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Abstract—Radio-frequency identification (RFID) technologies
have been widely used in many applications, including inventory
management, supply chain, product tracking, transportation,
logistics, etc. Tag estimation, which is to estimate the cardinality
of a single tag set, is an important research topic. This paper
expands the estimation research as follows: It performs joint
estimation between two tag sets (which exist at different locations
or at the same location but different times). More importantly the
estimation is fine-grained in an effort to accommodate common
practical scenarios, where each tag set consists of tags belonging
to different categories. For any two given tag sets, we want
to know the detailed information about the joint property of
each category, instead of just the aggregate information of
the whole sets. Furthermore, due to the open nature of RFID
communications, it is often desirable that tag estimation can be
performed in an anonymous way without revealing the tags’ ID
information. To support these requirements, we develop a new
technique called mask bitmap that can encode a tag set without
requiring the tags to report their IDs or category IDs. Any two
mask bitmaps of different tag sets can be combined to perform
category-level joint estimation. Through formal analysis, we
determine how to set system parameters to meet a given accuracy
requirement that can be arbitrarily set. Extensive simulation
results confirm that the proposed solution can yield accurate
category-level estimates in an efficient way, and preserve tags’
anonymity as well.

I. INTRODUCTION

Radio Frequency Identification (RFID) technologies

integrate simple communication, storage, and computation

components into attachable tags that can communicate with

RFID readers wirelessly over a distance [1], [2]. Due to this

significant advantage over traditional bar code systems, RFID

systems have been widely used in many applications [3]–[7].

Generally, an RFID system consists of three components:

One or more readers, a large number of tags and a backend

server. In RFID systems, tags with unique IDs are attached to

objects, varying from products in a warehouse, merchandizes

in a retail store, animals in a zoo, or medical equipments in

a hospital. Each tag can not only identify the tagged object,

but also indicate the category information through a subfield

of tag ID called category ID.

One important RFID research topic is tag estimation, which

is to estimate the cardinality of a tag set (i.e., the number of

tags in the set) at a certain location [8]–[16]. Tag estimation

can be used as a preprocessing step for optimizing the frame

size of frame-slotted ALOHA protocols in tag identification

[10]. In addition, it can be applied to monitor the inventory

level in a warehouse, the sales in a retail store, etc. Tag

estimation is much more time-efficient than tag identification

that needs to collect all tag IDs [10]. Moreover, since tag

estimation does not need to identify any tags, the tags’

anonymity can be preserved [9].

Although numerous approaches for tag estimation have

been proposed, they have some limitations. First, most

approaches only consider a single tag set [8]–[16]. Only

limited prior work [17]–[20] studies the joint estimation of two

or more tag sets. Moreover, almost all prior work, including

[18]–[20], only estimates the aggregate information of the

whole tag set(s), but ignores a common scenario where tagged

objects may belong to different categories. Prior work [15],

[16] investigates the category-level tag estimation, but they

only consider a single tag set. This paper studies a new

problem called category-joint tag estimation, which attempts

to expand the research on tag estimation into a couple of new

directions:

First, not only do we perform joint estimation between two

tag sets, but more importantly the estimation is fine-grained

at the category level in an effort to accommodate practical

scenarios, where each tag set consists of tags belonging to

different categories. Given two tag sets, we want to estimate

the cardinality of the intersection set for each category.

For example, consider a distribution network of warehouses,

each carrying tagged products in various categories. For any

two warehouses, if we have an automatic way to learn the

cardinality of the intersection of their tag sets in each product

category, we will have a means to track over time how

each category of products flow through the network. For a

single warehouse, knowing the cardinality of per-category

intersection of tag sets at different times allows us to track

how each category of products are moving in and out of the

warehouse.

Second, we want to carry out category-level joint

estimation anonymously without giving away the tags’ private

information, including tag IDs and category IDs [21], [22].

The widespread use of tags in traditional ways of deployment

raises a serious privacy concern: The tags will report their

IDs to any readers upon request, giving away the privacy of
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the tag carriers. The RFID research community has recently

devoted tremendous efforts to designing new mechanisms that

keep the usefulness of tags while doing so anonymously [23]–

[27], although they cannot be directly applied to the tag

estimation problem. Leaking a category ID alone (without

leaking the whole tag ID) will also be problematic. The

category ID may indicate certain unique properties or private

information about the tagged objects of a particular category.

As an example, the category information of a medicine may

identify its specific functions or targeted diseases, which can

be used to infer what disease a patient may have if he/she buys

this medicine. Therefore, we want to include the anonymity

requirement in the design of a new protocol for category-level

joint estimation. It is always preferred that a protocol can

achieve the same functionality with comparable performance,

but preserve the tags’ anonymity at the same time.

Category-level joint estimation is much more complicated

than traditional tag estimation since we need to consider

the joint properties of two tag sets, each further consisting

of numerous different categories. Moreover, the anonymity

requirement brings more challenges to the problem.

Intuitively, each category of tags should be processed

separately so that we can easily combine the information of

a particular category from different tag sets. The difficulty

is how to identify which category a tag belongs to without

requiring it to report its category ID?

To our best knowledge, this is the first work that studies

anonymous category-level joint estimation in RFID systems

with new contributions summarized as follows:

First, we expand the traditional research on tag estimation

— which only considers a single set or ignores the disparity of

different tag categories — into new domains of category-level

estimation and anonymity. The category-level joint estimation

is capable of depicting the dynamics between two arbitrary

tag sets at the category level.

Second, we propose a formal anonymous model to

numerically evaluate the anonymity of different tag estimation

protocols for the first time. In addition, we reveal the inherent

tradeoff between estimation accuracy and anonymity of our

proposed protocol.

