
Pandaka: A Lightweight Cipher for RFID Systems

Min Chen Shigang Chen Qingjun Xiao
Department of Computer & Information Science & Engineering

University of Florida, Gainesville, FL 32611, USA

Email:{min, sgchen, qxiao}@cise.ufl.edu

Abstract—The ubiquitous use of RFID tags raises concern
about potential security risks in RFID systems. Because low-
cost tags are extremely resource-constrained devices, common
security mechanisms adopted in resource-rich equipment such
as computers are no longer applicable to them. Hence, one
challenging research topic is to design a lightweight cipher that
is suitable for low-cost RFID tags. Traditional cryptography
generally assumes that the two communicating parties are
equipotent entities. In contrast, there is a large capability gap
between readers and tags in RFID systems. We observe that
the readers, which are much more powerful, should take more
responsibility in RFID cryptographic protocols. In this paper, we
make a radical shift from traditional cryptography, and design a
novel cipher called Pandaka1, in which most workload is pushed
to the readers. As a result, Pandaka is particularly hardware-
efficient for tags. We perform extensive simulations to evaluate
the effectiveness of Pandaka. In addition, we present security
analysis of Pandaka facing different attacks.

I. INTRODUCTION

Radio frequency identification (RFID) technology has been

pervasively used in numerous applications, such as inventory

management, supply chain, product tracking, transportation,

logistics and toll collection [1]–[6]. Typically, an RFID system

consists of a large number of RFID tags, one or multiple

RFID readers, and a backend server. As specified in EPC

Class-1 Gen-2 (C1G2) protocol [7], each tag has a unique

ID identifying the object it is attached to. The object may

be a vehicle, a product in a warehouse, an e-passport that

carries personal information, or a medical device that records

a patient’s health data. The integrated transceiver of each tag

enables it to transmit and receive radio signals. Therefore, it is

feasible for a reader to communicate with a tag over a distance

as long as the tag is located in its interrogation area.

With the ubiquitous use of RFID technology in not only

industries but also our daily life, security problems become a

big concern. The security threats on an RFID system include

information leakage, denial of service (DoS), tag forgery,

unauthorized access to tag memory content, snooping, etc [8].

Security issues in different applications may be different. In

this paper, we focus on establishing secure channels between

readers and tags to avoid information leakage. Because the

wireless channel between a reader and a tag is exposed to

surrounding environment, it is easy for a malicious adversary

to eavesdrop on their communications.

The biggest challenge for implementing cryptographic

protocols in RFID systems is that tags are extremely resource-

constrained devices. It is the low price that triggers the

explosive growth in use of RFID tags. Generally speaking,

1Pandaka is one of the smallest fish in the world by mass.

a UHF passive tag now costs about 10-50 cents [9]. To keep

the price low, a tag must not have many resources, rendering

its capabilities in computation, storage and power supply very

low. Hence, it is infeasible to directly implement existing

sophisticated cryptographic primitives like DES, AES, or RSA

on low-cost tags. New cryptographic algorithms specially

designed for those low-cost tags are on great demand, which

leads to a new branch of cryptography called lightweight

cryptography.

Recently, some work focused on studying lightweight

ciphers, and a number of cryptographic algorithms have been

proposed. Since asymmetric (public-key) cryptography usually

demands more computation resources than symmetric (secret-

key) cryptography, most lightweight ciphers are developed in

the scope of the latter. In [10], the authors classify existing

lightweight ciphers into three categories: Some researchers

tried to optimize and compact standardized block ciphers,

like AES [11]–[13] and IDEA [14], thereby reducing their

hardware requirements and making them suitable for resource-

constrained devices. Those algorithms fall into the first

category. The algorithms in the second category are devised

by slightly revising classical block ciphers, so they can be

applied to lightweight applications. For example, DESL and

DESXL [15] are lightweight variants of DES. The third

category includes a set of new algorithms that are particularly

designed for low-cost devices such as RFID tags and wireless

sensors. Among them are lightweight block ciphers, such as

PRESENT [16], HIGH [17] and mCrypton [18], and compact

stream ciphers, such as Grain, MICKEY and Trivium [19],

which are the achievements from the eSTREAM project, while

Hummingbird [10] is a hybrid of block cipher and stream

cipher.

However, none of the above ciphers goes beyond the

traditional paradigm for cryptography design: The two

communicating parties are thought to be equipotent entities

with comparable capabilities, and they should execute the

protocols independently. This is true when communications

happen between full-fledged computers. When it comes to

RFID systems, however, a reader is much more powerful

than a tag. If we stuck with the traditional paradigm when

designing a new cipher, the tag would have to operate the

same cryptographic functions as those implemented on the

reader, which poses a heavy workload on the tag. To avoid this

drawback, we should shift away from traditional paradigm.

This paper is to provide a new lightweight secret-key

cryptography design for systems where significant asymmetry

exists between the communicating parties. Particularly, given

their capability gap, readers and tags should play different

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

978-14799-3360-0/14/$31.00 ©2014 IEEE 172

roles in a cryptographic protocol. We propose to push

complicated tasks to the powerful readers while leaving the

tags as simple as possible. Based on this idea, we design

a novel lightweight cipher called Pandaka. It does not need

a general-purpose processing unit. The tags only need to

perform three simple operations: bitwise XOR, one-bit left

circular shift, and bit flip, while all other work is done by the

readers. We present extensive analysis and simulation results

to evaluate Pandaka.

The rest of this paper is organized as follows. Section II

gives the security model. Section III describes our new

cipher in detail. Section IV evaluates Pandaka by simulations.

