
Better with Fewer Bits: Improving
the Performance of Cardinality

Estimation of Large Data Streams

Better with Fewer Bits: Improving
the Performance of Cardinality

Estimation of Large Data Streams

Qingjun Xiao

School of Computer
Science & Engineering,

Southeast University, China.
Email: csqjxiao@seu.edu.cn

IEEE International Conference on Computer
Communications
1-4 May 2017 // Atlanta, GA, USA

You Zhou, Shigang Chen

Dept. of Computer and
Information Science & Engineering,

University of Florida, USA.
Email: {youzhou, sgchen}@cise.ufl.edu

What is the cardinality estimation problem?

27

32, 12, 14, 32, 7, 12, 32, 7, 6, 12, 4,

Elements occur multiple times, we want to count the
number of distinct elements.

 Number of distinct element is (in example)

 Number of elements in this example is 11

A list of applications

Counting the number of unique visitors (100m+ daily
visits) -- the most important metric in online advertising

• See Redis HyperLogLog data structure

27

ISP measurement of traffic usage
Routers traffic in the range of Terabits/sec (1012 b/s)

Internet-scale data measurement: Google indexes
6+ billions pages, and counts the number of accesses
to each pages, and also counts the number of searches
towards each keyword

Cardinality in DB queries optimization
• the number of rows returned by each

operation in an execution plan

Rules of the game

• Limited memory: cannot store all the stream elements; can
use just one page of memory footprint, about 4 kB, in order to
fit into the high-speed working memory.

• Limited time: online processing of the stream data, read the
data by a single pass, or read-once data.

• Allow to generate an approximate estimate of the cardinality
, rather than compute its exact value

• Assume there is a uniform hash function , to
map the stream elements uniformly and pseudo-randomly 27

Stream
Processing Unit

High-speed
working
memory

Low-speed
archival
storage

Approximate Query for Stream Hidden States

Input Streams Output Streams

1，7，4，0，5，3，2

c，h，g，m，z，a，v

1，0，0，1，1，0，1

Time axis

One of fundamental stream processing techniqs

Stream Processing Problems:
►Size Estimation: What is the size of the stream?

►Cardinality Estimation: How many different elements are present?
►Elephants Identification: What are the elements with absolute frequencies
above a threshold, e.g., ࢏ ?
►Icebergs Identification: What are the elements with relative frequencies

above a threshold, e.g., ૚ ࢏
૚

૚૙૙
?

►Frequency moment estimation:

Give a (large) sequence of data values over a (large) domain

27

View the stream as a multiset :
૚ ૛ ࢔

Element has repetitions, or say the frequency of is .

Probabilistic counting with stochastic averaging

Contributions of PCSA
• Introduced the problem
• Idea of streaming algorithm
• Idea of “small” sketch of “big” data
• Detailed analysis that yields tight

bounds on accuracy
27

Philippe Flajolet, G. Nigel Martin, “Probabilistic
counting algorithms for database applications”,
Proc. of FOCS 1983, JCSS 1985

Philippe Flajolet,1948-2011,
mathematician and computer scientist extraordinaire

S S

Two key ideas of PCSA (1)

Probabilistic Counting Register
• Use a hash function to map incoming stream elements to a

bit array with exponentially deceasing probabilities
• Find the position of the leftmost zero bit
• The bit array, or called a PC register, can generate a pretty

coarse estimation for the cardinality of input stream as

27

Two key ideas of PCSA (2)

Stochastic Averaging
• Use a second hash function to divide the input stream

into independent substreams
• Apply a PC register to each substream

• Compute = average position of the left-most zero
bits in the registers

• Return the result: 27

11 09 07 23 31 07 22 22 10 11 39 21

09 07 07

11 10 11

23 22 22 21

31 39

Keypoint: Equal items all
go to the same substream

Space-accuracy tradeoff for PCSA

Relative Accuracy: , where is the number of registers,

and each register is given 32 bits memory.

But the space-accuracy tradeoff of PCSA is no satisfactory.
A plethora of algorithms are proposed for improvement.