Third, we develop a new technique called mask bitmap

to achieve anonymous category-level joint estimation. Mask

bitmaps can tactfully encode all tags of different categories

without knowing their tag IDs or category IDs, while the

information of each category can be retrieved later for joint

estimation. We derive an estimator for the joint estimation

of each category, formally analyze its mean and variance,

and show that it can produce approximately unbiased results

within an absolute error bound that can be set arbitrarily.

Finally, we perform extensive simulations to complement

the theoretic analysis. The simulation results demonstrate that

by following proper parameter settings our estimator can give

very accurate estimates in an efficient way and preserve tags’

anonymity as well.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

Suppose all objects in an RFID system can be classified

into m different categories, represented by a set M of category

IDs {cid1, cid2, . . . , cidm}. Each object is attached with a tag

for identification purpose. Since each tag uniquely identifies

one object, we will use object and tag interchangeably in

the sequel. Given an arbitrary tag t, its tag ID id contains

a subfield called category ID and is denoted as cid, indicating

which specific category its associated object belongs to. Let

a be the length of any tag ID (in number of bits) and b (< a)

be the length of any category ID.

RFID readers are installed to monitor tag sets located in

their coverage areas. The readers can be connected to backend

servers which provide supplemental storage, computation and

communication resources. A reader communicates with tags

using a frame-slotted ALOHA protocol. The reader initiates

the communication by broadcasting a request that includes

all necessary parameters. The tags are synchronized by the

reader’s signal. In the following time frame, each tag sends

its response in a randomly chosen slot. Based on the duration

of slots, they can be classified into two types: One allows the

transmission of a tag ID, whose duration is denoted by tid;

the other is much shorter and only carries one bit information,

whose duration is denoted by ts. A ts slot is called an empty

slot if no tag replies, or a busy slot if one or multiple tags

respond.

B. Anonymous Model

Low-cost RFID tags only have very limited computation,

communication and storage resources. Hence, they cannot

implement any classical cryptographic primitives, rendering

the communications between a reader and a tag unprotected.

Any adversary can plant unauthorized readers at chosen

locations to eavesdrop on the transmissions between tags and

readers, thereby capturing confidential or private information

such as tag IDs and category IDs. We assume that the

adversary has no prior knowledge of any tag IDs or category

IDs in the system.

We use two two numerical values to evaluate how

much anonymity of a tag is preserved after executing a

tag estimation protocol: (1) ID anonymity, which is the

probability pid that the adversary cannot infer a tag’s ID

from the transmissions; (2) Category anonymity, which is

the probability pcid that the adversary cannot crack a tag’s

category ID based on the transmissions.

C. Problem Statement

Consider two arbitrary tag sets N∗
p and N∗

q in a large

distributed RFID system. They may refer to two sets at

different locations, p and q, respectively, or two sets at the

same location but different times, in which p and q refer

to time. The wildcard superscript ∗ means that the notation

covers tags of all categories. Let n∗
p = |N∗

p | and n∗
q = |N∗

q |,
N∗

c = N∗
p ∩N∗

q , and n∗
c = |N∗

c |, where the subscript c means

“common tags” in the two sets N∗
p and N∗

q .

Given an arbitrary category cid ∈ M , Np(cid) is the

subset of tags in N∗
p that belong to category cid, and
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Fig. 1: The Venn diagram for sets N∗

p , N∗

q , N∗

c , Np, Nq and

Nc.

similarly Nq(cid) is the subset of tags in N∗
q that belong to

category cid. Let np(cid) = |Np(cid)|, nq(cid) = |Nq(cid)|,
Nu(cid) = Np(cid) ∪ Nq(cid), nu(cid) = |Nu(cid)|,
Nc(cid) = Np(cid)∩Nq(cid), and nc(cid) = |Nc(cid)|. Most

of the time, our protocol description only needs to refer to one

arbitrary category. Hence, we will abbreviate Np(cid) simply

as Np when the context does not raise ambiguity. Similarly,

we will use Nq , Nu, Nc, np, nq , nu, and nc without explicitly

including (cid) in order to simplify these notations. The Venn

diagram in Fig. 1 illustrates the relation between sets N∗
p , N∗

q ,

N∗
c , Np, Nq and Nc.

The problem of anonymous category-level joint estimation

is to estimate the value of nc for each category under an

accuracy requirement and an anonymity requirement. Once

we have an estimate of the intersection cardinality nc, it is

trivial to estimate the union cardinality nu and the difference

cardinalities, |Np−Nq| and |Nq−Np|, which are not presented

in this paper due to space limitation. An intuitive interpretation

for nc is the number of tags in category cid that are transported

from location p to location q or left behind from time p to

time q if the two tag sets are recorded at the same location.

We use three performance metrics for evaluating

anonymous category-level joint estimation, which are

listed as follows.
Estimation accuracy: Our goal is to give an accurate estimate
n̂c for nc, such that

Prob{|n̂c − nc| ≤ η} ≥ 1− θ, (1)

where η is an absolute error bound and θ is a probability. For

example, if η = 50 and θ = 10%, we require that the absolute

estimation error |n̂c−nc| has a probability no less than 90% to

be within [0, 50]. In other words, [n̂c − η, n̂c + η] is a (1− θ)

confidence interval for nc.

In contrast to our absolute error model, the traditional

protocols [8]–[14], [16], [19], [20] for tag estimation employ

a relative error model Prob{|n̂ − n| ≤ εn} ≥ 1 − θ,

where n is the cardinality of a tag set, and ε is the relative

error of the single-set estimation n̂. This model has been

adopted by the prior work on joint estimation of two tag

sets [19], [20]. However, such adoption is not practically

suitable in our opinion for the following reason: The single-

set estimation protocols always assume a large tag set, which

generally makes sense because a small set of tags does not

need estimation — they can be directly counted. However,

for two-set joint estimation, even though both sets are big,

their intersection may be small or even empty (e.g., no object

movement between two warehouses). According to the results

in [20], the time complexity of the estimation procedure

will approach to infinity when the intersection approaches to

empty, which is not acceptable because we cannot assume

that the intersection of any two tag sets in a distributed RFID

system is always large in practical applications. Hence, this

paper advocates the absolute error model [18], which makes

practical sense: For instance, consider a distribution network

where each warehouse periodically encodes its tag set in an

efficient, anonymous data structure (to be proposed later).