Section V presents the security analysis. Section VI draws the

conclusion.

II. SECURITY MODEL

A. System Model

An RFID system consists of a large number of tags, one

or multiple readers, a backend server, and the communication

channels between them. There are three types of RFID tags:

active tag, passive tag and semi-active tag. In this paper,

we focus on the low-cost passive tags, which are powered

by radio energy emitted from the readers. The computation

and storage capabilities of each tag are very limited. The

backend server, which takes charge of data storage, lookup

and high-performance computations, is connected with the

readers via high speed wired or wireless links. A reader

must be authorized by the backend server before accessing

confidential information, such as tag IDs and secret keys. Since

the backend server and the readers have abundant resources

to implement effective cryptographic primitives, they have no

difficulty in establishing secure connections. Therefore, an

authorized reader and the backend server can be considered

as an integrated entity, still called an authorized reader. An

unauthorized reader has no right to access the backend server,

but it can eavesdrop on the wireless channels between the

readers and tags. Note that in the following discussion, a reader

without further annotation is an authorized one by default.

B. Adversary Model

An adversary will exploit the weaknesses of the RFID

system to achieve malicious objectives. In [20], the authors

classify adversaries based on their objectives, level of

interference, presence, and available resources. In our model,

we assume the major purpose of the potential adversary is

to intercept confidential information exchanged between the

readers and the tags. The adversary is capable of manipulating

a few unauthorized readers to eavesdrop on both the forward

channel (reader to tag commands) and the backward channel

(tag to reader responses). Moreover, the adversary possesses

sufficient storage resources to record all messages it overhears

for further analysis. Finally, for the sake of not being detected,

the adversary will never carry out disruptive attacks that may

expose its presence.

III. CIPHER DESIGN

A. Motivation

A stream cipher generates a pseudorandom bit stream,

called keystream, and uses it to encrypt the plaintext with

a simple XOR operation. Compared with block ciphers,

stream ciphers generally have a higher execution speed and

a lower hardware complexity, which makes them better

candidates for low-cost RFID tags. Since typical stream

ciphers belong to symmetric ciphers, it is imperative that

every RFID tag must independently produce the keystream if

we want to apply such ciphers to RFID systems. However,

implementation of common stream ciphers, such as RC4,

incurs significant hardware cost. For example, RC4 built by

[21] takes 13K GE (logic gate equivalence). Alternatively,

we may leverage cryptographic hash functions to generate

pseudorandom numbers and transform them into a keystream.

A common hash function, such as MD4, MD5, and SHA-1,

usually requires more than 7K logic gates [22]. In contrast,

a low-cost RFID tag is only integrated with 7K-15K logic

gates, of which 2K-5K are used for security purposes [20].

This bottleneck makes it impractical to implement complicated

cryptographic functions on low-cost tags. Our goal is to design

a new stream cipher that is more hardware-efficient for tags.

One interesting idea is as follows: If we handed the

burdensome task of generating a keystream over to a reader

and let the reader secretly inform the tags the generated

keystream on the fly, the functions implemented on the tags

could be much simplified. For example, suppose each RFID

tag had an unlimited memory, and was pre-configured with

infinite number of different 〈index, key〉 pairs, which were

shared by the reader. When the reader communicates with a

tag, it generates random indexes one by one to decide which

keys to use. Meanwhile, those indexes are sent to the tag in

sequence notifying it of the currently selected keys. Once a

key is used, it will be deleted by the reader and the tag to

avoid duplicate use. The reader and the tag can generate the

same keystream by concatenating the chosen keys in order.

More importantly, it is an easy task for the tag to construct

the keystream according to the received indexes.

Unfortunately, far from infinity, the memory size of a

passive tag is actually very limited, and even a small number

of keys can occupy its whole memory. According to the EPC

C1G2 standard [7], the memory of a tag logically comprises

four distinct banks: reserved memory, EPC memory, TID

memory, and user memory. User memory can be used for user-

specific data storage, such as security keys. A passive UHF

tag usually owns a 512-bit user memory. Even some high-end

tags only have a memory capacity of up to 32KB [23]–[25],

and the prices of such tags are much higher. For example, the

x Sky-ID tag [23] with 8KB user memory currently costs $25

each. Due to the cost reason, we assume that the available user

memory for storing keys, denoted as M bits, is no larger than

1Kb when we design our cipher.

We call the small number of keys accommodated by each

tag base keys. Suppose the length of each base key is L bits,

and the number of base keys in each tag is N . Clearly, the

condition N×L ≤ M must hold. In this case, those base keys

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

173

must be reused and updated to produce a massive number of

so-called derived keys, which are used to form a keystream for

encryption. Our basic idea is that the reader makes use of its

powerful computation capability to generate derived keys with

good randomness, and meanwhile it encodes the information

about how each derived key is generated into messages sent

to the tag. Instructed by the received messages, the tag can

retrieve the same derived keys with little effort. To assist the

tag in generating derived keys one by one on the fly, the

reader divides its messages into L-bit blocks and encodes the

information for producing derived keys in the message blocks.

The length of every derived key is fixed to L bits, the same

as that of the base keys. We use K to represent the key space

of all possible derived keys generated from the N base keys,

and our objective is two-fold: (1) The cardinality of K should

be 2L, namely, K contains all possible values of L bits long;

(2) the probability for the appearance of any derived key in K
is approximately equivalent to 1

2L
.

B. Design Details

We now describe our lightweight cipher Pandaka in detail,

where tags only need to perform three simple operations:

bitwise XOR, one-bit left circular shift, and bit flip. To

simplify the discussion, we just consider the communications

between one reader and one tag.

