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Abstract—Cardinality estimation is the task of determining the
number of distinct elements (or the cardinality) in a data stream,
under a stringent constraint that the input data stream can be
scanned by just a single pass. This is a fundamental problem
with many practical applications, such as traffic monitoring
of high-speed networks and query optimization of Internet-
scale database. To solve the problem, we propose an algorithm
named HLL-TailCut+, which implements the estimation standard
error 1.0/

√
m using the memory units of three bits each,

whose cost is much smaller than the five-bit memory units
used by HyperLogLog, the best previously known cardinality
estimator. This makes it possible to reduce the memory cost
of HyperLogLog by 45%. For example, when the target
estimation error is 1.1%, state-of-the-art HyperLogLog needs 5.6
kilobytes memory. By contrast, our new algorithm only needs 3
kilobytes memory consumption for attaining the same accuracy.
Additionally, our algorithm is able to support the estimation of
very large stream cardinalities, even on the Tera and Peta scale.

I. INTRODUCTION

Cardinality estimation is the task of determining the number

of distinct elements in a data stream, which is presented as a

sequence of elements and can be examined by only one pass.

This problem has attracted significant attention over the past

decades, due to its important role in many application domains,

e.g., real-time traffic monitoring in high-speed networks

[4], [10]–[13], [20] or in software-defined networks [21],

query plan optimization in large-scale database [9], in-network

query aggregation in wireless sensor networks [17], and file

significance evaluation in P2P systems [18].

Practical Importance. In the domain of online traffic

monitoring of high-speed networks, the cardinality estimation

problem can be used to detect traffic anomalies, such as

network IP/port scan and distributed denial-of-service (DDoS)

attacks [10], [11], [20]. For instance, if we treat all the packets

originated from a same source IP as a data stream, then we

can detect whether this source IP is a network scanner by

counting the number of distinct destination IP/port addresses

in its outward packet stream. A similar estimator can be used

to detect whether a server is under DDoS attack, if we treat

all the packets towards a common destination IP as a data

stream and estimate the number of distinct source addresses

in this stream. For other application examples, a server farm

may learn the popularity of its hosted contents by tracking

the number of distinct users that request for each file, and an

institutional gateway may perform cardinality estimation on

outbound URL requests to measure the popularity of external

web content for caching priority.

According to a recent paper [9], many data analysis

systems developed by Google, including Sawzall, Dremel and

PowerDrill, need to estimate the cardinalities of very large data

sets (e.g., the number of distinct search queries on google) on

a daily basis. As pointed out in [9], cardinality estimation over

large data sets presents a challenge in terms of computational

resources, and memory in particular; for PowerDrill, a

non-negligible fraction of queries historically could not be

computed since they exceeded the available memory.

Prior Art. Although the cardinality can be easily computed

using space linear in the cardinality, for many applications,

this is impractical as it requires too much memory. Therefore, a

large number of algorithms have been developed to produce an

approximate estimation of the cardinality based on a summary

or ”sketch” of the data stream, whose occupied space in

memory is merely on a sublinear level. Typical sketch-based

algorithms include PCSA [8], MultiresolutionBitmap [6] (a

generalization of LinearCounting [19]), MinCount [2], [3],

LogLog [5], HyperLogLog [7], and just list a few.

We make a quick comparison of existing cardinality

estimators in Table I. In the third column, each register may be

a partial machine word of a few bits, independently producing

a coarse estimation of the cardinality (or say, a machine word

may hold multiple registers). To mitigate the high variation

of a single register and improve the estimation accuracy, a

number m of registers must be used. The second column

presents the relationship between the standard error and the

value of m, where m refers to the number of registers (or the

number of bits for MultiresolutionBitmap, or the number of

memory units used by MinCount). The total memory cost of

an estimator is m multiplied by the size of a register (or 1 bit

for MultiresolutionBitmap, or 32 bits for MinCount).