We want to estimate the number of tagged products in each

category that are moved between any two warehouses in each

period, with an error of ±50 tags at 95% confidence level.

We will make the estimation by comparing the corresponding

data structures.

Execution Time: Since RFID tags operate with low-speed

communication channels, time efficiency is a key performance

metric for all RFID protocols. Tag estimation should complete

in a short time to avoid interference with other normal

activities in an RFID system.

Anonymity: We use pid and pcid to measure the preserved

anonymity of any tag after perform category-level joint

estimation. More specifically, we want to maximize pid and

pcid and make them as close to 1 as possible, such that it

is practically infeasible for the adversary to infer the ID or

category ID of any tag in N∗
p or N∗

q by eavesdropping on the

execution of our estimation protocol.

III. RELATED WORK

There is no prior work on anonymous category-level joint

estimation. Below we present some related work that can

be applied to category-level joint estimation after slight

modifications, and then point out their issues.

A. Tag Identification

The most straightforward approach for calculating nc of an

arbitrary category is to execute a tag identification protocol,

e.g., Dynamic Framed Slotted ALOHA (DFSA) [28], [29]

used by the EPC C1G2 standard. First, all tag IDs in N∗
p

and N∗
q are collected by the readers. With the knowledge of

N∗
p and N∗

q , we can easily find nc for each category. One

problem is that collecting all IDs is not efficient for large RFID

systems, particularly when it has to be performed frequently.

Due to transmission collisions, the lower bound of execution

time to collect the IDs of n tags is e × n × tid [28], [29],

where e is the natural constant. To make things worse, any

IDs transmitted from the tags to the readers may be captured

by the adversary, rendering pid = pcid = 0.

B. Prior Work on Joint Tag Estimation

Bitmap [30] is a compact data structure that is widely used

for tag estimation [10], [31]. All bits in a bitmap are initialized

to zeroes. Each tag is pseudo-randomly hashed to a bit in

the bitmap and sets that bit to one. The ZDE protocol [19]

leverages bitmap for joint estimation of two tag sets. The

basic idea is to encode each tag set to an equal-size bitmap.

Arbitrary two bitmaps can later be combined to estimate the

cardinality of the union, differential, or intersection of the

corresponding two tag sets. However, ZDE does not provide

an explicit way of setting the bitmap size such that the

estimation result can meet a given accuracy requirement. The
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Fig. 2: Two virtual bitmaps V B(cid1) and V B(cid2) are

built on top the mask bitmap B for categories cid1 and cid2,

respectively. The bit in grey is shared by both virtual bitmaps.

JREP protocol [18] is based on a similar idea, but improves

the time efficiency of ZDE by enabling variable-size bitmaps.

JREP first estimates the cardinality of a tag set, and then

sets a proper size for the bitmap according to the estimated

cardinality. Any two bitmaps can still be combined for joint

tag estimation although they may have different sizes.

In [20], a generic Composite Counting Framework (CCF)

is proposed to provide a cardinality estimate for any set

expression with desired accuracy. CCF collects a synopsis

for each tag set, which includes the d smallest hash values

(of tag IDs) of that tag set. The synopses collected from

different tag sets are leveraged to estimate the cardinality of

a set expression.

To enable per-category estimation, we can employ ZDE,

JREP, or CCF to perform joint estimation for every category.

When performing estimation on a certain category, the reader

can inform the tags belonging to that category to participate in

the protocol execution, while other tags keep silent. However,

the problem of ZDE and CCF is that their designs are based

on a questionable relative error model, as we have explained

previously. For example, CCF requires at least Θ( nu

ε2nc
ln 1

θ
)

synopses to ensure Prob{|n̂c − nc| ≤ εnc} ≥ 1 − θ, which

translates to excessively large execution time when nu

nc
is

large, e.g., nc = 0. JREP adopts an absolute error model, but

it must first estimate the cardinality of each category to set a

proper bitmap size. Although the execution time for estimating

the cardinality of one category is small, the overall execution

time can be very large when there are numerous categories.

More importantly, all these approaches break the anonymity

due to the transmissions of category IDs, resulting in pcid = 0.

With the absolute error model, per-category estimation and

the anonymity requirement, the prior work cannot solve this

problem very well, which drives us to explore new ways for

category-level joint estimation.

IV. ANONYMOUS CATEGORY-LEVEL JOINT ESTIMATION

A. Design Overview

Instead of performing joint estimation for each category

one by one , which can be time-consuming, we want to

enable category-level joint estimation in batch mode: All tags

in one set, regardless of which categories they belong to,

can be encoded to a bitmap simultaneously. Moreover, we

want to avoid the transmissions of category IDs to protect

the anonymity of tags. To achieve our objectives, we design a

new data structure called mask bitmap, a variant of traditional

bitmap. Our idea is to use a single large bitmap B to

accommodate all categories. For each category, we build a

virtual bitmap (V B) by randomly choosing some bits from

B, and any bit in B can be shared by multiple categories.

Fig. 2 illustrates two virtual bitmaps V B(cid1) and V B(cid2)
randomly chosen from the mask bitmap B for categories cid1
and cid2, respectively, where the bit in grey is shared by

both virtual bitmaps. A significant advantage of such bit-level

sharing is that all categories use a common bitmap. Hence,

each bit in the mask bitmap is shared by numerous tags in

different categories, which helps conceal the tag ID and the

category ID of a tag setting this bit.

