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Abstract—The persistent spread of a destination host is the
number of distinct sources that have contacted it persistently in
predefined t measurement periods. A persistent spread estimator
is a software/hardware component on a router that inspects
the arrival packets and estimates the persistent spread of each
destination. This is a new primitive for network measurement that
can be used to detect long-term stealthy malicious activities, which
cannot be recognized by the traditional superspreader detectors
that are designed only for “elephant” activities. However, the
challenge is to function such an estimator in fast but small
memory space (such as on-chip SRAM of line cards), in order
to keep up with the high speed of switching fabric for packet
forwarding. This paper presents an implementation that can use
very tight memory space to deliver high estimation accuracy: Its
memory expense is less than one bit per flow element in each
time period; Its estimation accuracy is over 90% better than
a continuous variant of Flajolet-Martin sketches; Its operating
range to produce effective measurements is hundreds of times
broader than the traditional bitmap. These advantages originate
from a new data structure called multi-virtual bitmap, which
is designed to estimate the cardinality of the intersection of an
arbitrary number of sets. We have verified the effectiveness of our
new estimator using the real network traffic traces from CAIDA.

Keywords—Network Traffic Measurement, Network Security,
Persistent Spread Estimation.

I. INTRODUCTION

Traffic measurement and classification in high-speed net-
works have many challenging problems [1], [2], [3], [4], [5],
[6], [7], [8]. In this paper, we study a new problem called
persistent spread estimation, which measures the number of
distinct elements that persist in a traffic flow for a predefined
number of time periods t.

As a motivation, we firstly introduce the concept of “flow
spread”. If treating all the packets sent towards a common
destination IP address as a flow, we have a per-destination flow.
We may also define a per-source flow as a stream of packets
sent from a common source IP. A flow may also be TCP flows,
P2P flows or other application-specific flows. For one flow,
its “spread” is the number of distinct elements in its packet
stream for one measurement period [7]. Here, “elements”
may be destination addresses, source addresses, ports, or even
keywords that appear in the packets. For example, for a per-
destination flow, if we treat the source addresses in the packet

stream as elements, then the flow’s spread is the number of
distinct source addresses that have contacted the destination IP.

The traditional superspreader detector is designed to iden-
tify the “elephant” flows whose spreads are abnormally large,
and can be applied to monitoring network anomalies [1], [2].
For instance, if there is a spread estimator that measures the
number of distinct destinations for each per-source flow, then
it can be used to detect network scanners (or infected hosts),
which have probed a large number of different destinations.
Another example is the spread estimator of per-destination
flows, which can be applied to detecting DDoS attack, in
which a malicious party uses an army of compromised hosts
to overwhelm a destination server.

However, the superspreader detector may fail to discover
malicious activities, if attackers suppress their traffic volumes
and spreads deliberately to escape the detection. We present
two examples. The first is the stealthy DDoS attack, whose
objective is not to overwhelm the target server by excessive
external requests, but to degrade its performance using a
smaller number of attacking machines. Since the number of
attackers is reduced to the scale of the number of legitimate
users, the gateway router cannot differentiate between the
two situations of “too many users” and “under attack”. The
second failure case is the stealthy address/port scanning, which
intentionally reduces its probing rate to avoid the detection as
superspreaders. Even with a reduced probing rate, after enough
time passes, the attacker can discover the system vulnerabilities
he may exploit. Or more deadly, he can use an army of
compromised nodes to perform coordinated low-rate scan and
increase the overall probing speed [9]. In summary, for all the
examples, the stealthy attacks exhibit a common traffic pattern:
There are a small set of source (destination) nodes that contact
a destination (source) node persistently for a long period.

We propose to detect the low-rate stealthy attackers by
measuring the persistent traffic they generate. This is possi-
ble since their long-term activities strongly differ from the
short-term traffic generated by legitimate users. According
to our analysis of real-world network traces from CAIDA
(Cooperative Association for Internet Data Analysis) [10], the
continuous interaction between legitimate users and their target
HTTP/HTTPS servers is normally shorter than twenty minutes.
In contrast, the traffic flows of the stealthy attacks demonstrate
a dramatically different pattern — in a per-destination or per-
source flow, there are an abnormally large number of persistent
elements (that stay in the flow for at least t time periods). An
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example is the stealthy DDoS attack. Since its objective is
to degrade the performance of target server in a desired long
period, it inevitably involves a certain number of machines
sending requests persistently to a target server, demonstrating
a traffic pattern that a large number of persistent elements
exist in a per-destination flow. Another example is the stealthy
network scan. Since the attacker wants to improve the probing
efficiency, he intentionally avoids the network segment scanned
in one period to overlap with the segment in another. Any
source node that avoids the overlapping for a long enough time
is probably an attacker that wants to probe the network. This
corresponds to a traffic pattern that a per-source flow contains
a negligibly small amount of persistent elements.

When implementing a persistent spread estimator, the key
challenge is to fit it into a small high-speed memory. Today’s
core routers forward most packets on the fast forwarding path
between network interface cards that bypasses CPU and main
memory. To keep up with such high speed of line cards for
packet forwarding, it is desirable to operate the estimator in
the fast but expensive, size-limited on-chip SRAM [2]. Con-
sidering that many other essential routing/security/performance
functions may also run from SRAM, it is critical to design the
estimator’s data structure as compact as possible. Moreover, it
is important for the estimator to use the tight space to support
a large operating range, in order to produce effective mea-
surements for elephant flows. In real networks, the persistent
spreads of flows are distributed in an extremely imbalance
manner: The persistent spread of some flows are likely to be
extraordinarily larger than the rest, which are called elephant.

In this paper, we propose an implementation of the persis-
tent spread estimator based on a data structure called multi-
virtual bitmaps. The size of on-chip SRAM space it requires
does not relate with the number of time periods t, but depends
on the number of flow elements that pass through a router in
only one time period. More precisely, in each time period, its
required size of SRAM is less than one bit per flow element.

Even given such limited space, our algorithm is able to
deliver high estimation accuracy. The evaluation results show
that our estimator is 90% more accurate than a continuous
variant of Flajolet-Martin sketches [5]. Such an improvement
comes from our observation that in real network traffic traces,
the continuous interaction of legitimate users with a web
server is pretty short in time duration, which is typically
less than twenty minutes. Hence, it is possible to filter the
traffic from the short-term behaviors of legitimate users, and
retain the long-term persistent traffic which may link with
stealthy DDoS attacks or network scanning. Moreover, the
estimation accuracy of our algorithm improves as the number
of measurement periods t grows, because it is able to filter
the short-term traffic of legitimate users more effectively. The
accuracy gain as t grows is a useful feature that allows a
network administrator to increase t arbitrarily to distinguish
persistent elements from normal transient traffic.

Our algorithm named multi-virtual bitmaps provides an-
other advantage that extends the operating range of producing
effective measurements by hundreds of times, as compared
with the traditional bitmap method, which allocates each flow
with an equal-sized and separated bitmap. In contrast, our
method allows different flows to share bits from a common bit
pool. By drawing bits randomly from the pool, an individual

flow constructs a virtual bitmap, for the estimation of its per-
sistent spread. Through bit sharing, large flows can “borrow”
bits from small flows to extend their effective operating range.
We have evaluated the performance of our proposed algorithm,
including memory expense, estimation accuracy and operating
range, by experiments based on real network traffic traces.

The rest of this paper is organized as follows. Section II
formulates the problem of persistent spread estimation. Sec-
tion III presents two naive solutions to motivate our algorithm,
which is elaborated in Section IV. In Section V, we analyzes its
bias and variance. Section VI enhances our solution based on
multi-virtual bitmaps, in order to expand the operating range
to deal with large flows. Section VII evaluates our proposed
algorithms by experimental results. Section VIII describes the
related work. Section IX draws the conclusion.