1) Initialization: First of all, some base keys must be shared

by the reader and the tag. To generate a number N of L-bit

base keys, denoted by k0, k1, ..., kN−1, respectively, the reader

employs a random number generator that produces random

numbers uniformly in the range {0, 1, ..., 2L − 1}. Those N

base keys are configured into the tag’s user memory before

deployment. Also, those base keys as well as the corresponding

tag ID are stored in the backend database, so the reader can

retrieve the base keys with the tag’s ID.

2) Derived Keys Generated by the Reader: We design an

algorithm for the reader to produce derived keys based on the

base keys. To generate a derived key k, each base key ki (0 ≤
i ≤ N−1) is independently selected with a probability 1

2 . The

selection process is achieved by a random bit generator that

can uniformly produce 0 and 1. Before determining whether

ki is chosen or not, the reader calls the generator to produce a

random bit. The base key ki will be chosen only if the bit is 1.

We denote the set of the chosen base keys as KC . Obviously,

there are 2N − 1 possible results for KC , excluding the case

that KC is empty when no base key is selected. Afterwards, the

reader calculates k by applying XOR operation on all elements

in KC . For instance, if KC = {k0, k2, kN−1}, then k = k0 ⊕
k2⊕kN−1. The complete process for generating a derived key

is illustrated in Fig. 1.

3) Base Key Update by the Reader: Once a derived key is

generated, the selected base keys should be updated to refresh

the key materials. This time, the reader reuses the random bit

generator in III-B2 to generate two random bits. Accordingly,

four different update patterns are devised. For every chosen

base key, it first performs a one-bit left circular shift as shown

in Fig. 2, where a one-bit left circular shift is applied on the

sequence (0110 1101)2. Next, a corresponding update pattern

is adopted based on the two random bits as follows:

Fig. 1. Generation of derived keys.

Fig. 2. One-bit left circular shift.

(1) Pattern 0: The two bits are 00. Nothing is to be done.

(2) Pattern 1: The two bits are 01. The reader flips the bits in

the base key whose position indexes mod 3 is equal to 0.

(3) Pattern 2: The two bits are 10. The reader flips the bits in

the base key whose position indexes mod 3 is equal to 1.

(4) Pattern 3: The two bits are 11. The reader flips the bits in

the base key whose position indexes mod 3 is equal to 2.

After that, the update process at the reader side is finished.

4) Design Rationale: The rationale behind our update

scheme is to reduce the mutual dependence between bits

in each base key. We let L = 2λ, where λ is a constant

integer, and denote the L bit positions in the base key ki as

b[i][L−1], ..., b[i][1], b[i][0]. According to our update scheme

for base keys, those L positions can be divided into three

flipping groups, such that all bits in the same group will be

flipped together if the corresponding update pattern is chosen,

while bits belonging to different groups will never be flipped

together. For example, if L = 8, the eight positions in ki
are divided into three flipping groups: {b[i][0], b[i][3], b[i][6]},

{b[i][1], b[i][4], b[i][7]} and {b[i][2], b[i][5]}.

Consider two arbitrary bits in ki, denoted by X and Y ,

which are treated as discrete random variables ∈ {0, 1}.

Suppose X and Y initially locate at b[i][p] and b[i][q] (0 ≤
p < q ≤ L − 1), respectively. Based on their relation when

being updated, they are classified into two categories: (1) If

3 � (q − p) and 3 � (L+ p− q), X and Y will never move to

two positions that belong to the same flipping group. In other

words, there is no chance for them to be flipped together. (2)

If 3 | (q − p) or 3 | (L + p − q), X and Y may appear

at two positions that are in the same flipping group, thereby

possibly being flipped together (Note that by no means will

both 3 | (q − p) and 3 | (L + p − q) hold because 3 � L).

More specifically, within a period of L updates such that X

and Y return to their original positions, if 3 | (q − p), X and

Y are in the same flipping group for (L− (q− p)) times, and

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

174

Fig. 3. Illustration of two bits that initially belong to the same flipping group
moving to different flipping groups.

Fig. 4. A (N + 2)-bit indicator.

if 3 | (L+p−q), X and Y may be flipped together for (q−p)
times. For example, we let L = 8. If X is at b[i][0] and Y

is at b[i][4] at the beginning, they belong to the first category.

In contrast, if initially X is at b[i][0] and Y is at b[i][3], they

belong to the second category. Their initial positions are in the

same flipping group, but after five updates, they respectively

move to b[i][5] and b[i][0], which are no longer in the same

flipping group, just as illustrated in Fig. 3, where positions of

the same flipping group are marked with the same color.

In conclusion, there is always a chance for any two bits X

and Y in a base key to appear at positions in different flipping

groups regardless of their initial positions, and then they

can be flipped asynchronously, which reduces their mutual

dependence.

5) Indicator for the Tag: Now that it is clear how the reader

generates derived keys and updates the base keys, we proceed

to show how those two processes can be repeated by the tag in

a simpler way. To establish secure communication channels,

the reader and the tag should always share the same base

keys and generate same derived keys. Hence, each time the

reader has to somehow inform the tag its choices of base keys

and update pattern, thus instructing the tag to generate the

same derived key and update the base keys following the same

pattern. To do so, the reader encodes all necessary information

into a bit vector, which is called an indicator, and sends that

indicator to the tag. Let us take a look at the structure of an

indicator as illustrated in Fig. 4: It is a (N + 2)-bit vector,

where the low-order N bits represent the reader’s choices of

base keys. If the ith bit in the indicator is ‘1’, it means the

ith base key is selected; otherwise, the ith base key is not

chosen by the reader. The remaining two high-order bits in

an indicator manifest the update pattern for those chosen base

keys.