Our anonymous category-level joint estimation protocol

(CJEP) consists of two components: an encoding component

for encoding a tag set to a mask bitmap, and an offline

data analysis component to combine two arbitrary mask

bitmaps, retrieve information of each category, and estimate

nc for each category (or any interested categories). Only

the encoding component involves operations from the tags.

In order to simplify the functions to be implemented on

resource-constrained tags, our protocol follows an asymmetric

design principle that pushes most complexity to the offline

component while leaving the encoding component as simple

as possible.

B. Encoding a Tag Set

We first describe the process of encoding a tag set covered

by a single RFID reader. Consider the tag set N∗
p . We denote

the mask bitmap for encoding N∗
p as B∗

p , consisting of f bits.

Let B∗
p [i] represent the ith bit in B∗

p , where 0 ≤ i ≤ f − 1.
Virtual Bitmap: Each category cid is assigned a virtual

bitmap V Bp(cid) (abbreviated as V Bp) by pseudo-randomly
taking l bits from B∗

p . This can be achieved by using l
independent hash functions Hk(), each of which maps cid
to the bit B∗

p [Hk(cid)], where 0 ≤ k ≤ l− 1 and the value of

Hk() is uniformly distributed over [0, f). Denote the kth bit
in V Bp as V Bp[k]. We have

V Bp[k] ≡ B∗

p [Hk(cid)]. (2)

There are efficient ways to implement l hash functions on a
tag. One approach is to employ a mater hash function H∗()
and a set R of l different random seeds as follows:

Hk(cid) = H∗(cid⊕R[k]), (3)

where ⊕ is the XOR operator. The backend server generates

the seeds and shares them with all readers, and each reader

will include the seeds as part of the request message sent to

the tags. Another approach relies on a pseudo-random number

generator (which is required to be implemented on tags under

the EPC C1G2 standard). Two random seeds, r1 and r2, are

needed. We use cid ⊕ r1 as the seed to the pseudo-random

number generator. The value of Hk(cid) is the (kr2 + 1)th
output from the generator. That is, we use an output each time

after dropping r2 values.

Encoding: All bits in B∗
p are initialized to zeroes. The

reader initiates the encoding process by broadcasting a request

and the system parameters including the value of f and l
random seeds. The request is followed by a time frame F ,

consisting of f slots. Consider an arbitrary tag with id as its

ID and cid as its category ID. The purpose of the tag is to

set a bit randomly chosen from the virtual bitmap of category

cid to one. To do so, the tag will pseudo-randomly selects a
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slot based on its own category ID and tag ID, which will be

further explained shortly. The tag waits till the chosen slot to

transmit a one-bit response. The reader keeps listening to the

channel and sets B∗
p [i] = 1 if and only if the ith slot is busy.

There exists a one-to-one mapping between the ith slot in

the time frame F and the ith bit in the mask bitmap B∗
p .

Similarly, there is also a mapping from a virtual bitmap V Bp

to the slots in F since all bits in V Bp are from B∗
p . The slots

corresponding to the bits in V Bp form the category’s virtual

frame. Their indices in the whole frame F are Hk(cid), where

0 ≤ k < l.
The tag will choose a slot from the virtual frame of category

cid uniformly at random to transmit a one-bit response. To
do that, it needs another hash function h(), which can also be
implemented from the master hash function or the pseudo-
random number generator as mentioned above, where the
range of h() is [0, l). The tag chooses the h(tid)th slot in
the virtual time frame, corresponding to the h(tid)th bit in
V Bp. By (2), this bit is in fact the Hh(tid)(cid)th bit in B∗

p ,

and in turn it corresponds to the Hh(tid)(cid)th slot in the
whole frame F . By the encoding design, the tag effectively
sets the following bit to one.

V Bp[h(tid)] ≡ B∗

p [Hh(tid)(cid)] = 1. (4)

We stress that the tag never constructs the virtual bitmap V Bp

explicitly. Its operation is actually very simple: All it does is

to compute two hashes for the value of Hh(tid)(cid) and then

waits for that slot to transmit a signal, which sets a randomly

chosen bit in the virtual bitmap of category cid to one.

Multiple readers: In case that multiple readers are needed

to cover all tags in the system, we assume that a reader

schedule is established based on signal measurement in order

to avoid reader-to-reader collisions. Only non-conflicting

readers, each covering a non-overlapping area, are scheduled

to be active at the same time. After every reader reports

its mask bitmap, the backend server performs a bitwise OR

operation over all mask bitmaps to obtain a combined mask

bitmap that encodes the whole tag set. The prescribed system

parameters, including the time frame size f and virtual bitmap

size l, are used by all readers across the system. We will

introduce an algorithm for determining the system parameters

shortly.

C. Offline Information Retrieval

After N∗
p and N∗

q are encoded to mask bitmaps B∗
p and

B∗
q , respectively, the bitmaps are offloaded to the backend

server for permanent storage. For a query to estimate the
cardinality nc of their intersection on an arbitrary category
cid, the backend server first retrieves the two virtual bitmaps
of category cid from B∗

p and B∗
q as follows:

V Bp[k] ≡ B∗

p [Hk(cid)]

V Bq[k] ≡ B∗

q [Hk(cid)],
(5)

where 0 ≤ k ≤ l− 1. The server then performs a bitwise OR
operation on the two virtual bitmaps, resulting in another l-bit
bitmap, denoted by V Bu,

V Bu[k] = V Bp[k] ∨ V Bq[k], 0 ≤ k ≤ l − 1, (6)

where the subscript u means that V Bu encodes the “union” of

Np(cid) and Nq(cid). Fig. 3 shows the process of retrieving

V Bp, V Bq , and generating V Bu from B∗
p and B∗

q . By the

Fig. 3: The process of retrieving V Bp, V Bq , and generating

V Bu from B∗
p and B∗

q .

encoding design, all tags in Np are encoded in V Bp in a

probabilistic way; recall that Np is abbreviation of Np(cid).
Similarly, all tags in Nq are encoded in V Bq . Hence, all tags

in Np ∪Nq are encoded in V Bu.