II. PROBLEM DEFINITION

In this section, we formalize our research problem. A
persistent spread estimator is a software/hardware module on
a gateway router (or a core router) to monitor the traffic flows
passing through the router. Here, a flow can be either a per-
destination flow or a per-source flow. An example of a per-
destination flow is illustrated in Fig. 1, where a server inside
an intranet is contacted by a set of external hosts. All the
packets sent from the external hosts to the server constitute a
per-destination flow, which is inspected by the gateway.
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Fig. 1: Persistent spreads can help detect stealthy DDoS attacks.

A per-destination (source) flow is all the packets towards
a common destination (source) address, and the flow elements
are the source (destination) addresses in the packet stream.
For a flow of interest, let Si be the set of flow elements
observed by the router in the ith measurement period. These
elements can be divided into two subsets. (1) The elements
in the set S∗ = S1 ∩ S2 . . . ∩ St are called the persistent
elements, which stay in the flow for t consecutive periods,
and t is a system parameter that is configurable by network
administrators. (2) The elements in the set Si − S∗ are called
the transient elements in the ith period. Typically, for a
transient element, its packets can be observed by the gateway
router only in a few periods, which is similar to a normal user
finishing his/her online transaction within one or two periods.
We do not deny the possibility that a small proportion of users
are heavy users that occupy more than two periods. We only
need their online time to be smaller than the number of periods
t, which makes them differ from the persistent elements.

Our paper is to design an algorithm that can efficiently
estimate the cardinality of persistent elements |S∗|, or called
persistent spread, for a flow of interest. This problem has many
important applications, and we list just a few. (1) For per-
destination flows, their persistent spreads can help to detect
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the stealthy DDoS attacks or the forging of server popularity.
An example of stealthy DDoS attacks is illustrated in Fig. 1,
where three attacking machines send requests repeatedly to the
server to downgrade its performance. We want to detect the
existence of these persistent attacking hosts from their number.
(2) For per-source flows, their persistent spreads can help
detect network scanning. Since a network scanner avoids the
redundant probing of the same network segment, its persistent
spread |S∗| is ultra low, while the number of destination
addresses |Si| it have contacted in each period is considerable.

For simplicity, we have assumed t consecutive time periods
and treat their intersection S∗ = S1 ∩S2 . . .∩ St as persistent
elements. Note that a router can also record the traffic in non-
consecutive periods and define their intersection (e.g., S1 ∩
S3 . . . ∩ S2t−1) as persistent elements, so that the attackers
can not predict the pattern how we detect malicious activities.

A precondition for persistent spreads to be useful is that
they are small in normal traffics, so that an abnormally large
measurement becomes an effective indication of stealthy at-
tacks. We verify this assumption by analyzing the real network
traffic traces downloaded from CAIDA [10]. These traces are
collected on January 17th, 2013 from a high-speed monitor
named equinix-sanjose, connected to a 10G Ethernet backbone
link. In these traces, we locate tens of server machines with
large spreads in single time period. In Table I, we list the traffic
pattern of four such servers which are not under attacks. In the
table, the length of one measurement period is configured to
ten minutes, and the number of periods t varies from one to
six. We investigate the impact of t on the persistent spread
|S∗| = |S1∩S2 . . .∩St|, when there are no persistent attacks.

TABLE I: Persistent spread decreases rapidly as the number
of periods grows, and each period lasts for ten minutes.

HTTP Server 224.243.38.27/80

Number of Periods 1 2 3 4 5 6

Persistent Spread 31255 3902 223 66 30 14

HTTP Server 50.13.250.2/80

Number of Periods 1 2 3 4 5 6

Persistent Spread 50003 578 100 37 16 7

HTTPS Server 224.243.38.27/443

Number of Periods 1 2 3 4 5 6

Persistent Spread 58478 6379 780 378 227 133

HTTPS Server 224.243.38.7/443

Number of Periods 1 2 3 4 5 6

Persistent Spread 55355 8616 1661 685 301 142

This table shows that, in normal traffic with no attacks, the
persistent spread reduces rapidly as t increases, and it becomes
negligibly small when t is at least three. Take the HTTP server
224.243.38.27/80 as an example. When the number of periods
grows to six (about an hour), the persistent spread decreases
to 14, which can be neglected if compared with the one-
period spread 31255. Such a phenomenon is not difficult to
understand, since very few persons would keep browsing the
same website for an hour without taking a break or switching to
another website. For HTTPS server 224.243.38.7/443, a similar
phenomenon can be found. When the number of periods is
six, the persistent spread is 142, a larger number than HTTP
servers. It shows that users are prone to stay online for longer

time if using HTTPS as the communication protocol. But 142
is still a negligibly small amount if compared with 55355 —
the spreads in one period.

We have tested other types of servers that use unfamiliar
ports. We find that when contacting chat or video servers,
users will stay much longer than on web servers. But the
continuous online time of legitimate users is still limited for
enjoying such services. Hence, if a measurement period is long
enough, it can contain a typical user’s continuous behavior.
Since the probability for a legitimate user’s online time being
significantly longer than the rest is negligibly small, when
the number of measurement periods t is sufficiently large, the
persistent spreads lasting for the t periods become negligible.
Therefore, an abnormally large persistent spread is quite likely
to be a good indicator for stealthy attacks.

Without loss of generality, we consider a per-destination
flow corresponding to the server dst, and we want to estimate
its persistent spread n∗ = |S∗|. We can alternate the role of
source and destination, and use the same estimator to measure
the persistent spread of a given source.

When implementing an estimator of persistent spreads, a
challenge is to operate on the fast on-chip SRAM of routers, in
order to keep up with the high speed of line cards in forwarding
packets. However, the on-chip SRAM of a line card is size-
limited (tens of megabytes typically), and it needs to be shared
by other critical functions — routing/scheduling/security/traffic
measurement. In this paper, we assume only one mega bits of
on-chip SRAM are allocated for persistent spread estimation.

III. MOTIVATION AND PRELIMINARIES

This section presents two straightforward solutions, to mo-
tivate our design based on bitwise AND of multiple bitmaps.

A. Hash Table Solutions

A naive solution is that a router records the set of source
addresses Si, 1 ≤ i ≤ t, that have contacted the server dst in
each time period. The set Si in the ith period can be stored
in the on-chip SRAM as a hash table. When the period ends,
Si can be downloaded to main memory for post-processing.
With a series of such sets S1, S2, . . ., St in main memory, we
can calculate their intersection, which contains the persistent
elements that last for t periods. The advantage of this solution
is the precise calculation of persistent spread |S1∩S2 . . .∩St|.

However, the solution has the shortcoming of high memory
cost. In the ith period, hash set Si is kept in on-chip SRAM;
when the period ends, Si is offloaded to main memory. In this
paper, we only consider the cost of precious on-chip SRAM,
which for this algorithm is O

(
(32 + 32) · max(|Si|)

)
bits,

where the first 32 means the length of an IPv4 address for one
flow element, the second 32 means the 32-bit pointer needed
by the chained hash table for each element, and max(|Si|) is
the largest spread in each time period. Therefore, the memory
cost is 64 bits per flow element, which is quite expensive.

In most cases, the exact values of persistent spreads are not
necessary, and their approximated values with bounded estima-
tion errors can suffice the requirement of traffic measurement.
To approximate a persistent spread, a method is to store the
short signatures of IP addresses into a hash table. For each IP
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address x, its signature is a hash value H(x) that is just k bits
long (k < 32). This reduces memory cost by multiple folds as
compared with the 32-bits IPv4 or 128-bits IPv6 addresses.