With the help of an indicator, the tag knows exactly which

base keys should be used to calculate the derived key and how

to update the selected base keys. Note that there is no need

for the tag to implement the same random number generators

as the reader does, which simplifies the tag’s function.

6) Formats of Message Blocks: The length of a message

block is fixed to L bits, and it is bitwise XORed with a

Fig. 5. Different formats of message blocks.

derived key for encryption. To avoid the leakage of information

in an indicator, it is encrypted as part of a message block.

This brings about a problem that no existing derived key

can be used to encrypt the first indicator. To address the

problem, the reader generates another L-bit random number

when initializing the tag, and that random number is stored

in both the reader and the tag, serving as the first (pre-stored)

derived key. One or more indicators for subsequent derived

keys can be piggybacked by current message block, which is

encrypted before transmission.

To accomplish the mutual communication between the

reader and the tag, we design three different formats of

message blocks, which are depicted in Fig. 5. The format 1,

denoted by F1, shows how the reader organizes its message to

be sent. A L-bit F1 message block is composed by two parts:

the high-order (L−N−2) bits are data to be transmitted, and

the low-order (N + 2) bits represent an indicator. The format

2, denoted by F2, is utilized by the reader to assist the tag

in generating derived keys when the tag intends to transmit

some data to the reader. Each F2 message consists of � L
N+2�

indicators, while the remaining (L−� L
N+2�× (N +2)) high-

order bits are padded with 0s. The format 3, denoted by F3,

is employed by the tag to send its data to the reader, where

all bits are used for encoding the data to be transmitted.

No matter which of the three formats is used, a CRC code

is calculated for that block before encryption. A C1G2 RFID

tag supports two CRC types: 16-bit CRC and 5-bit CRC [7].

In this paper, we adopt the 16-bit CRC code for the purpose of

integrity verification of message blocks. For each CRC code,

it is transmitted along with its corresponding ciphertext block.

Fig. 6 shows the overall format of a transmitted message block.

After receiving a block, the reader or the tag first strips the

L-bit encrypted message to decrypt it, and then calculates the

CRC code of the decrypted block, which is compared with the

attached CRC code. If the verification of the CRC code fails,

the reader or the tag sends a request for retransmission of that

block.

C. Two-Phase Communications

Communications between the reader and tag are always

initialized by the reader. Each session consists of two phases:

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

175

Fig. 6. Overall format of transmitted message blocks.

In phase one, the reader transmits an encrypted message to the

tag, and during phase two, the tag sends its encrypted message

with the aid of the reader. More generally, phase one or phase

two may be skipped if there is only a one-way message to be

transmitted. Before exchanging the messages, the reader first

sends a query to the tag, and the tag responds with its ID

(Note that privacy of tag ID is not our concern in this paper).

Using this received ID, the reader can retrieve the set of base

keys and the pre-stored derived key (or the derived key left

from last session) from the backend server.

1) Phase One: In phase one, the reader encrypts and sends

message blocks in form of F1 to the tag continuously. The

reader segments its message into (L−N − 2)-bit blocks. For

each (L−N−2)-bit data block, the reader combines it with a

randomly generated (N+2)-bit indicator. The derived key for

encrypting the first block is the pre-stored random number

or left from last session. The message blocks are XORed

with the corresponding derived keys for encryption, and then

consecutively sent by the reader to the tag in order. Once

receiving an encrypted block, the tag is capable of decrypting

it using the corresponding derived key. The tag extracts and

stores the high-order (L−N − 2)-bit data from the decrypted

block. Meanwhile, the tag calculates the next derived key and

updates the chosen base keys guided by the indicator. Note

that the indicator can be discarded once it is used. When the

transmission is done, the reader informs the tag that phase one

ends, so the tag can switch to phase two.

2) Phase Two: Phase two may consist of multiple rounds,

where message blocks are exchanged bidirectionally. In each

round, the reader first randomly creates � L
N+2� indicators,

which are concatenated into a F2 message block. Among those

� L
N+2� indicators, the first (� L

N+2� − 1) ones instruct the tag

to generate derived keys that will be used for encrypting its

own message, while the last one specifies the derived key that

the reader will use to encrypt the next F2 block. Afterwards,

the reader encrypts the F2 block with a derived key. The first

derived key used by the reader in phase two is the last key left

from phase one. The tag divides its message to be transmitted

into blocks of format F3. When receiving a message block

from the reader, the tag decrypts it, thereby obtaining the

� L
N+2� indicators. The tag then takes one indicator at a time

(from low-order to high-order) to compute a derived key,

which is XORed with a F3 block for encryption. The encrypted

message block is sent to the reader. Totally, (� L
N+2�−1) blocks

of format F3 can be transmitted by the tag in one round. The

reader knows exactly which derived key is used by the tag to

encrypt each block, and therefore can decrypt it correctly to

obtain the original message. This process continues round by

round until the tag finishes transmitting its message. One may

notice that at the end of phase two, at least one indicator is

Fig. 7. State transitions of one bit.

not used, namely, the last indicator in the final F2 block sent

by the reader, and it is shared by the reader and the tag. This

guarantees that the reader can initiate another session anytime

using the derived key generated with that indicator.

D. Randomness Analysis

1) Randomness: Randomness is a probabilistic property

that is the most important metric for assessing a random

number generator or a stream cipher. For our protocol, it is of

great importance that the generated derived keys are random

and unpredictable. Before we lucubrate the randomness of the

derived keys, we first study the randomness of a base key ki
during its consecutive updates.