However, as we have discussed previously and illustrated

in Fig. 2, different virtual bitmaps share bits, which means

that a bit of ‘1’ in V Bp (or V Bq , V Bu) may not be set

by tags in category cid, but instead set by tags in another

category. Hence, while bit sharing helps achieve anonymity

and efficiency, it also introduces inter-category noise. To deal

with the noise issue and accurately estimate the value of nc,

we resort to probabilistic analysis in the next subsection.
In addition, the backend server combines B∗

p and B∗
q by

performing a bitwise OR operation to obtain another useful
bitmap, denoted by B∗

u. Hence,

B∗

u[k] = B∗

p [k] ∨ B∗

q [k], 0 ≤ k ≤ f − 1. (7)

We know that B∗
p , B∗

q and B∗
u encode the tag sets, N∗

p , N∗
q

and N∗
p ∪N∗

q , respectively.

D. Estimator for nc

In this Section, we derive an estimator n̂c for estimating

nc using B∗
p , B∗

q , B∗
u, V Bp, V Bq and V Bu. We first present

and prove the following theorem.

Theorem 1. An arbitrary tag t has a probability 1
f

to be

mapped to a given bit z in a f -bit mask bitmap.

Proof: The process for a tag to randomly choose a slot
in a time frame can be cast into bins and balls problem [32].
We denote the l-bit virtual bitmap for t’s category as V B.
Let random variable X represent the number of physical bits
occupied by V B in the mask bitmap. We have

Prob(X = x) =

(
f
x

)
× x!× S(l, x)

f l
,

where S(l, x) = 1
x!

∑x
i=0(−1)i

(
x
i

)
(x − i)l is the Stirling

number of the second kind [33]. S(l, x) gives the number
of ways to partition a set of l balls into x non-empty bins.
In addition, the probability that z is one of the x bits is

1−
(
f−1
x

)
/
(
f
x

)
. The tag ID has a probability 1

x
to be mapped

to z among those x bits. Therefore, the probability for t to be
mapped to z is

pz =
l∑

x=1

(
f
x

)
× x!× S(l, x)

f l
× (1−

(
f−1
x

)
(
f
x

) )×
1

x

=
1

f l+1
×

l∑
x=1

(
f

x

)
× x!× S(l, x) =

1

f
,

(8)

where we have used
∑l

x=1

(
f
x

)
× x!× S(l, x) = f l [33].
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Now let us continue to derive an estimator n̂c. Let Xj be
the event that the jth bit in B∗

p is 0 (0 ≤ j ≤ l− 1), and 1Xj

be the corresponding indicator random variable, namely,

1Xj =

{
1, ifB∗

p [j] = 0,

0, ifB∗

p [j] = 1.

Therefore, we have Prob(Xj) = (1 − 1
f
)n

∗

p , and E(1Xj ) =

1× Prob(Xj) + 0× (1− Prob(Xj)) = (1− 1
f
)n

∗

p . Let Up be a
random variable of the fraction of bits in B∗

p that remain zeros
after encoding all tags in N∗

p . We have Up = 1
f

∑f−1
j=0 1Xj .

Hence,

E(Up) =
1

f

f−1∑
j=0

E(1Xj ) = (1−
1

f
)n

∗

p . (9)

Similarly, let Yj be the event that the jth bit in B∗
q is 0, and

Uq be a random variable for the fraction of bits in B∗
q that

remain zeros. We have

E(Uq) = (1−
1

f
)n

∗

q . (10)

Let Zj be the event that the jth bit in B∗
u is 0. Since this bit

is OR of the jth bit in B∗
p and B∗

q , Prob(Zj) = Prob(Xj ∧

Yj) = Prob(Xj |Yj)×Prob(Yj) = (1− 1
f
)n

∗

p+n∗

q−n∗

c . Let random
variable Uu denote the fraction of zeroes in B∗

u. We have

E(Uu) = (1−
1

f
)n

∗

p+n∗

q−n∗

c . (11)

Combining (9), (10) and (11), we know E(Uu) =
E(Up)E(Uq)(1−

1
f
)−n∗

c . Therefore,

(1−
1

f
)−n∗

c =
E(Uu)

E(Up)E(Uq)
. (12)

Now let us move forward to investigate the properties of V Bp,
V Bq and V Bu. Let Cj (0 ≤ j ≤ l − 1) be the event that the
jth bit in V Bp is 0, and 1Cj

be the corresponding indicator
random variable. For event Cj to happen, neither a tag in
Np nor a tag in N∗

p − Np shall be mapped to V Bp[j]. The

probability is Prob(Cj) = (1− 1
l
)np(1− 1

f
)n

∗

p−np , and therefore

E(1Cj ) = (1− 1
l
)np(1− 1

f
)n

∗

p−np . Let Vp represent the fraction
of 0s in V Bp. We have

E(Vp) =
1

l

l−1∑
j=0

E(1Cj ) = (1−
1

l
)np(1−

1

f
)n

∗

p−np . (13)

Applying (9) to (13), we have

E(Vp) = (1−
1

l
)np(1−

1

f
)−npE(Up). (14)

Substituting E(Vp), E(Up) with Vp, Up, respectively, and
taking the logarithm of the both sides, we derive an estimator
for np as follows:

n̂p =
lnVp − lnUp

ln(1− 1
l
)− ln(1− 1

f
)
. (15)

Let Dj be the event that the jth bit in V Bq is 0, and Vq

represent the fraction of 0s in V Bq . Similarly, we have

E(Vq) = (1−
1

l
)nq (1−

1

f
)n

∗

q−nq , (16)

n̂q =
lnVq − lnUq

ln(1− 1
l
)− ln(1− 1

f
)
. (17)

Consider an arbitrary bit z in V Bu. Only if the following

two conditions are satisfied will its value remains zero.