However, the enhancement by partial signatures owns two
inadequacies. Firstly, it is prone to underestimate the persistent
spreads: When two persistent elements are mapped to the same
hash bucket and are encoded by the same signature, they will
counted as one element. Secondly, its memory cost is still
O
(
(k + 32) · max(|Si|)

)
, where k is the length of a partial

signature which can be 4 or 8 bits, and 32 is the length of a
pointer needed by chained hash table. Hence, the memory cost
is still k + 32 bits per flow element in one period. Our vision
is to reduce memory cost to less than one bit per element, and
with such limited space, still render satisfactory accuracy.

B. Bitmap-based Method

We propose to adopt bitmap algorithm [11] for persistent
spread estimation. Let B be a bit array allocated for the flow
dst, called a bitmap. Its ith bit is denoted by B[i], 0 ≤ i < m.
Its number of bits m is configured on the scale of max(|Si|).
• At the beginning of the ith period, all the bits of array B

are initialized to zero. When the router receives a packet
〈src, dst〉 that is destined to the server dst, it categorizes
the packet to the flow dst, and maps the source address
src to the flow’s bitmap B to record the flow element. The
hash function H(src) decides which bit will be set in B.

B[H(src) mod m] := 1 (1)

Here, := is the assignment operator, and the hash function
H is implemented by MurMur3 hashing. Note that this
bitmap structure is “duplicate-insensitive”, i.e., duplicated
addresses will set the same bit and be filtered.

• At the end of the ith period, the router has recorded in the
bitmap B all the source addresses that have contacted the
destination server dst within this interval. We denote the
bitmap of the ith period by Bi. The router will download
Bi from on-chip SRAM to DRAM for post-processing.

Given a sequence of bitmaps B1, B2, . . . , Bt in main mem-
ory that have recorded the flow dst’s traffic for t consecutive
periods, our problem is to design an algorithm that can use
these bitmaps to estimate n∗ = |S1 ∩ S2 . . . ∩ St|. Here, the
persistent spread n∗ is the number of distinct elements that
persist through the t time periods and appear in all the bitmaps.

Bitwise OR. For this problem, a possible solution is to
calculate the union bitmap B1 ∨ B2 . . . ∨ Bt by bitwise OR,
and extract information from it about |S1∪S2 . . .∪St| to assist
the estimation of persistent spread (please search for inclusion-
exclusion principle). However, this solution has poor accuracy
when t is large. This is because the estimation accuracy of a
bitmap algorithm depends on the fill rate — the proportion of
bits in a bitmap that are set to one: The higher the fill rate, the
worse the estimation accuracy [11]. Since the fill rate of union
bitmap B1 ∨B2 . . . ∨Bt increases as t grows, any algorithm
based on the union will experience the accuracy degradation.
The accuracy loss as t value grows will prohibit network
operators to configure an arbitrarily large t, which is critical
for differentiating persistent elements from transient elements.

Bitwise AND. Instead of the union bitmap, our solution
is to calculate the intersection bitmap B∗ = B1 ∧ B2 . . . ∧
Bt by bitwise AND. As stated in Eq. (1), each flow element
picks a bit in Bi pseudo-randomly by hash function H . Hence,
a persistent element always sets the same bit in bitmap Bi,
irrelevant of the index i of a time period. If a persistent element
sets the jth bit in B1 to one, then in subsequent bitmaps, the
jth bit will be set to one. Hence, we probably can estimate the
number of persistent elements, by counting the bits that are “1”
in all the bitmaps B1, B2, . . . , Bt, or equivalently, the number
of “1” bits in the intersection bitmap B∗ = B1 ∧B2 . . .∧Bt.

While using the intersection bitmap B∗, the main difficulty
to achieve satisfactory estimation accuracy is the false positive
probability, which is the probability for a bit to be assigned
to “1” in each time period by different transient elements,
making the bit look as if it were set by a persistent element.
This phenomenon occurs mostly frequently when the bitmaps
B1, B2, . . . , Bt are overly dense with just a small proportion
of zero bits (especially when the number of periods t is small).
We will address this false positive issue in this paper.

IV. ESTIMATOR BASED ON INTERSECTION BITMAP

In this section, based on the intersection bitmap B∗, we
present an algorithm to estimate the cardinality of persistent
elements S∗ = S1∩S2 . . .∩St, for an arbitrary number of time
periods t. In a single period, putting the persistent elements
aside, other elements Si − S∗ are called transient elements,
which are generated by the comes and goes of normal users.
We will filter the short-term network traffic, and estimate the
number of persistent elements n∗ = |S∗|.

A. Analysis of Real Network Traces

Before proceeding to detailed analysis, we firstly verify our
assumption about rough independence of transient elements in
different measurement periods. The verification uses the traces
of real network traffic from CAIDA [10]. In the trace files, we
have identified tens of servers with low persistent spreads and
free from malicious attacks. Hence, for such servers, almost all
of their traffics can be regarded as transient elements due to the
intersection between normal users and servers. In Table II, we
have tested the inter-dependency of transient traffics, in two
arbitrary measurement periods. The subtable (a) is about an
HTTP server 224.243.38.27/80, and the subtable (b) is for an
HTTPS server 224.243.38.27/443. In both of them, the length
of a measurement period is configured to seven minutes, and
there is a spacing that lasts for three minutes between any two
adjacent periods, in order to reduce the chance of normal users’
activities crossing the border of two neighboring periods.

With six measurement periods, Subtable (a) lists the cardi-
nality of the intersection of two element sets Si and Sj for two
arbitrary periods i and j: When i = j, we show the spread |Sj |
of the jth period; When i > j, we are supposed to show the
intersected spread |Si∩Sj | of the two perioids, but we calculate

the ratio
|Si∩Sj |
|Sj |

instead, in order to give an impression of

how small the dependency between two periods. Subtable (a)
shows that, for any pair of non-neighboring periods, their
intersected spread is less than 1%, and hence they can be
approximated as independent. Subtable (b) demonstrates a
similar phenomenon, where the intersected spreads of two
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TABLE II: Weak dependency of normal traffics in different measurement periods, if large persistent flows are absent.

(a) HTTP Server 224.243.38.27/80

Two-period
Intersection: 1 2 3 4 5 6

1 22604

2 5.0% 24598

3 0.8% 4.2% 27561

4 0.4% 0.9% 4.2% 29426

5 0.5% 0.5% 0.9% 4.5% 29456

6 0.3% 0.5% 0.4% 0.8% 4.2% 30489

(b) HTTPS Server 224.243.38.27/443

Two-period
Intersection: 1 2 3 4 5 6

1 40205

2 3.2% 47119

3 2.0% 3.2% 48433

4 1.8% 1.9% 3.0% 60050

5 1.6% 1.7% 1.9% 3.4% 64332

6 1.7% 1.8% 1.8% 3.6% 3.9% 69356

periods are less than 4%. Hence, when contacting HTTPS
servers, although network users are more prone to be heavy
users that cross multiple periods, the assumption about rough
dependency between different time periods is still valid.

We have also analyzed the traffics of tens of other HTTP
and HTTPS servers. The evaluation results are similar: A
legitimate user’s continuous interaction with a website is pretty
short in duration. They only check out necessary information
from one website and don’t linger for long and jump to another
website. For the transient traffic they generated, there exists a
rough independence between different periods. There are two
key points of establishing such an independence. The first is to
configure an appropriate length of measurement periods (e.g.
larger than seven minutes), in order to let one period contain
a normal user’s interaction with a website. The second is to
add a decent spacing between neighboring periods (e.g., three
minutes), to reduce the chance of a user’s activity crossing
the borders of two periods. What we have accomplished is to
confine normal uses’ short-term behaviors within one period.
We mainly care about the long-term stealthy activities that span
multiple periods in order to degrade a website’s performance.

