈ 2𝑛𝑥 in the second column
of Table I, both measurement schemes can achieve very
accurate results (both around 0.1%). However, when the gap
of traffic volume between two RSUs enlarges, the scheme
in [9] starts to produce less and less accurate results. One
can see that the error ratio 𝑟 of [9] increases by an order
of magnitude when the traffic difference ratio 𝑑 ≈ 4 (the
fourth column of Table I), and over 2 orders of magnitude
when 𝑑 ≈ 16 (the last column of Table I). On the other
hand, our novel scheme remains accurate for all RSU pairs,
with error ratio 𝑟 constantly below 0.3%, which reflects its
superior performance over [9].

B. Simulation Results of Randomly Generated Traffic

Next, we consider a larger network where the traffic
is randomly generated. The simulations are controlled
by six parameters, 𝑛𝑥, 𝑛𝑦 , 𝑛𝑐, 𝑠, 𝑓 , and 𝑚. Their
values are chosen as follows: 𝑛𝑥 = 10, 000, 𝑛𝑦 =
𝑛𝑥 (10, 000), 10𝑛𝑥 (100, 000), or 50𝑛𝑥 (500, 000), 𝑛𝑐 varies
from 0.01𝑛𝑥 to 0.5𝑛𝑥, with step size of 0.001𝑛𝑥. 𝑠 is set to
2, 5, 10, and 𝑓 and 𝑚 are chosen to guarantee a minimum
privacy of at least 0.5.

Figure 4 shows the simulation results for [9], and Figure 5
shows the results for our novel scheme, both under 𝑠 = 2.
Since the simulations for 𝑠 = 5 and 𝑠 = 10 show similar
results, here we omit them. For each figure, there are
three plots, corresponding to the results of three groups
of simulations controlled by 𝑛𝑦 and 𝑛𝑥, where 𝑛𝑦 = 𝑛𝑥,
𝑛𝑦 = 10𝑛𝑥, and 𝑛𝑦 = 50𝑛𝑥, respectively. Each plot shows
the measured traffic volume 𝑛𝑐 (y-axis) with respect to the
real traffic volume 𝑛𝑐 (x-axis). The equality line 𝑦 = 𝑥 is
also drawn for reference. Clearly, the closer a point is to
the equality line, the better the measurement result. From
the first plot of Figure 4 and 5, one can observe that both
schemes achieve perfect performance when 𝑛𝑦 = 𝑛𝑥. The
reason for their comparable performance here is that our
novel scheme is almost the same as [9] when 𝑛𝑦 = 𝑛𝑥 = 𝑛
(hence 𝑚𝑦 = 𝑚𝑥 = 𝑚 = 𝑓 × 𝑛). However, when RSUs
with different traffic volume are involved, the measurement
accuracy of [9] decreases dramatically. In particular, when
𝑛𝑦 = 50𝑛𝑥, the results of [9] are quite inaccurate (the
measured results almost scatter everywhere in the third
plot of Figure 4). On the contrary, our novel scheme
stays accurate (the measured traffic volume closely follow
their real values in Figure 5). This superior performance
originates from our novel design of variable-length bit
arrays and the “unfolding” technique, which eliminates the
“unbalanced load factor” problem that [9] suffers.

VIII. CONCLUSION

In this paper, we design a novel scheme for privacy-
preserving point-to-point traffic volume measurement in
vehicular cyber physical systems, which achieves better
privacy for vehicles, more accurate measurement results,
and comparable computation overhead, compared with
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Fig. 4. Measurement accuracy of the scheme in [9]. The x-axis shows true traffic volume, and the y-axis shows measured traffic volume. 𝑠 = 2,
𝑛𝑥 = 10, 000, 𝑛𝑐 = [0.01𝑛𝑥, 0.5𝑛𝑥]. First Plot: 𝑛𝑦 = 𝑛𝑥; Second Plot: 𝑛𝑦 = 10𝑛𝑥; Third Plot: 𝑛𝑦 = 50𝑛𝑥.
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Fig. 5. Measurement accuracy of our novel scheme. The x-axis shows true traffic volume, and the y-axis shows measured traffic volume. 𝑠 = 2,
𝑛𝑥 = 10, 000, 𝑛𝑐 = [0.01𝑛𝑥, 0.5𝑛𝑥]. First Plot: 𝑛𝑦 = 𝑛𝑥; Second Plot: 𝑛𝑦 = 10𝑛𝑥; Third Plot: 𝑛𝑦 = 50𝑛𝑥.

the previous best scheme. Its applicability and superior
performance are demonstrated through mathematical and
numerical analysis, and extensive simulation results.
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