1) z is not chosen by any tag in Np ∪Nq.

2) z is not chosen by any tag in (N∗

p ∪N∗

q )− (Np ∪Nq).

For the first condition, each tag in Np∪Nq has a probability 1
l

to select z and set it to 1. Hence, the probability q1 to satisfy
condition one can be calculated by

q1 = (1−
1

l
)np+nq−nc . (18)

For the second condition, each tag in (N∗
p ∪N∗

q )− (Np∪Nq)
has a probability 1

f
to choose z. Hence,

q2 = (1−
1

f
)n

∗

p+n∗

q−n∗

c−(np+nq−nc). (19)

Let Ej be the event that the jth bit in V Bu is 0, 1Ej
be

the corresponding indicator random variable, and Vu be the
fraction of 0s in V Bu. Combining (18) and (19), we have

Prob(Ej) =(1−
1

l
)np+nq−nc(1−

1

f
)n

∗

p+n∗

q−n∗

c−(np+nq−nc),

E(Vu) =(1−
1

l
)np+nq−nc(1−

1

f
)n

∗

p+n∗

q−n∗

c−(np+nq−nc). (20)

We know nu = np + nq − nc. Applying (11) to (20),

E(Vu) = (1−
1

l
)nu(1−

1

f
)−nuE(Uu).

n̂u =
lnVu − lnUu

ln(1− 1
l
)− ln(1− 1

f
)
. (21)

Applying (12), (13) and (16) to (20), we have

E(Vu) = E(Vp)E(Vq)(
1− 1

f

1− 1
l

)nc
E(Uu)

E(Up)E(Uq))
.

Hence, we can calculate

nc =
ln

E(Vu)
E(Vp)E(Vq)

− ln
E(Uu)

E(Up)E(Uq)

ln(1− 1
f
)− ln(1− 1

l
)

(22)

Replacing E(Vu), E(Vp), E(Vq), E(Uu), E(Up) and E(Uq)
with observed values Vu, Vp, Vq , Uu, Up and Uq , respectively,
we obtain an estimator for nc as follows

n̂c =
(lnVp − lnUp) + (lnVq − lnUq)− (lnVu − lnUu)

ln(1− 1
l
)− ln(1− 1

f
)

. (23)

Note that f and l should be set properly such that Up, Uq ,

Uu, Vp, Vq , and Vu are non-zero.

E. Analysis of n̂c

We have derived E(n̂c) and V ar(n̂c) but cannot present

the derivation process here due to space limitation.
The expected value of n̂c is

E(n̂c) ≈ nc +
evp+wp + evq+wq − evu+wu − vp − vq + vu − 1

2
.

(24)

Note that when the values of vp, wp, vq , wq , vu and wu are

small, Bias(n̂c) = E(n̂c) − nc ≈ 0, which means n̂c is an

asynpoticallly unbiased estimator of nc.
Since the close form of V ar(n̂c) is extremely complicated,

we also obtain an upper bound for V ar(n̂c) that takes a much
simpler form as follows:

V ar(n̂c) <
evu+wu − vu − 1

c2l
+

2l(1− e−vu)

c2f
, (25)

where c = ln(1− 1
l
)− ln(1− 1

f
).
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Protocol Identification ZDE/JREP CCF CJEP

pcid 0 0 0 1−
f
l2b

pid 0 1−
f

2a−b 1− D
2a−b 1−

f
2a

TABLE I: Preserved anonymity of a tag after executing

different protocols for category-level joint estimation, where

a is the length of tag IDs and b is the length of category IDs.

F. Analysis of Anonymity

In this section, we analyze the preserved anonymity of

a tag after executing CJEP under our proposed anonymous

model. We assume that the adversary has unlimited computing

and storage resources such that given an arbitrary slot it

knows which tags will be mapped to this slot (which requires

O(2a) preprocessing overhead). This assumption overrates the

adversary’s capability, so the following two theorems provide

a lower bound of the anonymity of CJEP.

Theorem 2. Given an arbitrary tag and its response in a time

frame including f slots, pcid = 1− f
l2b

.

Proof: With a b-bit category ID, there are 2b different

category IDs. For each category, a l-bit virtual bitmap is

allocated, which corresponds to l different slots. Hence, the

mean number of categories mapped to each slot is l2b

f
, and

there is no other clue for the adversary to distinguish any two

categories mapped to the same slot. As a result, the probability

for the adversary to guess the category ID of a tag based on

its response is 1
2bl
f

= f

l2b
. Hence, pcid = 1− f

l2b
.

Theorem 3. Given an arbitrary tag and its response in a time

frame including f slots, pid = 1− f
2a .

Proof: According to Theorem 2, the adversary has a

probability f

l2b
to correctly guess its category ID based on

its chosen slot. With a a-bit tag ID and a b-bit category ID,

each category can have as many as 2a−b tags, which are

evenly distributed to l slots (l-bit virtual bitmap). Therefore,

each slot averagely has 2a−b

l
tags belonging to that category.

Therefore, the probability to infer the full ID correctly is
f

l2b
× l

2a−b = f
2a . Hence, pid = 1 − f

2a , which is extremely

small when reasonably long tag IDs, e.g., 120 bits, are used.

Table I compares the preserved anonymity of a tag

after executing different protocols for category-level joint

estimation. Only CJEP can preserve category anonymity. For

CCF [20], D is the size of hash space, and it should be set

to O(n2), where n is the cardinality of a tag set. Generally,

we have f < D. Therefore, CJEP has the best ID anonymity

when the same frame size is used by ZDE/JREP.