B. Persistent Spread Estimator

In this subsection, we present the formulas of our persistent
spread estimator. The inputs are a sequence of bitmaps B1, B2,
. . ., Bt, and their intersection bitmap B∗. There are two cases
for a bit in B∗ to be set to “1”:

1) it contains at least one persistent elements, or

2) it contains none of the persistent elements, but in each
time period, it contains at least one transient elements.

The probability of the first case is 1−P ∗, where P ∗ is the
probability for the bit in B∗ to contain no persistent elements.

P ∗ = (1− 1

m
)n
∗ ≈ e−

n∗

m (2)

Here, we have applied the approximation (1 − 1
m
)n ≈ e−

n
m

that works for large m value.

Let Pi be the probability for a bit of Bi to contain no
transient elements in the ith period. We have

Pi = (1− 1

m
)ni−n∗ ≈ e−

ni−n∗

m (1 ≤ i ≤ t), (3)

where ni − n∗ is the number of transient elements in the
ith period. Hence, the probability of the second case is
P ∗

∏
1≤i≤t(1 − Pi), or called the false positive probability.

Note that our modeling of the false positive probability
assumes the rough independence of transient elements at
different periods.

Let X∗
j is the event that the jth bit in B∗ is set to “1”.

The probability of X∗
j is

Pr{X∗
j } = (1− P ∗) + P ∗

∏
1≤i≤t

(1− Pi).

Let Z∗ be the proportion of bits in B∗ that remain zeros. We
have 1−Z∗ equals the arithmetic mean of m random variables:

1− Z∗ =
1

m
·
∑m−1

j=0
1X∗

j
, (4)

where 1X∗
j

is the indicator function of X∗
j , which equals one

when the event X∗
j happens. Since the bits in B∗ are mutually

independent, E(1−Z∗) = 1
m

∑m−1
j=0 E(1X∗

j
) = E(1X∗

j
). This

implies that the expected proportion of bits in B∗ that are ones
E(1 − Z∗) is equal to the probability Pr{X∗

j }. Hence,

E(1− Z∗) ≈ (1− P ∗) + P ∗
∏

1≤i≤t
(1− Pi). (5)

By multiplying both sides of Eq. (5) by (P ∗)t−1, we have

(P ∗)t−1E(Z∗) ≈ (P ∗)t −
∏

1≤i≤t
(P ∗ − P ∗Pi).

Combining (2) and (3), we have the following approximation.

Pi ≈ e−
ni−n∗

m = e−
ni
m / e−

n∗

m ≈ E(Zi) / P
∗

Applying the approximation, we have

(P ∗)t−1E(Z∗) ≈ (P ∗)t −
∏

1≤i≤t

(
P ∗ − E(Zi)

)
. (6)

Since 1 − Z∗ is the arithmetic mean of m independent
random variables as shown in Eq. (4), according to the
central limit theorem, Z∗ approximates a Gaussian distribution.
Its variance is inversely proportional to the bitmap size m,
which have been proved in Appendix A. Hence, when m is
sufficiently large (e.g., a few thousands), we can substitute the
mean value E(Z∗) in (6) by an instance value Z∗ without
producing significant estimation error. By a similar reason, we
can replace E(Zi) by an instance value Zi. Therefore, we have

(P̂ ∗)t−1Z∗ ≈ (P̂ ∗)t −
∏

1≤i≤t
(P̂ ∗ − Zi). (7)

Here, an estimation of P ∗ is denoted by P̂ ∗ with an upper hat.

By observing bitmaps B∗ and Bi, we can know Z∗ and
Zi, respectively. Hence, there is only one unknown variable
P̂ ∗ in Eq. (7). We can solve this equation for P̂ ∗, and then

use the relation P ∗ ≈ e−
n∗

m in (2) to obtain an estimation n̂∗.
In the following, we present the formula of the estimation n̂∗

for different number of periods t.

135



• When t = 1, equation (7) can be simplified as Z∗ = Z1.
This is natural because we have B∗ = B1 when there is a
single period. Since t = 1, all the flow elements in bitmap
B∗ are persistent elements. We can estimate their number
from the proportion of bits in B∗ that are zeros. Hence,

n̂∗ = −m ln(Z∗) . (8)

• When t = 2, equation (7) becomes

0 ≈ (P̂ ∗)2 − (P̂ ∗ − Z1)(P̂ ∗ − Z2) − P̂ ∗Z∗

≈ (Z1 + Z2 − Z∗)P̂ ∗ − Z1Z2.

Hence, we have P̂ ∗ ≈ Z1Z2

Z1+Z2−Z∗
. Combining it with P ∗ ≈

e−
n∗

m , we can estimate the persistent spread as

n̂∗ = −m ln(P̂ ∗) ≈ −m ln
( Z1Z2

Z1 + Z2 − Z∗

)
= m ln(Z1 + Z2 − Z∗)−m ln(Z1)−m ln(Z2). (9)

• When t = 3, equation (7) can be converted to

0 ≈
( ∑

1≤i≤3

Zi − Z
∗
)
(P̂ ∗)2 −

( ∑
1≤i<j≤3

ZiZj

)
P̂ ∗ +

∏
1≤i≤3

Zi.

We firstly solve the above equation for P̂ ∗, and then use

the relation P ∗ ≈ e−
n∗

m to estimate persistent spread n∗ as

n̂∗ = m ln

(B −
√
B2 − 4A

( ∑
1≤i≤3

Zi − Z∗
)

2A

)
, (10)

where

A =
∏

1≤i≤3
Zi, B =

∑
1≤i<j≤3

ZiZj.

• When t ≥ 4, because the order of Eq. (7) about P̂ ∗ grows
to at least three, it is complicated to obtain a closed-form
estimator. Hence, we propose to solve Eq. (7) by numerical
root-finding algorithms, e.g., Newton-Raphson method.
Firstly, we generate an initial guess of P̂ ∗, using P̂ ∗ ≈
Z∗. This approximation is obtained by dropping the false
positive probability P ∗

∏
0≤i≤t(1− Pi) in Eq. (5).

Secondly, we optimize the current value of P̂ ∗, by invoking
the following equation iteratively:

P̂ ∗ = P̂ ∗ − z(P̂ ∗)

z′(P̂ ∗)
,

where

z(P̂ ∗) = (P̂ ∗)t − (P̂ ∗)t−1Z∗ −
∏

1≤i≤t
(P̂ ∗ − Zi),

z′(P̂ ∗) = t (P̂ ∗)t−1 − (t− 1)(P̂ ∗)t−2Z∗ −(∏
1≤i≤t

(P̂ ∗ − Zi)
)(∑

1≤j≤t

1

(P̂ ∗ − Zj)

)
.

Thirdly, when the optimization process converges, we use
the best P̂ ∗ to derive an estimation of the persistent spread.

n̂∗ = −m ln P̂ ∗ (11)

In summary, for an arbitrary t value, we have presented an
equation to calculate the estimation of persistent spread n̂∗. In

order to shield the difference in the estimation equations of
n∗, we define a unified function ft in the following theorem.

Definition 1 (Bitmap-based Persistent Spread Estimator):
Given an arbitrary number of periods t (t ≥ 1), a unified
estimator function to estimate the persistent spread is

n̂∗ = ft
(
m,Z∗, {Zi}

)
, (12)

where Z∗ is the proportion of bits of the intersection bitmap
B∗ that are zeros, Zi is the zero ratio of bitmap Bi in the ith
period (1 ≤ i ≤ t), and m is the size of each of the bitmaps.
When t is 1, 2, 3 or at least 4 respectively, the function ft
corresponds to the Equations (8) (9) (10) or (11).