In the last column, we list the memory needed by each

algorithm to control the standard error around 2% of the actual

cardinality, which shows the progress in memory saving over

the past decades: If we use PCSA as the initial benchmark, the

seminal work of LogLog reduces the memory cost by more

than half. The followup HyperLogLog (HLL) further cuts the

memory cost by over 30%. Therefore, HLL is the state-of-the-
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TABLE I
A COMPARISON OF POPULAR CARDINALITY ESTIMATORS.

Algorithm Std. Err.(σ) Mem Units Mem(σ=2%)

MinCount 1.00/
√
m 32-bit keys 10000 bytes

PCSA 0.78/
√
m 32-bit registers 6084 bytes

MultiresBitmap ≈ 4.4/
√
m 1 bit 6050 bytes

LogLog 1.30/
√
m 5-bit registers 2641 bytes

HyperLogLog 1.04/
√
m 5-bit registers 1690 bytes

HLL-TailCut 1.04/
√
m 4-bit registers 1352 bytes

HLL-TailCut+ 1.0/
√
m 3-bit registers 938 bytes

art algorithm and has been widely adopted by IT industries,

such as Google [9], Ask.com [16], PostgreSQL, file-sharing

P2P systems [18], and network security systems for DDoS

and scan detection [7], just to list a few.

It may appear that the cardinality estimators in Table I

already have small memory overhead (on the scale of KBs),

and meanwhile can provide good estimation accuracy of about

2% error. Further reducing their memory cost does not seem

to be a critically important issue. However, many applications

need a large quantity of counters to work simultaneously.

Take network traffic anomaly detection as an example. A core

router often receives millions of traffic flows in just a few

minutes. In order to monitor all the flow behavior, it has

to allocate a cardinality estimator for each flow [10], [11],

[20]. For Google’s applications, the number of counters that

work simultaneously becomes much larger, greater than one

billion under extreme cases [9]. Hence, the total memory

overhead, which is the per-counter memory cost multiplied by

the number of counters, will be a huge value that could easily

overwhelm the memory available on devices that maintain

these counters. For example, on a high-speed router, the on-

chip SRAM available for online anomaly detection is merely

on the scale of MBs [10], [11], [20], and on Google servers,

the DRAM available for tracking keyword popularity is also

limited, typically on the scale of GBs for a commodity

server [9]. As a summary, reducing the memory cost of a

single counter is an important problem with practical value.

Our Contribution. This paper will present a new cardinality

estimator named HLL-TailCut+. As shown at the bottom

row of Table I, when comparing with the state-of-the-

art HyperLogLog, our algorithm can reduce the memory

consumption of a single counter again by 45%. A great

contribution is that we reduce the size of each register from

5 bits to 3 bits without degrading the accuracy in cardinality

estimation, which represents an extreme in compactness that

has not been achieved before. Our technique is called long tail

cutoff that compresses the information across all registers and

meanwhile reduces the variance among the registers, which

in turn reduces the standard error in cardinality estimation.

Consequently, not only do we have smaller-size registers,

but also use fewer registers to attain the same accuracy if

compared with the previous algorithms [5], [7], [8]. Moreover,

unlike HyperLogLog which has limited operating range within

109, our algorithm can support the counting of data streams

at Tera or Peta scale. It has no estimation bias on the entire

measurement range, even when handling small cardinalities.

II. RELATED WORK

The cardinality estimation problem is to count the number of

distinct elements in a stream, wherein each element is allowed

to appear more than once. A key challenge is that the stream of

elements can be scanned by just one pass to obtain the result,

due to the constraint of limited processing time or memory.

Linear-Space Solutions. A naive solution for this problem

is to use a hash table to memorize all the elements seen

so far, in order to filter the duplicated ones. This solution

has the advantage of knowing the exact cardinality. But it

needs memory linear to the stream cardinality, which in most

applications, is far too large to be kept in available memory.

A well-known algorithm that can approximate the stream

cardinality is LinearCounting (LC) [19]. It distributes all the

stream elements uniformly among a bit array, so that each

element can be encoded as the index of a bit in the array.