First, we consider one arbitrary bit in ki, whose value

is designated as random variable X ∈ {0, 1}. Suppose

X is currently located at position b[i][j] (0 ≤ j ≤ L −
1). When ki is updated, X is shifted and then flipped

with a probability of 0.25 regardless of its new position.

Fig. 7 shows the probabilities of state transitions of X .

Correspondingly, the transition matrix for X during each

update is given by P1 =

[
0.75 0.25
0.25 0.75

]
. Using singular

value decomposition (SVD), P1 =

[√
2
2

√
2
2√

2
2 −

√
2
2

]
×

[
1 0
0 1

2

]
×

[√
2
2

√
2
2√

2
2 −

√
2
2

]
. Since the choice of an update

pattern is independent with each other, after α updates,

the transition matrix for X is P1
α =

[√
2
2

√
2
2√

2
2 −

√
2
2

]
×

[
1 0
0 1

2

]α
×

[√
2
2

√
2
2√

2
2 −

√
2
2

]
=

[
1
2 + 1

2

α+1 1
2 − 1

2

α+1

1
2 − 1

2

α+1 1
2 + 1

2

α+1

]
,

which converges to

[
0.5 0.5
0.5 0.5

]
quickly as α increases.

We take α = 8 as an example, P1
8 =

[
0.502 0.498
0.498 0.502

]
.

Therefore, whatever the initial value of X is, it turns to be 0

or 1 with about equal probabilities after several updates. Based

on the above analysis, we conclude that the bit at any position

in ki is equally likely to be 0 or 1 in long term.

Now let us investigate two arbitrary bits in an arbitrary base

key ki, denoted by X and Y . Suppose X and Y are initially

located at b[i][p] and b[i][q], respectively. Recall from Section

III-B4 that the relation between X and Y can be classified into

two categories based on their original positions in ki. For the

first category, X and Y are updated independently. Therefore,

the values at b[i][p] and b[i][q] are independent. If X and Y

belong to the second category, the mutual influence makes the

situation more complicated. The left half of Fig. 8 shows state

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

176

Fig. 8. State transitions of two bits.

transitions of XY when they are flipped asynchronously, while

the right half shows state transitions when they are flipped

together. The corresponding transition matrixes for left half

and right half of Fig. 8 are

P2 =

⎡
⎢⎢⎣

0.5 0.25 0.25 0
0.25 0.5 0 0.25
0.25 0 0.5 0.25
0 0.25 0.25 0.5

⎤
⎥⎥⎦ ,

P3 =

⎡
⎢⎢⎣

0.5 0 0 0.5
0 0.5 0.5 0
0 0.5 0.5 0
0.5 0 0 0.5

⎤
⎥⎥⎦ .

Assume that within L updates, X and Y move to positions

belonging to different flipping groups for β times, and

positions in the same flipping group for γ times, subjecting to

1 ≤ β < L, 1 ≤ γ < L, and β + γ = L. We observe that

P2
β × P3

γ =

⎡
⎢⎢⎣

0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25

⎤
⎥⎥⎦

for arbitrary combination of β and γ. Hence, for any two bits

in ki, regardless of their initial values, they will have the same

probability of 0.25 to become 00, 01, 10, and 11 when they

are shifted back to their original positions after L updates. In

other others, the bits in ki become pairwise independent.

With the above insight, we go further to study the

randomness of the derived keys. Let us consider the jth bit in

every base key. Suppose the number of 0s in those N bits is

n0[j], and the number of 1s is n1[j], where 0 ≤ j ≤ L−1, and

n0[j]+n1[j] = N . We have proved that any bit in a base key

is 0 or 1 with the same probability. Meanwhile, the values of

the jth bits in different base keys are independent. Thus, we

have n0[j] ∼ B(N, 0.5), and P (n0[j] = t) =
(
N
t

)
×
(
1
2

)N
. We

designate the jth bit in a derived key k as k[j]. For the value of

k[j], we should consider two possible cases: (1) n0[j] = N ,

namely, there is no 1 in those N bits. In this case, k[j] is

definitely 0; (2) If 0 ≤ n0[j] < N , then k[j] can be 0 or 1.

In the second case, if k[j] = 0, it implies an even number of

base keys whose jth bit is 1 are chosen, and that probability

is:
P (k[j] = 0 | 0 ≤ n0[j] < N)

=

2n0[j] ×
�n1[j]

2 �∑
t=0

(
n1[j]
2t

)
− 1

2N − 1

=
2n0[j] × 2n1[j]−1 − 1

2N − 1

=
2N−1 − 1

2N − 1
,

(1)

which is a constant if N is fixed. Thus, we can obtain the

probability for k[j] = 0 is:

P (k[j] = 0) =P (n0[j] = N)× P (k[j] = 0 |n0[j] = N)

+P (0 ≤ n0[j] < N)× P (k[j] = 0 | 0 ≤ n0[j] < N)

=
1

2N
× 1 + (1−

1

2N
)×

2N−1 − 1

2N − 1

=
1

2
.

(2)

Therefore, P (k[j] = 1) = P (k[j] = 0) = 1
2 , which means

any bit in the derived key is uniformly distributed over {0, 1}.

