IEEE INFOCOM Y 525 ermaionatconfrenceon Computer

1-4 May 2017 /| Atlanta, GA, USA

Better with Fewer Bits: Improving

the Performance of Cardinality
Estimation of Large Data Streams

' You Zhou, Shigang Chen

Dept. of Computer and

Science & Engineering, Information Science & Engineering,
Southeast University, China. University of Florida, USA.
Email: csqjxiao@seu.edu.cn Email: {youzhou, sgchen}@cise.ufl.edu



What is the cardinality estimation problem?

Elements occur multiple times, we want to count the
number of distinct elements.

* Number of distinct element1s n (= 6 1n example)
= Number of elements in this example 1s 11

32, 12, 14, 32, 7, 12, 32, 7, 6, 12,

27



A list of applications

Counting the number of unique visitors (100m+ daily
visits) -- the most important metric in online advertising
* See Redis HyperLoglog data structure

ISP measurement of traffic usage
Routers traffic in the range of Terabits/sec (10'% b/s)

Internet-scale data measurement: Google indexes
6+ billions pages, and counts the number of accesses
to each pages, and also counts the number of searches

towards each keyword

Cardinality in DB queries optimization

Cplactaty Cost

&5 pan | 3 * the number of rows returned by each

i Toa o operation in an execution plan 27



Rules of the game

 Limited memory: cannot store all the stream elements; can
use just one page of memory footprint, about 4 kB, in order to
fit into the high-speed working memory.

* Limited time: online processing of the stream data, read the
data by a single pass, or read-once data.

Approximate Query for Stream Hidden States

Input Streams Output Streams
1,0,0, 1,1, 0,1 —

¢ h,gom,z, a, v —p
1, 77 4, 07 57 3,2 —>

Stream —
Processing Unit |—

archival
storage

&
<«

Time axis

* Allow to generate an approximate estimate of the cardinality
n, rather than compute its exact value

* Assume there is a uniform hash function » : D — [0, 1], to
map the stream elements uniformly and pseudo-randomly o



One of fundamental stream processing techniqgs

Give a (large) sequence of data values over a (large) domain D
S =518y - Sy, S;i €D
View the stream § as a multiset M'S:
MS:elfl ezfz enfn, S]ED
Element e; has f; repetitions, or say the frequency of e; 1s f;.

Stream Processing Problems:
» Size Estimation: What is the size € of the stream?

» Cardinality Estimation: How many different elements are present?
» Elephants Identification: What are the elements with absolute frequencies
above a threshold, e.g., f; > 500?

P Icebergs Identification: What are the elements with relative frequencies

above a threshold, e.g., % fi> %‘?

» Frequency moment estimation: (Z f l_r)l/ r

27



Probabilistic counting with stochastic averaging

Philippe Flajolet, 1948-2011,
mathematician and computer scientist extraordinaire

T ca

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 31, 182-209 (1985)

Probabilistic Counting Algorithms
for Data Base Applications

Phil //9/96 F/. 6[0/ e’

ot

PHILIPPE FLAJOLET

INRIA, Rocquencourt, 78153 Le Chesnay, France

AND

Philippe Flajolet, G. Nigel Martin, “Probabilistic

IBM Development Laboratory, Hursley Park,
Winchester, Hampshire SO212JN, United Kingdom

counting algorithms for database applications”,

This paper introduces a class of p ili g i with which one can

estimate the number of distinct elements in a large collection of data (typically a large file

P roc Of FO CS 1 9 83 J CSS 1 9 8 5 stored on disk) in a single pass using only a small additional storage (typically less than a

. ) hundred binary words) and only a few operations per element scanned. The algorithms are

based on statistical observations made on bits of hashed values of records. They are by con-

struction tolally insensitive to the replicative structure of elements in the file; they can be used

in the context of distributed systems without any degradation of performances and prove
especially useful in the context of data bases query optimisation. 171985 Academic Press, Inc.

1. INTRODUCTION

Contributions of PCSA
As data bgse systems _allow the user to specify more and more complex queries,
 Introduced the problem L e i
nds rather crucially on the selection of
. . ch particular case.
° I de ao f Stre amin g al gorlthm (hé mrrsectian_of two collections of data
(14 29 el Y
* Idea of “small” sketch of “big” data
L Detalled analys1s that ylelds tlght cach ol these evaluation strategy will have a cost essentially determined by the
number of records a, & in 4 and B, and the number of distinct elements «, fi in A
and B, and for typical sorting methods, the costs are:
182
bounds on accuracy —

rent treatments (see, Sg<2 1)

| B using hastimg ci_-hﬁ—h filters, then per-

27



Two key ideas of PCSA (1)

Probabilistic Counting Register

Use a hash function to map incoming stream elements to a

bit array with exponentially deceasing probabilities
* Find the position M’ of the leftmost zero bit

The bit array, or called a PC register, can generate a pretty
coarse estimation for the cardinality of input stream as 2™

1

2

L

Probability of 22
Receiving Elements: 23

11 1 1
20 210 911 212

"5~

Bucket Index: 1 2 3

4.
24
1]

4

|

S| w ]‘*&IH
X| o ]‘:%|»—
X[ = =

9 10 11 12
110f10]10

:

X| oo

Bucket Occupancy: | 1 || 1][]1




Two key ideas of PCSA (2)

Stochastic Averaging

* Use a second hash function to divide the input stream
into 2™ independent substreams

* Apply a PC register to each substream

09 (107|107
111]110({11
111109([{071123([31]107([22]/22([10]111([39]|21
231122122 21
Keypoint: Equal items all
g0 to the same substream 31139

* Compute mean = average position of the left-most zero

bits in the 2™ registers
* Return the result: 2™¢%" /0.77531 2



Space-accuracy tradeoff for PCSA

: 0.78 . .
Relative Accuracy: Nk where m 1s the number of registers,

and each register 1s given 32 bits memory.