Duplicated stream elements will be mapped to the same bit

index, and hence are filtered automatically. LC can provide

the best accuracy among all the known cardinality estimators,

however under a strict condition that there is sufficient memory

space roughly linear to the cardinality [16]. Otherwise, its

accuracy will degrade severely. Since our interest is to estimate

very large cardinality values on Giga or Tera scale, LC is no

longer attractive, as it requires too much memory.

Sublinear-Space Solutions. Researchers have developed a

whole range of algorithms that requires only sublinear

memory space [2], [3], [5]–[8]. A frequently used method

for reducing memory cost is sampling. An example is

MultiresolutionBitmap [6] that designs a sequence of LC struc-

tures, whose sampling probabilities decrease exponentially.

Another example is MinCount [2], which records only the

k smallest hash values for a stream of data items. For both

algorithms, their memory efficiency is worse than LogLog and

HyperLogLog, as reported by a comparison study [1].

PCSA (Probabilistic Counting with Stochastic Averaging)

also prepares a sequence of sampled subsets, but it reduces

their sampling probability exponentially, until the probability

becomes so small that a sampled subset has no data [8].

For the ease of understanding, the sequence of sampled

subsets is depicted in Fig. 1 as a sequence of buckets, whose

probability of receiving stream elements reduces by the series

2−1, 2−2, 2−3, . . . , 2−w. To record whether each bucket has

received any stream elements, PCSA allocates a bit array in

memory: If a bucket receives nothing and remains empty, its

corresponding bit is zero; Otherwise, the bit is one. The ×
mark in Fig. 1 represents that a bit is either zero or one.

By maintaining the state of this bit array upon stream

element arrivals, PCSA always knows the index of the leftmost

empty bucket, which is denoted in Fig. 1 by the symbol

M ′. Such a bit array is called a register, which can give an

independent estimation of stream cardinality as 2M
′

. Hence,

if a PCSA register is given w bits memory, the range
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of its estimated cardinality is as large as 2w, which is a

key advantage of PCSA. Of course, the estimation by a

single register will be highly inaccurate. For improving the

accuracy, PCSA uses a technique called stochastic averaging

that allocates multiple registers to produce independent

estimations, and returns the average value of their estimations.

The memory efficiency of PCSA still leaves much space

for improvement: Its register size must be log2 nmax + O(1)
bits, where nmax is the upper bound of measured cardinality.

In contrast, a follow-up algorithm called LogLog reduces the

memory per register to only log2 log2 nmax + O(1) bits [5].

Such significant memory compression is because, instead of

maintaining the state of entire bit array like PCSA, LogLog

records only the index of the rightmost non-empty bucket,

which is denoted by the symbol M in Fig. 1.

HyperLogLog (HLL) is a variant of LogLog for improving

accuracy [7]. Both of them depend on the observation

of position M shown in Fig. 1, but they adopt different

methods for aggregating the estimation results by a set of

registers. LogLog uses geometric averaging, while HLL uses

harmonic mean, and its purpose is to mitigate the impact of

outlier registers with abnormally large estimations, thereby

appreciably increasing the quality of estimations. As shown

in Table I, the expected error of HLL is 1.04/
√
m, which

is much smaller than that of LogLog 1.30/
√
m. In a word,

HyperLogLog is the state-of-the-art algorithm.

After years of development, it appears to be very difficult to

further compress the memory cost of a cardinality estimator.

However, our HLL-TailCut+ estimator can save memory cost

of HLL again by 45%, based on a long tail cutting technique

to be proposed in this paper. Our estimator can reduce the

size of a register to three bits, which is much smaller than

the five-bit register used by HLL, and meanwhile it provides

the expected relative error of 1.0/
√
m. Therefore, our HLL-

TailCut+ algorithm can both reduce the per-register memory

cost, and discard large outliers to improve accuracy.

III. TRADITIONAL HYPERLOGLOG

In this section, we introduce the traditional HyperLogLog

(HLL) algorithm by details, and then identify its inadequacies,

which motivate the design of our own algorithms.