V. ANALYSIS OF BITMAP-BASED ESTIMATOR

In this section, we analyze the bias and variance of our
intersection bitmap-based estimation n̂∗ in Definition 1.

Firstly, we prove that the estimation n̂∗ is asymptotically
unbiased when the bitmap size m is sufficiently large. We
know that the zero ratio Z∗ of bitmap B∗ approximates a
Gaussian distribution, because Z∗ is the arithmetic mean of a
large quantity of independent random variables as in Eq. (4).
For a similar reason, the zero ratio Zi of bitmap Bi approxi-
mates a Gaussian distribution. From (7), we know that P̂ ∗ is a
polynomial function of Z∗ and Zi, with continuous first partial
derivatives. According to multivariate delta-method [12], when
the bitmap size m is enough large, P̂ ∗ approximately follows
a Gaussian distribution, and its expected value E(P̂ ∗) satisfies(
E(P̂ ∗)

)t−1
E(Z∗) ≈ (

E(P̂ ∗)
)t −∏

1≤i≤t

(
E(P̂ ∗)− E(Zi)

)
,

which is obtained by substituting Z∗ by E(Z∗), and Zi by
E(Zi) in Eq. (7). Combining the above formula with Eq. (6),

we can derive that E(P̂ ∗) ≈ P ∗. Therefore, P̂ ∗ approximates a
Gaussian distribution whose expected value is P ∗. Further, we
have n̂∗ is a function of P̂ ∗ as n̂∗ = −m ln(P̂ ∗). From delta-
method [12], n̂∗ approximates a Gaussian distribution with

E(n̂∗) ≈ −m ln(E(P̂ ∗)) ≈ −m ln(P ∗) = −m ln(e−
n∗

m ) = n∗.

Therefore, the persistent spread estimation n̂∗ is asymptotically
unbiased, when the bitmap size m is sufficiently large.

Secondly, we analyze the variance of estimation n̂∗ in the
following theorem using the tool of Cramér-Rao bound.

Theorem 1 (Variance of Multi-period Estimators): For
our persistent spread estimator in Definition 1, its variance is

V ar(n̂∗) ≈ n∗

ρ∗
· 1

(1− P̃ )2
(

1
P̃
+ 1

1−P̃

) , (13)

where ρ∗ = n∗

m
is the density of persistent elements, SNRi =

n∗

ni−n∗
is the signal-to-noise ratio in the ith period, and

P̃ =
(
1− e−ρ∗

)
+ e−ρ∗

∏
1≤i≤t

(
1− e

−ρ∗ 1

SNRi

)
.

Proof: Please check Appendix B for a proof.

From Theorem 1, we derive the standard estimation error as√
V ar(n̂∗)

n∗
=

1√
m

/√
(ρ∗)2 · (1− P̃ )2

(
1
P̃
+ 1

1−P̃

)
.
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The relative standard error is affected by four factors: (1) den-
sity of persistent elements ρ∗, or call it persistent load factor,
(2) the number of bits m, (3) signal-to-noise ratio SNRi, and
(4) the number of time periods t. We analyze their impacts by
plotting the relative error against these factors in Fig. 2.
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(a) For each ith period, SNRi = 0.1.
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(b) For each ith period, SNRi = 1.

Fig. 2: Accuracy of persistent spread estimation with n∗ = 1000.

Fig. 2 shows that the estimation accuracy improves as the
increase of signal-to-noise level SNRi, which has been defined
as persistent spread n∗ divided by the cardinality of transient
elements ni − n∗ in the ith period. Subfigure (a) configures
the SNRi as low as 0.1, and the accuracy ranges between
3% and 40+% depending on the load factor. In contrast,
subfigure (b) increases SNRi by ten times to 1. Hence, the
accuracy improves and fluctuates between 3% and 6%.

We focus on Fig. 2(b), and it tells us that the estimation
accuracy improves as the number of periods t increases. Given
more bitmaps B1, B2, . . . , Bt, our persistent spread estimator
can to reduce the false positive probability P ∗

∏
1≤i≤t(1−Pi),

and better filter the transient contacts. This plot also shows that
the estimation accuracy deteriorates as the density of persistent
elements ρ∗ increases. The explanation is that our estimation
relies on the proportion of zero bits in bitmap B∗. If the density
of persistent elements ρ∗ grows, B∗ will become crowded, and
when ρ∗ exceeds a bound, the proportion of zero bits in B∗

approach zero, which can not be used for accurate estimation.

VI. MULTI-VIRTUAL BITMAP ESTIMATOR

Motivation. In the design of our previous bitmap-based
estimator, each flow is allocated with a bitmap to record its
elements in a time period, and all the bitmaps are separated and
with equal size. Because bitmap algorithm only supports the
counting of cardinalities linear to bitmap size [11], this design
best fits the case that the flow spreads uniformly distribute.
However, the distribution of flow spreads is extremely unbal-
anced in real networks, especially in core networks. We plot a
distribution of flow spreads in Fig. 3, which is obtained from
real-world traffic traces from CAIDA [10]. In subfigure (a)
where the measurement duration is set to one minute, there are
about a million of flows whose spreads are smaller than 100. In
contrast, only a few hundreds flows have their spreads larger
than 1000. Such an unbalanced distribution of flow spreads
can also be witnessed in subfigure (b) where the measurement
duration extends to twenty minutes. Throughout the paper, we
use the term mouse flows to refer to the flows with spreads less
than one hundred, and taking the majority of all flows. The
term elephant flows is used for the flows with extraordinarily
larger spreads than the rest. They typically correspond to the
server machines with a large number of concurrent users.
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(a) Duration = 1 minute.
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(b) Duration = 20 minutes.

Fig. 3: Flow spread distribution by analyzing CAIDA traces.

Due to the uneven distribution of flow spreads, if allocating
all the flows with separated and equal-sized bitmaps, it incurs
a significant waste of precious space of on-chip SRAM, which
we explain as follows. Since the bitmap method can only count
cardinalities linear to bitmap size [11], we have to configure
the bitmap size large enough and proportional to the spreads
of elephant flows. Otherwise, these bitmaps, when receiving
too many elements from elephant flows, have most their bits
to be “1”, which severely degrades the estimation accuracy.
However, we can not predict which flows are elephant flows,
and to guarantee the estimation accuracy, we have to allocate
all the flows with equal-sized bitmaps that are large enough to
accommodate the elephant flows. Therefore, for mouse flows
with small spreads, their bitmaps are inevitably sparse with
most bits being “0”, which causes a significant waste of the
expensive SRAM space, especially considering the fact that
the majority of flows witnessed by the router are mouse flows.
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Fig. 4: Multiple virtual bitmaps share bits in a physical bitmap.

To mitigate the memory waste due to uneven distribution of
flow spreads, we adopt the idea of virtualization: the bitmaps
of all the flows are no longer separated but share a common bit
pool, which is called the physical bitmap. Then, the bitmap of
each flow draws its bits pseudo-randomly from the common
bit pool, which is called a virtual bitmap since it does not
physically exist. As illustrated in Fig. 4, the bits of a virtual
bitmap uniformly distribute in the physical bitmap. For all the
virtual bitmaps, we configure a unified size that is large enough
to accommodate elephant flows. Through the bit sharing in
physical bitmap, the elephant flows can “borrow” bits from
the under-used virtual bitmaps of mouse flows. The physical
bitmap is denoted by M , which is an array with u bits
allocated from on-chip SRAM. We will describe in detail how
to utilize this data structure to estimate the persistent spreads
simultaneously for multiple flows.