Moreover, k[j] is determined only by the jth bits of the base

keys, and we have proved bits in every base key are pairwise

independent, so bits in k are also pairwise independent.
2) Gap Length: Another metric for evaluating the

performance of a random number generator is the gaps

occurring between the same digits in the series [26]. This

metric can also be extended to assess our algorithm for

producing derived keys. Gap length, denoted by Lg , is defined

as the number of derived keys before the first recurrence of a

given derived key. For example, for a derived key whose value

is 0, Lg is 3 in the derived-key sequence 0, 1, 2, 3, 0, and Lg

is 4 in the derived-key sequence 0, 1, 2, 3, 3, 0. For a L-bit

derived key, if it is produced uniformly, the expectation of Lg

is

E(Lg) =

∞∑
j=0

j × Prob(Lg = j)

=
∞∑
j=0

j ×

(
2L − 1

)j
(2L)j+1

=
1

2L
×

∞∑
j=1

j ×

(
1−

1

2L

)j

=
1

2L
×

1− 1
2L(

1−
(
1− 1

2L

))2
= 2L − 1.

(3)

It means that before a derived key reappears it is expected that

all (or most) other keys will appear. In Section IV, we will

conduct simulations to evaluate the randomness of the derived

keys.

E. Hardware Cost for Tag Implementation

Given the constraint that only 2K-5K GEs in low-cost tags

can be used for security functions, we estimate the hardware

requirement of Pandaka to evaluate its hardware efficiency.

The number of GEs required by each cryptographic component

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

177

Functional Block Cost (GEs)
2 input NAND gate 1
2 input XOR gate 2.5
2 input AND gate 2.5
FF (Flip Flop) 12
n-byte RAM n× 12

TABLE I
COST ESTIMATIONS FOR TYPICAL CRYPTOGRAPHIC HARDWARE.

is not a constant and varies with actual implementation. We

use the same parameters for cost estimations as in [20], which

are outlined in Table I. A shift register is a group of flip-flops

connected in chain, and a circular shift register can be created

by connecting the serial input and last output of a shift register

[27]. Hence, the circular shift register can be built with L×12
GEs, where L is the length of a base key. To generate a derived

key, we need another two L-bit registers. The first register,

which is initialized to all ones, keeps the intermediate result.

Each time, the tag reads one chosen base key from memory

and stores it in the second register, which is bitwise XORed

with the first register. The intermediate result is written back

to the first register. Proceeding in this way, the derived key

is finally stored in the first register after all chosen base keys

are XORed with the first register. The two registers and the

XOR operation need 2× 12× L+ L× 2.5 = 26.5× L GEs.

In addition, we need N ×L bits RAM to store the base keys,

which requires N×L×1.5 GEs. As a result, the total number

of GEs for a tag to implement Pandaka is L×12+L×26.5+
N × L × 1.5 = (38.5 + 1.5N) × L, which is determined by

L and N . For example, if we let L = 16 and N = 6, a tag

needs about (38.5 + 1.5 × 6) × 16 = 760 GEs to implement

Pandaka; if we let L = 32 and N = 6, a tag needs about

(38.5+ 1.5× 6)× 32 = 1520 GEs to implement Pandaka. As

a comparison, we list the hardware costs of other lightweight

ciphers in Table II, where Pandaka(L, N) means Pandaka with

N L-bit base keys. It is not surprising that Pandaka requires

much fewer GEs than others since it only needs to perform

three simple operations.

IV. SIMULATIONS

In this section, we use simulations to examine the

randomness of derived keys in Pandaka.

A. Frequency Test

First, we examine the randomness of derived keys using

frequency test. Specified in the EPC C1G2 Standard [7],

one requirement for the generation of 16-bit pseudorandom

numbers is that the probability of any 16-bit number RN16
with value v being drawn from the generator shall be bounded

by 0.8
216 < P (RN16 = v) < 1.25

216 . We extend that requirement

to the generation of derived keys with arbitrary length L-bit:

The probability of any L-bit derived key k having value v shall

be bounded by 0.8
2L

< P (k = v) < 1.25
2L

. To check whether

the randomness of the derived keys meets the requirement,

2This is the number of GEs required by the most lightweight
implementation of Hummingbird.

Cipher Key bits Block bits Cost (GEs)
PRESENT-80 [16] 80 64 1570
PRESENT-128 [16] 128 64 1886
AES [11] 128 128 3400
HIGHT [17] 128 64 3408
mCrypton [18] 96 64 2681
DES [15] 56 64 2309
DESL [15] 56 64 1848
DESXL [15] 184 64 2168

Hummingbird [28] 128 16 2159 2

Trivium [29] 80 1 2580
Trivium×8 [29] 80 8 2952
Trivium×16 [29] 80 16 3166
Grain [30] 80 1 1450
Grain×8 [30] 80 8 2756
Grain×16 [30] 80 16 4248
MIKEY [29] 128 1 5039
Pandaka(16, 6) 96 16 760
Pandaka(32, 6) 192 32 1520

TABLE II
COMPARISON OF LIGHTWEIGHT CIPHERS IN TERMS OF HARDWARE

COMPLEXITY.

we generate N random base keys, and execute the derived-

key generator for 2L × r times to produce a large number of

derived keys, where r is a simulation parameter. As a result,

approximately 2L × r× (1− 1
2N

) derived keys are generated.

The frequency of each derived key is defined as the number of

its appearances divided by the total number of keys derived.

From simulation results, we compute the standard deviation σ

for the frequencies of derived-key values. Note that the average

frequency, denoted by Favg , should be 1
2L

. Meanwhile, we

count the number of derived keys whose frequencies locate in

(0.8
2L

, 1.25
2L

), denoted by Ns, thereby calculating the satisfactory

rate, which is defined as Rs = Ns

2L
. Constrained by the

computation capability of our computer, we are not able to

run simulations with L = 32 or larger. For this reason, we set

the parameters as follows:

(a) r = 500, L = 8, and N varies from 1 to 4.