But the space-accuracy tradeoff of PCSA 1s no satisfactory.
A plethora of algorithms are proposed for improvement.

Algorithm Std. Err.(0) Mem Units Mem(oc=2%)
RANDOM’02 MinCount 1.00//m 32-bit keys 10000 bytes
FOCS'83 PCSA 0.78/y/m | 32-bit registers | 6084 bytes
IMc’03 MultiresBitmap | ~4.4/\/m I bit 6050 bytes
ESA’03 LogLog 1.30/+/m | 5-bit registers 2641 bytes
AOFA’07 |HyperLogLog 1.04/4/m | 5-bit registers 1690 bytes

HyperLogLog is the state-of-the-art!!! It can reduce
memory cost by 72% for attaining the same accuracy



Valuable Ideas of HyperLogl.og
» Use loglog registers, which are of log log(n) bits each

Key point: Use a LoglL.og register to
record the position of rightmost one-bit

1
21

1
Probability of 22
Receiving Elements: 25 1y
@ o L 1 1 3 1 1L 1
B e .2—. 27 28 29 9210 HSIT 9Ii2
Bucket Index: 1 2 3 4 5 6 7 8 9 10 11 12
Bucket Occupancy: [ L[| 1| 1[{[1[{[O][X]|X[|X|[[1][[O][O]]|O
M': PCSA

* Use harmonic averaging, instead of geometric mean, to
summarize the estimation results of m loglog registers

the analysis of a near-optimal cardinality estimation algorithm”, Proc. of AOFA
27

Philippe Flajolet, Eric Fusy, Olivier Gandouet, Frédéric Meunier, “HyperLoglLog:
(International Conference on the Analysis of Algorithms), 2007



HyperLogl.og warmly embraced by industries

o}
)
loco ker PPPPPPP v  BLOCKS v  CUSTOMERS v  LEARN v  COMPANY v

neuscar

Practical Data Science - Amazon
Announces HyperLoglLog 2014

c Research 8 - HyperLogLog+ fixes some minor problems

S. Heule, M. Nunkesser and A. Hall, “HyperLoglLog in Practice: Algorithmic
Engineering of a State of The Art Cardinality Estimation Algorithm,” Proc. of
EDBT (International Conference on Extending Database Technology), 2013. .,




HyperLogLog has two major shortcomings

We discover that the HyperLoglLog register values exhibit a
right-skewed distribution, implying the following two facts.
* Qutliers with large values exist in the rightside long tail
* Inefficient to use 5 bits to encode the register histogram

0 25 L . . T ] 025

Much less | ol Log-s¢ale
o 0.2 r N 1
than 25=32 g g for’y axis
i = 0.15 = 107 1 T
effective bars & 2
S 0.1 S
~ A 107
. 0.05
Long tail has o
0 S 10 0 5 10 15 20
not mUCh Regi alue Register Value
useful 7{ Our technique: truncate the right-side
information Fie. 2. Py ai] to reject the outliers, and use less |
the numbe 27

than five bits to encode the histogram



HyperLogl.og has another minor shortcoming

* HyperLoglLog has a small biased region from 2m to 5m,

since 1t uses LinearCounting for cardinalities n < 2.5m.

Our HLL-TC and HLL-TC+ can remove the bias

We greatly improve accuracy at the same memory cost

o L.7%
1.5%

1.25%

T T TTTIm T TTTTIR T TTTTI T TTTT
®

2%
1.5%
1%
0.5%
0% (roessnnildimmiPign bl
-0.5% HLL —— -
1% HILL+ ——— 1
15% L HLL-TC ——=— -
1A HLL-TC+ ——— |

0.1 1 10 100 1000
actual cardinality (x1000)

estimation bias

(a) Estimation bias

Fig. 6. Compare cardinality estimators

T T T T T T T T T TTI T T 1777
@

10/0 :v’;':f ,'“ g
0.75% ' L
0.5% HLL+ —

025% {  HLL-TC —=—

HLL-TC+ ———
OO/O | LI R | L [
0.1 1 10 100 1000

actual cardinality (x1000)
(b) Standard deviation

relative standard deviati

with the same 24.58k bits memory.

27



What do we promise?

* We will propose two algorithms

 HLL-TailCut needs m registers of four bits each, and

rovides relative accurac 104

 HLL-TailCut+ needs m registers of three bits each, and

rovides relative accurac 199

* Both can support the counting of Tera- and Peta-scale data,
while HyperLoglog can only support Giga-scale data.