The idea of virtual bitmaps sharing a physical space has
been partially discussed in prior literature [7]. However, they
concentrate on estimating the cardinality of a single set. In
contrast, we estimate the cardinality of intersection of multiple
sets, which are collected in different time domains.
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A. Physical Bitmap Encoding

In each time period, the router will observe a large number
of traffic flows. For each flow, the router stores its elements into
the physical bitmap M , which we explain in details as follows.

Whenever a packet arrives whose header is 〈src, dst〉, the
router uses its destination address to categorize it to the flow
dst, and treats its source address src as an element of flow
dst, which is mapped to the flow’s virtual bitmap. Assume the
jth bit in the virtual bitmap has been set to one by the element:

j = H(src) mod m, (14)

where H is a hash function and m is the size of virtual bitmaps
which is sufficiently large to accommodate an elephant flow.

According to the bit sharing scheme in Fig. 4, the jth (0 ≤
j < m) bit in the virtual bitmap will be drawn from or mapped
to the ith (0 ≤ i < u) bit in the physical bitmap:

i = Hdst(j) mod u,

where Hdst is a hash function used by the flow dst for bit map-
ping. It can be implemented from a master hash function H :

Hdst(j) = H(j ⊕ dst), (15)

where ⊕ is bitwise XOR or string concatenation to combine
two key values j and dst. Applying the equation (14), we have

H(j ⊕ dst) = H
(
(H(src) mod m)⊕ dst

)
In summary, when the packet 〈src, dst〉 arrives, the fol-

lowing bit in the physical bitmap M will be set to one:

M [i] := 1,

where i = H
(
(H(src) mod m)⊕ dst

)
mod u.

When the time period terminates, the physical bitmap M
will be downloaded from on-chip SRAM to main memory.
Assume we have t physical bitmaps, denoted by M1, M2, . . . ,
Mt, which correspond to t consecutive time periods.

B. Persistent Spread Estimation

In this subsection, we describe how to use the sequence of
physical bitmaps M1, M2, . . . , Mt, to estimate the persistent
spread for a particular flow dst. An intuitive method is that,
from an arbitrary physical bitmap M , we can extract a virtual
bitmap B that belongs to the flow dst.

B =
〈
M [Hdst(0)], M [Hdst(1)], . . . , M [Hdst(m− 1)]

〉
Here, we use the relation that the jth (0 ≤ j < m) bit in virtual
bitmap has been mapped to the ith bit in physical bitmap as
i = Hdst(j) mod u, and we omit mod u for simplicity. Since
we have t physical bitmaps M1, M2, . . . , Mt, we can extract t
virtual bitmaps, noted as B1, B2, . . . , Bt. Then, we can apply
our previous algorithm in Section IV-B, to filter the transient
elements and estimate the number of persistent elements hiding
in the virtual bitmap of flow dst.

However, this method has the problem of overestimating
the persistent spread of flow dst. In the flow’s virtual bitmap,
the persistent elements may not belong to flow dst alone. Since
the virtual bitmap of a flow draws bits from a common bit

pool that is shared with other flows, the bits in the virtual
bitmap may be assigned by other flows to “1”. If some of the
“1” bits happen to be set by persistent elements coming from
other flows, then these bits will be set to “1” in all the virtual
bitmaps B1, B2, . . . , Bt in t time periods, which causes the
overestimation of persistent spread of the flow dst.

It may appear that transient elements from other flows may
also cause overestimation, since they increase the number of
elements ni that are contained in the virtual bitmap Bi and
aggravate the false positive probability. However, when we
use zero ratio of Bi to estimate the number of elements in
the virtual bitmap of ith period, the estimation result already
counts the transient elements coming from other flows. Hence,
when we estimate the number of persistent elements in virtual
estimator of flow dst, there won’t be any overestimation. The
major source of overestimating flow dst’s persistent spread is
the persistent elements from other flows.

Our solution is to compensate the estimation bias due to
persistent elements coming from other flows. Let n∗ be the
number of persistent elements that belong to flow dst, n∗m
be the number of persistent elements in virtual bitmap of
flow dst, and n∗u be the number of persistent elements in
physical bitmap M . Our basic idea is that the total number
of persistent elements from other flows is n∗u − n∗, and they
uniformly distribute in the entire physical bitmap, which are
noises. Let X be the number of noise elements that are mapped
to a bit of physical bitmap M . We know that X follows a
binomial distribution: X ∼ Binom(n∗u−n∗, 1

u
). The expected

number of noises elements mapped to a virtual bitmap equals
to E(mX), where m is the number of bits in a virtual bitmap.

E(n∗m − n∗) = E(mX) = mE(X) =
m

u
(n∗u − n∗)

According to the laws of large numbers in probability theory,
when the number of independent variables m is large enough,

the variance V ar(
n∗m−n∗

E(n∗m−n∗) ) approaches to zero. Hence, when

the number of trials m is large, the expected value E(n∗m−n∗)
can be approximated by its instance value n∗m − n∗. Then,

n∗m − n∗ ≈ E(n∗m − n∗) =
m

u
(n∗u − n∗).

By conversion, we have an estimator of persistent spread n∗.

n∗ ≈ um

u−m
(
n∗m
m
− n∗u

u
).

In summary, our estimator can be divided into three steps.

• First, we estimate n∗m — the number of persistent elements
that are mapped to the virtual bitmap of flow dst:

n̂∗m = ft
(
m,Z∗m, {Zm,i}

)
where ft is the persistent spread estimator in (12), m is the
number of bits in virtual bitmaps, Zm,i is the proportion of
bits in the ith virtual bitmap Bi that are zeros, and Z∗m is
the ratio of bits in B∗ = B1 ∧B2 ∧ . . .∧Bt that are zeros.

• Second, we estimate n∗u — the number of persistent
elements in physical bitmap:

n̂∗u = ft
(
u, Z∗u, {Zu,i}

)
,

where ft is the persistent spread estimator in (12), u is the
number of bits in physical bitmap, Zu,i is the proportion
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of bits in physical bitmap Mi that are zeros, and Z∗i is the
ratio of bits in M∗ = M1 ∧M2 ∧ . . . ∧Mt that are zeros.

• Third, we compensate the positive bias in n̂∗m due to noise
persistent elements from other flows, and we obtain the un-
biased estimation n̂∗ below, for flow dst’s persistent spread.

n̂∗ =
um

u−m

( n̂∗m
m
− n̂∗u

u

)
(16)

VII. SIMULATION EVALUATION

In this section, we use simulation to evaluate the estimators
we have proposed: One is based on the intersection of bitmaps,
and the other is the multi-virtual bitmaps. The goal of this
paper is to design an estimator that is able to use the tight
space on on-chip SRAM to deliver high accuracy. Hence, in
our experiments, the memory cost, when averaging over all
elements appearing in an arrival packet stream, is less than
1 bit per element. The only related work that can work in
such tight space is a method based on a continuous variant
of Flajolet-Martin sketches, named FMSK for short [5]. We
will compare our methods with FMSK in estimation accuracy.
We will show the impact of the number of periods t and the
signal-to-noise ratio SNRi on estimation accuracy, which is
not quantified by previous works. We will also compare our
methods with the aforementioned hash table method storing
partial signatures (call it partial hash for short), to show the
power of our methods in compressing memory cost.

A. Experiment Setup

We simulate the real-world network traffic using the fol-
lowing parameters. The number of flows that can be observed
by the gateway router is configured to 1024, which simulates a
small server farm. For a flow, the average number of elements
in the ith (1 ≤ i ≤ t) period is configured to 1200, which
simulates multiple users concurrently accessing a single server.
Some of the flow elements are persistent elements, which exist
throughout the t periods, and the rest are transient elements.
In each period, we control the ratio of persistent elements to
the transient elements by signal-to-noise ratio SNRi. For these
transient elements, we assume that 90% of them stay within
one period, and the remaining 10% are heavy users that cross
the boundaries between periods.