(b) r = 500, L = 16, and N varies from 1 to 4.

As a comparison, we implement Grain (Grain×8 and

Grain×16 as shown in Table II), one of the most lightweight

existing stream ciphers.

The simulation results are shown in Fig. 9, Table III and

Table IV. To make the figures legible, we sample a fraction of

1/50 among all derived keys for displaying. Our results show

that the frequencies of derived keys in Pandaka perfectly meet

the randomness requirement, even if the number of base keys

is very small. Also, we find that the randomness of derived key

becomes better when N increases. Moreover, the randomness

of keystream in Pandaka is almost as good as that of Grain

when N ≥ 4, while recalling from Table II that the hardware

cost of Pandaka(16, 6) is only about one sixth of the cost of

Grain×16.

B. Gap Test

Second, we check the randomness of derived keys by gap

test. We run simulations to obtain the gap length of any first

generated derived key. Under each setting of L and N , the

test is conducted 500 times to obtain the average value of

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

178

Fig. 9. Frequency test for randomness.

Pandaka Grain×8
N 1 2 3 4

Favg 3.91× 10−3

σ(×10−4) 2.4 1.9 1.8 1.7 1.7
Rs 99.6% 100% 100% 100% 100%

TABLE III
STATISTICS FOR PANDAKA WITH L = 8 AND GRAIN×8.

Pandaka Grain×16
N 1 2 3 4

Favg 1.526× 10−5

σ(×10−7) 9.7 7.9 7.3 7.1 6.8
Rs 99.95% 100% 100% 100% 100%

TABLE IV
STATISTICS FOR PANDAKA WITH L = 16 AND GRAIN×16.

Fig. 10. Gap test for randomness.

gap length, denoted by L̄g. The results are depicted in Fig.

10. According to (3), we know E(Lg) = 255 when L = 8,

and E(Lg) = 65535 when L = 16. We can see from Fig.

10 that for a given L, L̄g rises with the increase of N at the

beginning. However, the increasing rate of L̄g gradually slows

down, and finally L̄g slightly oscillates around a stable value

that is very close to E(Lg) when N ≥ 5. That is the reason

why we set N = 6 for Pandaka in Section III-E. These results

show that our derived key generation algorithm can achieve

nice randomness with just a few base keys.

V. SECURITY ANALYSIS OF PANDAKA

In this section, we consider several general attacks on

Pandaka and analyze to what extent Pandaka can resist against

those attacks.

A. Ciphertext Only Attack

Suppose the adversary can only obtain some ciphertext. It

has to search through all possible base keys to decrypt the

message. For each set of base keys, the adversary tries to

decrypt the ciphertext with every possible derived key, and

hopes to obtain some recognizable plaintext. However, this is

not feasible as the space for base keys is as large as 2NL (e.g.

if L = 16 and N = 6, the space is 296).

B. Known Plaintext Attack

The only function of an indicator is to help the tag

generate a derived key, so neither the reader nor the tag

needs to store this temporary data. Hence, we assume the

only plaintext an adversary may obtain is the data in a F1

block or a F3 block. When an adversary somehow obtains a

〈plaintext block, ciphertext block〉 pair, it can calculate the

corresponding derived key (or part of the derived key if the

plaintext is the data part of a F1 block) by XORing them. The

obtained derived keys, appearing completely random (Section

IV), will not provide sufficient information to break base

keys, which are only used once before being updated; without

knowing the indicators, the adversary has no idea on how the

base keys are updated.

C. Time-Memory-Data Tradeoff Attack

The authors of [31] propose a new time-memory-data trade-

off attack on stream ciphers. The generic attack on a stream

cipher requires about T = Ns

2
3 time, where Ns represents

the size of the search space. In our case, Ns = 2NL, so T =
2

2NL
3 . If we let N = 6 and L = 32, T = 2128, which makes

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

179

the time-memory-data tradeoff attack impracticable. Also, we

should keep in mind that the base key materials are always

being updated, which makes this attack more difficult to be

performed.

D. Tradeoff among Throughput, Security, and Hardware Cost

It is clear that there exists a tradeoff among throughput,

security and hardware cost in the design of Pandaka. The

security of Pandaka is proportional to the number of key

bits NL, and the greater the value of NL is, the more

secure Pandaka becomes. However, when N is large, the

indictors account for a large proportion of the transmitted

messages, resulting in a waste of throughput. Moreover, large

NL requires more hardware expenditure for implementing

Pandaka. Hence, we should tune those two parameters

according to the different constraints and requirements in

different application scenarios.

VI. CONCLUSION

In this paper, we propose a novel lightweight cipher Pandaka

tailored to RFID systems. Unlike classical symmetric ciphers

in which two communicating parties are burdened with equal

workload, Pandaka assigns a heavy workload to the reader as

it is more powerful than the tag. The analytical and simulation

results demonstrate the effectiveness and hardware efficiency

of Pandaka for low-cost tags. Complementary to the traditional

cryptographic design approaches, this paper provides a

new perspective for developing symmetric cryptography in

systems where significant asymmetry exists between the

communicating parties.

REFERENCES

[1] L. Ni, Y. Liu, and Y. C. Lau, “Landmarc: Indoor Location Sensing
Using Active RFID,” Proc. of IEEE PerCom, 2003.

[2] Y. Li and X. Ding, “Protecting RFID Communications in Supply
Chains,” Proc. of IEEE ASIACCS, 2007.