G. Parameter Setting

In this section, we propose an algorithm to set appropriate
parameters f and l under the accuracy requirement given in
(1). We use g(f, l) to represent the upper bound of V ar(n̂c)

Algorithm 1 Procedure of determining optimal f and l.

Input: n∗
p, n∗

q , n∗
u, np, nq , nu, η, θ

1: f = 1 {Initializes f}
2: repeat

3: f = f + s {s is the step size for increasing f}

4: wp =
n∗

p

f
, wq =

n∗

q

f
, wu =

n∗

u

f

5: binary search for l∗ that satisfies ∂g
∂l

= 0
6: vp =

np

l
, vq =

nq

l
, vu = nu

l

7: until V ar(n̂c) ≤ η2/Z2
θ
2

Output: f , l

given in (25):

g(f, l) =
evu+wu − vu − 1

c2l
+

2l(1− e−vu)

c2f

≈l(evu+wu − vu − 1) +
2l3(1− e−vu)

f
,

(26)

since c2 = (ln(1 − 1
l
) − ln(1 − 1

f
))2 ≈ (− 1

l
+ 1

f
)2 ≈ 1

l2
when

l 
 f . Taking the partial derivative of g(f, l) with respect to
f , we have

∂g

∂f
= −

lwue
vu+wu

f
−

2l3(1− e−vu)

f2
< 0.

Hence, g(f, l) decreases with the increase of f . For the setting

of l, we have the following theorem.

Theorem 4. Given a value of f , there exists one and only

one optimal l, denoted by l∗, that minimizes g(f, l).

Proof: Taking the partial derivative of g(f, l) with respect
to l, we have

∂g

∂l
= evu+wu(1− vu)− 1 +

2l2

f
(3(1− e−vu)− vue

−vu).

In addition, we can calculate

∂2g

∂l2
=
v2ue

vu+wu

l
+

2l

f
(6− 6e−vu − 4vue

−vu − v2ue
−vu).

It is easy to prove that (6 − 6e−vu − 4vue
−vu − v2ue

−vu) is

monotonically increasing with respect to vu. Hence (6 −
6e−vu −4vue

−vu −v2ue
−vu) ≥ 0, with the minimum reaching

at vu = 0. Therefore, ∂2g
∂l2

≥ 0, which implies that ∂g
∂l

is

monotonically increasing with respect to l. Moreover, we have
∂g
∂l
|l=0 ≤ 0 and ∂g

∂l
|l→∞ > 0. Therefore, there is only one

value l∗ that satisfies ∂g
∂l

= 0, which minimizes g(f, l). In

other words, there is an optimal value of l that minimizes the

upper bound of V ar(n̂c) given an arbitrary setting of f .
For a normal distribution with E(n̂c) ≈ nc, the requirement

in (1) can be translated to

Z θ
2

√
V ar(n̂c) ≤ η,

where Z θ
2

is the 1 − θ
2 percentile for the standard Normal

distribution. Therefore,

V ar(n̂c) ≤ η2/Z2
θ
2

. (27)

We need to set f large enough such that V ar(n̂c) is no

larger than η2/Z2
θ
2

. For a given value of f , we calculate the

optimal l that minimizes g(f, l). With this (f , l) pair, we

check whether the condition in (27) satisfies. If not, we further
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increase the value of f to reduce V ar(n̂c). Algorithm 1 shows

the procedure of determining optimal f and l. In practice, the

values of n∗
p, n∗

q , n∗
u, np, nq , and nu are unknown. We will

shortly show how to set those parameters in Section V.

V. SIMULATION RESULTS

In this section, we evaluate the performance of CJEP

through simulations. As we have explained in Section III,

there is no prior work on anonymous category-level joint

estimation. Therefore, we use a tag identification protocol as a

benchmark for comparison. In addition, we apply state-of-the-

art protocols on joint tag estimation, which are JREP [18] and

CCF [20], to per-category joint estimation after some slight

modifications.

A. Parameter Settings

In our simulations, the communication parameters are set

following the specification of EPC C1G2 standard [1]. Any

two consecutive communications between the reader and tags

are separated by a time interval of 302 μs. The transmission

rate between the reader and tags is in the range of 26.7 kbps
to 128 kbps. We set the transmission rate to 26.7 kbps (similar

simulation results can be observed under other parameter

configurations). That is, it takes the reader or tags 37.45 μs
to transmit one bit. Therefore, we have ts = 37.45 + 302 =
339.45 μs, and tid = 37.45× 96 + 302 = 3897.2 μs.

We set the number m of categories to 1000 to ensure there

are enough categories for evaluating CJEP in a probabilistic

way. We let the value nc of each category follow a uniform

distribution over [0, 500], so that every value of nc have

enough samples. In fact, the adoption of absolute error model

guarantees that CJEP works regardless of the distribution of

nc. We let the numbers np and nq of tags in each category

follow several common distributions as follows:

Dist. 1: np and nq independently follow a uniform distribution

Unif(300, 700).
Dist. 2: np and nq independently follow a normal distribution

Norm(500, 2502).
Dist. 3: np and nq of independently follow a zipf distribution

[34] over [400, 1000] at steps of 10 (61 different values

in total). With the value of the exponent characterizing the

distribution set to 1.0, the frequency of the rank-j value is

f(j) = 1/j
∑

61

i=1
(1/i)

.

The absolute error bound η varies from 20 to 100, at steps

of 10. In addition, we set θ to 0.1 and 0.05, and Z θ
2

is

therefore 1.645 and 1.960, respectively. The values of f and

l are obtained from Algorithm 1, where the step size s is

set to 1000. We set n∗
p = n∗

q = 500000, which gives an

estimated upper bound of the cardinality of a tag set1 (e.g., the

number of goods can be stored in a warehouse). In addition,

we approximately set np =
n∗

p

m
, nq =

n∗

q

m
, n∗

u = n∗
p + n∗

q , and

nu = np + nq .