For fair comparison, we allocate the same size of memory
for partial hash, FMSK and our methods. As listed in Table III,
each of the three method is given roughly 1.2M bits SRAM,
which means each flow gets 1144 bits on average for its
spread estimation. FMSK divides these bits into thirty five float
numbers, each of which is 32 bits long and can perform the
counting independently. Their stochastic averaging is treated
as the final estimation. Our bitmap method uses these bits as
a bitmap to record the flow elements (whose expected number
is 1200). Our multi-virtual bitmap method does not separate
the allocated SRAM space into equal-sized bitmaps. It instead

lets the virtual bitmaps to share the space. The length of each
virtual bitmap is configured as large as 6k bits to accommodate
elephant flows. For the most basic method based on partial
hashing, we give it 9.1M bits SRAM to show the power of our
methods (only having 1.2M bits) in compressing memory cost.

B. Estimation Accuracy and Operating Range

In this subsection, we compare the four methods (listed
in Table III) in estimation accuracy and operating range. The
comparison results are presented in Figures 5, 6, 7 and 8.

Fig. 5 shows that, although the partial hash method is given
9.1M bits memory that is eight times larger than other methods,
its estimation is negatively biased. This is because its operating
range is merely 24 × 32 = 512, where 4 is the size of partial
signature stored in one bucket and 32 is the number of buckets
allocated for one flow. When the persist spread exceeds this
range, it is severely underestimated as depicted in Fig. 5.

Fig. 6 states that FMSK can use only 1.2M bits memory
to generate unbiased estimations. However, its accuracy is far
from satisfactory. This is because FMSK, similar to Flajolet-
Martin sketches [13], have the problem of slow start: it has low
inaccuracy when the cardinality to be estimated is on the scale
of bits allocated, which is about 1120 bits in the simulation. We
will explain later that FMSK has another inadequacy that its
accuracy degrades when the number of time periods t grows.

Fig. 7 shows that our bitmap method, when given the same
memory of 1.2M bits, can improve estimation accuracy signif-
icantly as compared with FMSK. Its shortcoming however is
its small operating range: When the persistent spread exceeds a
point (about 2000 in Fig. 7), its estimations are strongly biased.
This is because, for elephant flows, their bitmaps will receive
too much elements, which set most of their bits to one and
cause severe bias. This shortcoming can be overcome by our
multi-virtual bitmap method, which permits elephant flows to
borrow bits from small flows, to extend their operating range.
In Fig. 8, this method provides accurate estimations even for
persistent spreads as large as 10,000. This is because the size
of a virtual bitmap (6k bits) is configured five times larger than
the size of a bitmap (1144 bits), as shown in Table III.

C. Impact of Time Period t on Accuracy

An interesting feature of our multi-virtual bitmap method
is that its estimation accuracy improves when the number of
time periods t increases. Fig. 8 depicts the case of t = 2 in the
leftmost subfigure, and illustrates t = 10 in the rightmost. It is
a useful feature that permits network operators to set arbitrarily
large t values to differentiate persistent and transient elements.

In contrast, the accuracy of FMSK declines when t value
grows, as illustrated Fig. 6. When t grows to 10, its estimation
error becomes even larger than 50%. This is because the FMSK
method estimates the persistent spreads from the fraction of the

TABLE III: Settings of Algorithm Parameters

Algorithm Partial Hash FMSK Bitmap Multi-virtual Bitmap

Memory ≈ 9.1 Mbit ≈ 1.2 Mbit ≈ 1.2 Mbit ≈ 1.23 Mbit
Parameters Flow signature = 8 bit, buckets per

flow = 32, source signature = 4 bit.
For a flow, number of buckets = 35. In one
bucket, an FMSK = 32 bit.

For one flow, the size of
each bitmap = 1144 bit.

virtual bitmap size = 6 kbit,
physical bitmap size = 1.23 Mbit.
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Fig. 5: Persistent spread estimation of partial signature, with SNRi = 1. From left to right, number of periods t = 2, 3, 4, 10.
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Fig. 6: Persistent spread estimation using FMSK algorithm, with SNRi = 1. From left to right, number of periods t = 2, 3, 4, 10.
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Fig. 7: Persistent spread estimation using bitmap algorithm, with SNRi = 1. From left to right, number of periods t = 2, 3, 4, 10.
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Fig. 8: Persistent spread estimation using multi-virtual bitmap algorithm, with SNRi = 1.
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Fig. 9: Persistent spread estimation using FMSK method, with SNRi = 0.4. From left to right, number of periods t = 2, 3, 4, 10.
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Fig. 10: Persistent spread estimation using multi-virtual bitmap algorithm, with SNRi = 0.4.
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intersected set to the union set of all t periods:
|S1∩S2...∩St|
|S1∪S2...∪St|

. As

t value grows, the size of union set |S1∪S2 . . .∪St| expands,
which reduces the fraction of intersected set and degrades the
estimation accuracy. Our bitmap method is different. It detects
the existence of a persistent element from the phenomenon that
a bit is set to “1” in all the bit arrays B1, B2, . . ., Bt. The
false positive probability, which the probability that such a bit
is occupied only by transient elements, decreases as t value
grows, which is the last term P ∗

∏
1≤i≤t(1− Pi) in Eq. (5).

D. Impact of Signal-to-Noise Ratio SNRi on Accuracy

We present another set of simulation results in Fig. 9 and
10, to study the impact of signal-to-noise ratio on estimation
accuracy. The ability of tolerating heavy noise is important,
which makes the designed estimator more flexible to use in
practice. First, we evaluate the performance of FMSK, by
comparing Fig. 6 and 9 which configure the signal-to-noise
ratio to 1 and 0.4, respectively. They show that the accuracy
of FMSK degrades severely as the noise level increases. Its
estimation even becomes biased in the last subfigure of Fig. 9.
Second, we evaluate the noise toleration ability of our multi-
virtual bitmap method, by comparing Fig. 8 and 10 which
configure the signal-to-noise ratio to 1 and 0.4, respectively.
The two figures show that the accuracy of our method also
degrades, which is consistent with the analysis results in Fig. 2.
However, the degree of degradation is pretty modest, and our
method can still render satisfactory estimation accuracy when
the signal-to-noise ratio is only 0.4 in Fig. 10.

VIII. RELATED WORK

For network traffic measurement, an important branch is
passive measurement techniques, which use built-in compo-
nents of a router or switcher to silently watch the traffic as it
passes by. The traversed packets, according to certain fields in
the packet header, can be classified to different categories, each
of which is called a flow. For an individual flow, several kinds
of measurements can be taken, including the flow size (i.e., the
number of packets or bytes or occurrences of certain events in
one measurement period) [6], the flow spread (i.e., the number
of distinct flow elements) [3], [4], [7]. We have proposed
to estimate the flow’s persistent spread (i.e., the number of
distinct elements that persist through t time periods), which
can be used to detect the long-term stealthy network activities
in the background of transient behavior of legitimate users.

Our problem of persistent spread estimation can be applied
to detecting stealthy network activities that endure for long
periods, e.g., stealthy DDoS attacks, stealthy network scan, and
server popularity forging. For this problem, related work exists
that detects the stealthy network scan [9]. It however works in
spatial domain and detects the presence of a set of hosts that
connect to a sufficiently large number of unique destinations
within a given time window. In contrast, we detect the network
scan from their traffic in temporal domain, and check whether
a source node probes different network sections at different
time windows. Moreover, our work is a generalized primitive
that can detect many other kinds of stealthy activities.