[3] C. H. Lee and C. W. Chung, “Efficient Storage Scheme and Query
Processing for Supply Chain Management Using RFID,” Proc. ACM

SIGMOD, 2008.
[4] B. Sheng, C. Tan, Q. Li, and W. Mao, “Finding Popular Categories for

RFID Tags,” Proc. of ACM Mobihoc, 2008.
[5] “AEI Technology,” Softrail. http://www.aeitag.com/aeirfidtec.html,

October 2008.
[6] “Sun Pass,” https://www.sunpass.com/ index.
[7] “EPC Radio-Frequency Identity Protocols Class-1 Gen-2 UHF RFID

Protocol for Communications at 860MHz-960MHz, EPCglobal,” http:

//www.epcglobalinc.org/uhfclg2, April 2011.
[8] A. Juels, “RFID Security and Privacy: a Research Survey,” IEEE

JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, vol. 24,
no. 2, pp. 381–394, February 2006.

[9] “atlasRFIDstore,” http://www.atlasrfidstore.com/ tags RFID chips s/

14.htm.
[10] D. Engels, X. Fan, G. Gong, H. Hu, and E. M. Smith, “Hummingbird:

Ultra-Lightweight Cryptography for Resource-Constrained Devices,”
Proc. of International Conference on Financial Cryptography and Data

Security, pp. 3–18, 2010.
[11] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer, “Strong

Authentication for RFID Systems Using the AES Algorithm,” Proc.

of CHES, pp. 357–370, 2004.
[12] M. Feldhofer, J. Wolkerstorfer, and V. Rijmen, “AES Implementation

on a Grain of Sand,” Proc. of IEEE Information Security, vol. 15, no.
1, pp. 13–20, October 2005.

[13] P. Hamalainen, T. Alho, M. Hannikainen, and T. D. Hamalainen,
“Design and Implementation of Low-Area and Low-Power AES
Encryption Hardware Core,” proc. of EUROMICRO Conference on

Digital System Design: Architectures, Methods and Tools, 2006.

[14] D Liu, L. Yang, J. Wang, and H. Min, “A Mutual Authentication
Protocol for RFID Using IDEA,” March 2009.

[15] G. Leander, C. Paar, A. Poschmann, and K. Schramm, Fast Software

Encryption, New Lightweight DES Variants, Springer Berlin Heidelberg,
March 2007.

[16] A. Bogdanov, L. R. Knudsen, G. Le, C. Paar, A. Poschmann, M. J. B.
Robshaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: An Ultra-
Lightweight Block Cipher,” Proc. of CHES, pp. 450–466, 2007.

[17] D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. Koo, C. Lee, D. Chang,
J. Lee, K. Jeong, H. Kim, J. Kim, and S. Chee, “HIGHT: A New Block
Cipher Suitable for Low-Resource Device,” Proc. of CHES, pp. 46–59,
2006.

[18] C. H. Lim and T. Korkishko, “mCrypton - a Lightweight Block Cipher
for Security of Low-Cost RFID Tags and Sensors,” Proc. of Information

Security Applications, pp. 243–258, 2005.
[19] “eSTREAM: the ECRYPT Stream Cipher Project,” http://http://www.

ecrypt.eu.org/stream/ .
[20] D. C. Ranasinghe and P. H. Cole, Networked RFID Systems

and Lightweight Cryptography, Chapter 8 An Evaluation Framework,
Springer Berlin Heidelberg, November 2008.

[21] L. Batina, J. Lano, N. Mentens, S. B. Ors, B. Preneel, and
I. Verbauwhede, “Energy, Performance, Area versus Security Trade-offs
for Stream Ciphers,” Proc. of Encrypt workshop SASC, pp. 302–310,
October 2004.

[22] A. Bogdanov, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw,
and Y. Seurin, “Hash Functions and RFID Tags: Mind the Gap,” Proc.

of CHES, pp. 283 – 299, 2008.
[23] “High Memory On Metal UHF RFID Tags,” http://www.

oatsystems.com/OAT Xerafy RFID Aerospace 2013/media/

High-Memory-Tag-Guide.pdf .
[24] “DSP VALLEY, newsletter,” http://www.dspvalley.com/userfiles/ lr

2845 DSP NB-april09-E.pdf .
[25] S. Pais and J. Symonds, “Data Storage on a RFID Tag for a Distributed

System,” International Journal of UbiComp, vol. 2, no. 2, April 2011.
[26] M. G. Kendall and B. Babington Smith, “Randomness and Random

Sampling Numbers,” Journal of the Royal Statistical Society, vol. 101,
no. 1, pp. 147–166, 1938.

[27] “Shift Register,” http://en.wikipedia.org/wiki/Shift register.
[28] D. Engels, M. O. Saarinen, P. Schweitzer, and E. M. Smith, “The

Hummingbird-2 Lightweight Authenticated Encryption Algorithm,”
Proc. of RFIDSec, pp. 19–31, 2012.

[29] T. Good and M. Benaissa, “Hardware Performance of eSTREAM Phase-
III Stream Cipher Candidates,” Proc. of CHES, pp. 46–59, 2006.

[30] M. Hell, T. Johansson, and W. Meier, “Grain; a Stream Cipher for
Constrained Environments,” International Journal of Wireless and

Mobile Computing, vol. 2, no. 1, pp. 86–93, May 2007.
[31] A. Biryukov and A. Shamir, “Cryptanalysis Time/Memory/Data

Tradeoffs for Stream Ciphers,” Advances in Cryptology Asiacrypt, pp.
1–13, 2000.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

180

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