27

HyperLogLog is the state-of-the-art!!! It can reduce
memory cost by 72% for attaining the same accuracy

RANDOM’02
FOCS’83
IMC’03

AOFA’07
ESA’03

• Use loglog registers, which are of bits each

• Use harmonic averaging, instead of geometric mean, to
summarize the estimation results of loglog registers

Valuable Ideas of HyperLogLog

27

Philippe Flajolet, Éric Fusy, Olivier Gandouet, Frédéric Meunier, “HyperLogLog:
the analysis of a near-optimal cardinality estimation algorithm”, Proc. of AOFA
(International Conference on the Analysis of Algorithms), 2007

Key point: Use a LogLog register to
record the position of rightmost one-bit

HyperLogLog warmly embraced by industries

27

2014

S. Heule, M. Nunkesser and A. Hall, “HyperLogLog in Practice: Algorithmic
Engineering of a State of The Art Cardinality Estimation Algorithm,” Proc. of
EDBT (International Conference on Extending Database Technology), 2013.

It appears difficult to further improve the
space-accuracy tradeoff of HyperLogLog

HyperLogLog+ fixes some minor problems

HyperLogLog has two major shortcomings

We discover that the HyperLogLog register values exhibit a
right-skewed distribution, implying the following two facts.
• Outliers with large values exist in the rightside long tail
• Inefficient to use 5 bits to encode the register histogram

27

Log-scale
for y axis

Much less
than 25=32
effective bars

Long tail has
not much
useful
information

Our technique: truncate the right-side
tail to reject the outliers, and use less
than five bits to encode the histogram

HyperLogLog has another minor shortcoming
of

• HyperLogLog has a small biased region from to ,
since it uses LinearCounting for cardinalities .

27

• Our HLL-TC and HLL-TC+ can remove the bias
• We greatly improve accuracy at the same memory cost

What do we promise?

• We will propose two algorithms
• HLL-TailCut needs registers of four bits each, and

provides relative accuracy

• HLL-TailCut+ needs registers of three bits each, and

provides relative accuracy

• Both can support the counting of Tera- and Peta-scale data,
while HyperLogLog can only support Giga-scale data.

27

…… …… …… HLL-TC+ needs
45% less memory

HLL-TC needs
20% less memory

……

How do we implement HLL-TailCut?

• Improve the space-accuracy tradeoff (20% less memory
cost), by reducing the size of a register to four bits only
• Use a base register to keep track of the value of the

smallest HyperLogLog register
• Use offset registers to record the offsets of

HyperLogLog registers relative to the base
• Each offset register is given four bits memory
• A negligibly small portion of the long tail has been cut off

27

Large overflowed values will
be rounded down to

How do we implement HLL-TailCut? (conti.)

• Have addressed the problem of small biased region
• When the estimated cardinality is larger than , we still

use the HyperLogLog equation

• When the estimated cardinality is smaller than , we still
use the LinearCounting equation

• When the estimated cardinality is between and , we
use the following maximum likelihood estimation formula

27

How do we implement HLL-TailCut+?

• Further improve the space-accuracy tradeoff (i.e., 45%
less memory cost), by reducing the size of a register to
three bits only, i.e.,

27

• When , a non-negligible
proportion of the right-side long
tail has been truncated

• MUST consider the dynamically
increasing process of the base

• Use a maximum likelihood
estimator to determine the
cardinality of newly arrived
stream elements, when the base

equals , respectively

Beyond space-accuracy tradeoff:
Mergeability of multiple sketches

27

S S

S S

S
Sketch 1

Enough to consider merging two sketches

The side-effect of our HLL-TC+ algorithm

27

S

S S.

SS

S

S.
S.

• Our HLL-TC is able to merge multiple sketches.
• But our HLL-TC+ may not support the sketch merging.
• Our HLL-TC+ more fits low-end devices that desire the

highest memory-efficiency and does not need mergability.

Simulation Result on Space-Accuracy Efficiency

27

Coarse
accuracy

comparison
given the same

memory

Fine accuracy
comparison

given the same
memory

Summary

• Propose two new cardinality estimation algorithms, HLL-
TailCut and HLL-TailCut+, and upload source code
• https://www.dropbox.com/s/l0eaexhzvi34x9u/HLLPlus.zip

• Improve the space-accuracy tradeoff of HyperLogLog
• HLL-TailCut needs 20% less memory at the same accuracy
• HLL-TailCut needs 45% less memory at the same accuracy

• Address the small biased region problem of HyperLogLog

• Extend the effective operating range of HyperLogLog
from Giga-scale data streams to Peta-scale or even Tera-
scale data streams

• HLL-TailCut can support the merging of multiple sketches

Question and AnswerQuestion and Answer

IEEE International Conference on Computer
Communications
1-4 May 2017 // Atlanta, GA, USA