For CCF, the size D of hash space is set to 100000 to

avoid hash collisions. Hence, the length of each hash value is

1Note that the purpose for the large setting of n∗

p and n∗

q here is to ensure
there are enough categories and each category contains sufficient number of
tags for evaluating CJEP in a probabilistic way.


log2 100000� = 17 bits. Instead of setting the number d of

synopses to Θ( nu

ε2nc
ln 1

θ
), which otherwise can be excessively

large when nc is small (nc is not known in advance), we fix

d to 400. The setting of JREP exactly follows that in [18].

B. Execution time

We first compare the execution time of different protocols

for category-level joint estimation. Fig. 4 and Fig. 5 show the

results when θ = 0.1 and θ = 0.05, respectively. In each plot,

the x axis is the absolute error bound η, and the y axis is the

average execution time of each category. Similar results can be

observed even though np and nq follow different distributions.

This is because the total number of tags in each tag set is

close and the number of categories is the same in different

settings. Both JREP and CJEP take less execution time with

the increase of η, meaning a larger estimation error is allowed.

The difference is that the execution time of CJEP decreases

more dramatically than that of JREP with the increase of η.

Although CJEP takes a longer execution time than the other

three protocols when η is very small, it is much more efficient

than others when η is moderately large. For example, when

η = 50 and θ = 0.1, CJEP only takes 38.7%, 24.3%, 19.7%

of the execution time of JREP, CCF and an identification

protocol, respectively. In addition, a smaller θ requires that

the absolute estimation error |nc−n̂c| has a higher probability

to be bounded by η (i.e., a more stringent requirement on

estimation accuracy). Therefore, the execution time of CJEP

increases when θ decreases to 0.05 from 0.1.

C. Estimation accuracy

Next we evaluate the estimation accuracy of different

protocols. For the purpose of fair comparison, we choose

a setting of η and θ that makes the protocols have close

execution times. More specifically, we set η = 40 when

θ = 0.1, and η = 30 when θ = 0.05. Since an identification

protocol has no estimation error for nc, we do not include the

identification protocol in the performance comparison. For the

(nc, n̂c) pair of each category in the estimation results, we

calculate the absolute estimation error |nc − n̂c|. Fig. 6 and

Fig. 7 show the cumulative distribution function (CDF) of

the absolute estimation error. In Fig. 6, the 90 percentile of

|nc − n̂c| of JREP, CCF, and CJEP are respectively 16, 22,

and 23, which are all within the error bound η = 30. In Fig.

7, the 95 percentile of |nc − n̂c| of JREP, CCF, and CJEP

are respectively 20, 26, and 30, which are also bounded by

η = 40. Overall, the estimation accuracy of JREP is a little

better than that of CCF and CJEP, and CCF and CJEP yield

estimates with comparable accuracy. The bit-level sharing in

mask bitmaps of CJEP helps preserve tags’ anonymity, but

also introduces inter-category noise that brings some negative

effect on the estimation accuracy.

D. Anonymity

Recall that an identification protocol does not preserve any

ID anonymity or category anonymity. From Table I, we know

pid ≈ 1 for CCF, JREP and CJEP when the ID length a
is large enough, e.g., 96 bits. Since CCF and JREP cannot
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Fig. 4: Execution time comparison of different protocols when θ = 0.1.

s

η

θ

s

η

θ

s

η

θ

Fig. 5: Execution time comparison of different protocols when θ = 0.05.
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Fig. 6: Cumulative probability of the the absolute estimation error |nc − n̂c| when η = 30 and θ = 0.1.
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Fig. 7: Cumulative probability of the the absolute estimation error |nc − n̂c| when η = 40 and θ = 0.05.

�
�
�
�

θ
η 20 30 40 50 60 70 80 90 100

0.1 96.69% 99.01% 99.51% 99.69% 99.78% 99.82% 99.85% 99.88% 99.89%
0.05 94.03% 98.38% 99.26% 99.56% 99.69% 99.77% 99.81% 99.84% 99.86%

TABLE II: pcid of CJEP when b = 20.
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�

θ
η 20 30 40 50 60 70 80 90 100

0.1 99.90% 99.97% 99.98% 99.99% 99.99% 99.99% 100.00% 100.00% 100.00%
0.05 99.81% 99.95% 99.98% 99.99% 99.99% 99.99% 99.99% 100.00% 100.00%

TABLE III: pcid of CJEP when b = 25.

preserve category anonymity, we focus on investigating the

pcid of CJEP.

Table II and Table III show the values of pcid when

the length b of category ID is set to 20 bits and 25 bits,

respectively. Under the same setting, a larger value of b, which

makes the category ID more difficult to guess, leads to a larger

value of pcid. When b = 25, pcid approaches to 1 in most

cases. In addition, we observe that with fixed values of b and

θ, pcid increases with the increase of η; with fixed values

of b and η, pcid increases with the increase of θ. Generally

speaking, a smaller value of η or θ means a higher requirement

of estimation accuracy, which requires a longer execution time

(a larger f ). According to Theorem 2 and Theorem 3, the

increase of f causes pcid and pid to decrease. Therefore, there

exists a tradeoff between estimation accuracy and preserved

anonymity.

VI. CONCLUSION

This paper studies a new problem of anonymous category-

level joint estimation in RFID systems: Given a particular

category, we want to estimate its cardinality in the intersection

of two arbitrary tag sets anonymously. We propose a protocol

CJEP based on a novel data structure called mask bitmap.

We derive an estimator, analyze its mean and variance,

and provide an algorithm for system parameter setting. We

also point out the inherent tradeoff between the estimation

accuracy and anonymity using CJEP. We perform extensive

simulations to evaluate the performance of our protocol.
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