The challenge is the tight constraint on available memory
per flow, due to the limited size of on-chip SRAM on line
cards and the presence of a large number of flows that share

the memory. Many estimators, proposed by previous work
for taking per-flow measurement [3], [4], [5], allocate each
flow a separated equal-sized data structure. They ignore that
flow spreads are extremely imbalanced in real network traffic:
Some flows are “elephant flows” whose spreads are thousands
of times larger than those of small flows. The counting data
structures of elephant flows, due to the injection of too many
elements, may become overly dense and have poor estimation.
Hence, it is necessary to extend the operating range of counting
data structure. There are modern cardinality estimators such as
FM sketches [13] and HyperLogLog [14], which appears to be
able to handle the elephant flows. However, the accuracy of
these estimators depends on the space given. When too many
flows exist, each estimator will receive very limited memory
on average, which causes accuracy degradation.

Our design is to allow elephant flows borrow memory from
small flows, in order to improve their estimation accuracy
and extend operating range, To realize the bit sharing among
different flows, we construct a virtual bitmap for each flow
whose bits uniformly distribute in the overall allocated space
(see Fig. 4). Although this idea of virtual bitmap has been
discussed by literature [7], [8], their purpose is to estimate the
spread of each flow, and only deal with one virtual bitmap for
each flow. In contrast, we consider t virtual bitmaps together
(collected in t time periods), and estimate their intersection,
i.e., the number of elements that persist through the t periods.

For the problem of persistent spread estimation, an impor-
tant design choice is which data structure should be adopted to
record per-flow information. The paper in [5] uses a continuous
variant of Flajolet-Martin sketches. We have chosen the well-
known bitmap [11], out of two considerations. According to a
comparison work in [15], bitmap structure is able to achieve
higher accuracy than FM sketches and HyperLogLog, if given
enough memory. Moreover, bitmap structure, if enhanced by
our multi-virtual bitmaps, can extend the operating range suf-
ficiently large to handle the elephant flows in our application.

IX. CONCLUSION

In this paper, we have presented a new primitive for
passive network traffic measurement, called persistent spread
estimation, which can help to detect long-term stealthy net-
work activities in the background of short-term activities of
legitimate users. To solve this problem in tight memory space,
this paper has presented a compact data structure called multi-
virtual bitmaps, which is suitable to function in the size-limited
on-chip SRAM of high-speed routers. The simulation shows
that our estimator can use small memory of less than 1 bit per
element, to provide satisfactory accuracy and operating range.

When compared with previous work, our estimator brings
two key advantages. Its estimation accuracy improves as the
number of measurement periods increases, because our method
can more effectively filter the short-term behavior of legitimate
users. Its operating range of producing effective measurements
has been extended if compared with bitmap method. The latter
benefit originates from our data structure named multi-virtual
bitmaps, which permits elephant flows to “borrow” bits from
mouse flows by sharing bits in a common bit pool. (Due to bit
sharing among different flows, persistent elements may come
from other flows and incur positive estimation bias, and we
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have proposed a method to compensate it.) These advantages
have been verified by both analysis and experimental results.
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APPENDIX A
BIAS ANALYSIS OF BITMAP-BASED SPREAD ESTIMATOR

We prove that our bitmap-based estimator ft in Definition 1
is asymptotically unbiased. The estimator ft is obtained in
Section IV by solving the following equation set, which has
t+ 1 equations and t+ 1 unknowns (i.e., P ∗ and Pi).

E(Zi) = P ∗Pi (1 ≤ i ≤ t)

E(Z∗) = P ∗ − P ∗
∏

1≤t≤t
(1− Pi)

Getting P ∗ by solving the above equation set can be regarded
a variant of maximum likelihood estimation. In the process,
the only operations that will produce estimation bias are
the replacement of expectations E(Zi) and E(Z∗) by the
observations Zi and Z∗. We prove that, when the bitmap size
m is large enough, the replacement produces negligibly small
error, and the estimator ft thus is asymptotically unbiased.

In bitmap Bi of the ith period, the number of zero bits
mZi follows binomial distribution, since different bits are
mutually independent roughly. This binomial distribution can
be approximated as Gaussian distribution, when the array size
m is sufficiently large [11]. For this Gaussian distribution, its

mean value E(mZi) is me−
ni
m , and its variance is

V ar(mZi) = me−
ni
m (1− (1 + ni

m
) e−

ni
m ).

Then, we know that the variance V ar(Zi) approaches zero
when m is sufficiently large. For similar reasons that the zero
ratio Z∗ is some kind of stochastic averaging in bitmap B∗,
the variance V ar(Z∗) approaches zero asymptotically, whose
proof is omitted in this paper due to limitations of space.

APPENDIX B
VARIANCE OF BITMAP-BASED SPREAD ESTIMATOR

We prove the estimator variance in Theorem 1. The likeli-
hood function of persistent spread n∗ using observation Y ∗ is

L(n∗ |Y ∗) = (1− P̃ )Y
∗ · P̃m−Y ∗ , (17)

where Y ∗ = mZ∗ is the number of zero bits in bitmap B∗, and

P̃ = (1− P ∗) + P ∗
∏

1≤i≤t(1 − Pi)

=
(
1− e−

n∗

m

)
+ e−

n∗

m

∏
1≤i≤t

(
1− e−

ni−n∗

m

)
. (18)

The meaning of (17) is the probability of observing Y ∗ zero-
state bits and m−Y ∗ one-state bits in the intersection bitmap
B∗, given the facts of persisting spread n∗ and the signal-to-
noise ratios SNRi in each period. The symbol P̃ denotes the
probability for a bit to be one in bitmap B∗.

For any estimator of n∗ based on the observation Y ∗ and
m−Y ∗, its variance satisfies the Cramér-Rao inequality below:

V ar(n̂∗ |Y ∗) ≥ 1
I(n∗) ,

where I(n∗) is the Fisher information which can be calculated
using the likelihood function L in Eq. (17).

I(n∗) = −E
[
∂2 lnL(n∗ |Y ∗)

(∂n∗)2

]
For the log-likelihood function lnL in Eq. (17), its first-

order derivative and second-order derivative are as follows.

∂ lnL
∂n∗

= 1
L

∂L
∂n∗

= ∂P̃
∂n∗

(
m−Y ∗

P̃
− Y ∗

1−P̃

)
∂2 lnL
(∂n∗)2 = ∂2P̃

(∂n∗)2

(
m−Y ∗

P̃
− Y ∗

1−P̃

)
−

(
∂P̃
∂n∗

)2(
m−Y ∗

P̃ 2
+ Y ∗

(1−P̃ )2

)
Because the expected value of Y ∗ is E(Y ∗) = m(1− P̃ ), the

expected value of m−Y ∗

P̃
− Y ∗

1−P̃
equals zero. Hence,

I(n∗) = − E
[
∂2 lnL(n∗ |Y ∗)

(∂n∗)2

]
=

(
∂P̃
∂n∗

)2(
m

P̃
+ m

1−P̃

)
. (19)

The first-order derivative ∂P̃
∂n∗

required by the above equa-
tion can be derived from Eq. (18), assuming that the signal n∗

is independent with the noise ni − n∗ (i.e.,
∂(ni−n∗)

∂n∗
= 0).

∂P̃
∂n∗

= 1
m

[
e−

n∗

m − e−
n∗

m

∏
1≤i≤t

(
1− e

−n∗

m
1

SNRi

)]
= 1

m
(1− P̃ )

Finally, by replacing ∂P̃
∂n∗

in (19) with 1
m
(1 − P̃ ) and then

using the relation V ar(n̂∗ |Y ∗) ≥ 1
I(n∗) , we can obtain the

inequality for estimator variance in Theorem 1.
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