Algorithm Std. Err.(0) Mem Units Mem(oc=2%)

........................ HLL-TC+ needs
45% less memor:

HyperLoglog —1 1690 bytes )

HLL TailCut HLL-TC needs(_| 1352 bytes
HLL TailCut+ 20% less memor} | 938 bytes

27



How do we implement HLL-TailCut?

* Improve the space-accuracy tradeoft (20% less memory
cost), by reducing the size of a register to four bits only

Use a base register B to keep track of the value of the
smallest HyperLoglLog register

Use m offset registers to record the offsets of m
HyperLoglLog registers relative to the base B

Each offset register 1s given four bits memory

A neghglbly small portlon of the long tail has been cut off

025 r
B—_ |

s/

Probability
s =
— ()]

0 S

sln

0

A Sliding Window
yf Width K = 24

1 Large overflowed values will
—Qe rounded downto B+ K — 1

15

Register Value

20 27



How do we implement HLL-TailCut? (conti.)

* Have addressed the problem of small biased region
*  When the estimated cardinality 1s larger than 5m, we still
use the HyperLoglLog equation

A 2 _ M) 1
n=a,, m '(20§j<m2 (B+ g)) (9)
When the estimated cardinality 1s smaller than 2m, we still
use the LinearCounting equation

When the estimated cardinality i1s between 2m and 5m, we
use the following maximum likelithood estimation formula

rgmax log L(n | Ng, Ny, .. N;C ) (5)

(R’N(),Nl,...,N;C_l) N1|N2 NIC 5 HPT{M k}Nk(4)
k=0

o= if k=0,
PT{MJ}“}N{( S B




How do we implement HLL-TailCut+?

* Further improve the space-accuracy tradeoft (i.e., 45%
less memory cost), by reducing the size of a reg1ster to
three bits only, i.e., KX = 23 = 8

« When X = 8, a non-negligible B =10
proportion of the right-side long :

tail has been truncated |
 MUST consider the dynamically B=1
increasing process of the base B } |

e Use a maximum likelithood )
estimator to determine the B =

cardinality of newly arrived
stream elements, when the base
B equals 0,1, 2, ---, respectively




Beyond space-accuracy tradeoft:
Mergeability of multiple sketches

Stream 1 + 2

Enough to consider merging two sketches 27



The side-effect of our HLL-TC+ algorithm

I CT

Our HLL-TC 1s able to merge multiple sketches.

But our HLL-TC+ may not support the sketch merging.
Our HLL-TC+ more fits low-end devices that desire the
highest memory-efficiency and does not need mergability.



Simulation Result on Space-Accuracy Efficiency

70/0 T T TTTTIT T T TTTT T T TTTTTI T T TTTTIT
6% |- .
Coarse o ao | f
S 20, | :
accura.cy 3 0% (= ot
o, | HLL ——— |
comparlson g -i jo HLL+
: 0 -4% HLL-TC ——=— |
glven the Same -92?0 i | HHHHL\JI\J\-\\’]\;CT\ [ | HHHT
memory _ 001 1 10 100 1000

“actual cardinality (x1000)

(a) Estimation bias

5. HLL
2% | HLL+ ——
> 2% | HLL-TC ——— ]

HLL-TC+ ——

0.1 1 10 100 1000
actual cardinality (x1000)

(b) Standard deviation

Fig. 5. Compare cardinality estimators with the same 1.54k bits memory.

T TTTI T 1T T T TTTI T TTTIT
O

2%
1.5%

1% |
0.5% [

0% terPesyine
-0.5%

Fine accuracy
comparison

’ 1% | HLL+ —— -

given the same z o) HLLY |

memory 2% | HLLTGY

HLL ——

estimation bias

0.1 1 10 100 1000

actual cardinality (x1000)

(a) Estimation bias

1.70/0 T T TTTT T HHHH T T TTTTIT T T TTTTIT
1.5% g -

1.25%
1% o2

0.75% HLL 3

0.5% | HLL+ — |
025% [ HLL-TC —=—

HLL-TC+ ———
00/0 L L LI L1 L] L L LI L1 LI
0.1 1 10 100 100(

actual cardinality (x1000)

o AL

relative standard deviation

(b) Standard deviatiog7

Fig. 6. Compare cardinality estimators with the same 24.58k bits memory.



* Propose two new cardinality estimation algorithms, HLL-

TailCut and HLL-TailCut+, and upload source code
e https://www.dropbox.com/s/I0eaexhzvi34x9u/HLLPlus.zip

* Improve the space-accuracy tradeoff of HyperLoglog
 HLL-TailCut needs 20% less memory at the same accuracy
 HLL-TailCut needs 45% less memory at the same accuracy

* Address the small biased region problem of HyperLoglLog

 Extend the effective operating range of HyperLoglog
from Giga-scale data streams to Peta-scale or even Tera-
scale data streams

 HLL-TailCut can support the merging of multiple sketches



IEEE INFOCOM D o5 miematon! onference on Computer

1-4 May 2017 /| Atlanta, GA, USA

Question and Answer