A. Basic Idea of HyperLogLog

For the ease of understanding, we firstly explain the

estimation procedure of a single HLL register. As shown in

Fig. 1, when this register receives a stream of elements, it

distributes these elements exponentially among a sequence of

buckets, i.e., the probability for the buckets to receive elements

reduces exponentially by the series 2−1, 2−2, 2−3, . . ..
For implementing this exponential distribution, a hash

function h is applied to each stream element e. Let us focus on

the binary representation of a hash value h(e). The probability

of observing the bit pattern 0ρ−11 at its beginning is 1/2ρ,

where ρ is one plus the number of leading zeros. For instance,

if the hash value h(e) has no leading zeros, then ρ(1 . . .) = 1,

and the probability of observing the bit pattern is 1/21. If

1 2 3 4 5 6 7 8 9 10 11 12

1

21

1

22

1

23 1

24
1

25
1

26
1

27
1

28
1

29
1

210
1

211
1

212

Probability of
Receiving Elements:

Bucket Index:

Bucket Occupancy: 1 1 1 1 10 × × × 1 0 0 0

M ′: PCSA M : HLL
Fig. 1. Observation used by PCSA and HyperLogLog.

there are three leading zeros, then ρ(0001 . . .) = 4, and the

chance of observing the bit pattern is 1/24. Therefore, we can

simply regard the symbol ρ as the index of the bucket a stream

element e has been mapped to.

A HLL register will record the largest ρ value for all its

input elements, or say, the register will record the position

of the rightmost non-empty bucket, which is denoted by

M in Fig. 1. Because the probability for this bucket to

receive elements is 1/2M , intuitively, a good estimation for

the number of elements the register receives could be 2M .

However, the cardinality estimation 2M by a single register

is highly variant. For mitigating the high variance, a technique

called stochastic averaging is adopted: The input data stream

S is pseudorandomly split into m substreams and then fed

into m registers. Each register counts the cardinality of its

input substream independently. When needed, their results are

aggregated to estimate the cardinality of the data stream S .

B. Detailed Algorithm Procedure

Suppose we have allocated m registers M0, M1, . . ., Mm−1.

The procedure of HyperLogLog can be divided into two parts:

an online component that processes each stream element and

records critical information into the set of registers, and an

offline analysis component that recovers the stream cardinality

information from the register set.

Online Component. For an element in stream S , we apply the

hash function h to it, and the resultant hash value is denoted by

x. For the binary representation of x, let j be its initial p bits,

where p = log2 m or m = 2p, and let x′ be its remaining bits:

x = h(e), j = 〈x1x2 · · ·xp〉, x′ = 〈xp+1xp+2 · · · 〉.
The integer j decides that the register Mj receives this stream

element. The integer x′ is a hash value that updates Mj :

Mj := max
(

Mj , ρ(x
′)
)

, (1)

where := is the assignment operator, and max(a, b) is a

function that returns the greater value of its two parameters.

As stated before, ρ(x′) is one plus the number of leading zeros

in the binary format of x′, for instance, ρ(0001 . . .)=4. Hence,

when the jth substream is nonempty, the register Mj records

the index of the rightmost nonempty bucket as in Fig. 1.

Offline Analysis Component. Each register Mj in the register

set with 0 ≤ j < m can give an estimation 2Mj for the

cardinality of its substream. For aggregating the substream

cardinalities, HLL uses the normalized harmonic mean:

n̂ = αm ·m2 ·
(
∑

0≤j<m 2−Mj
)−1

, (2)
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where αm is a bias correction constant: α16 = 0.673, α32 =
0.697, α64 = 0.709, αm = 0.7213/(1+1.079/m) if m≥ 128.

C. Shortcomings of HyperLogLog

HyperLogLog is an excellent algorithm that provides the

relative standard error 1.04√
m

at the cost of 5m bits memory.

Its high accuracy and memory compactness have triggered

extensive adoption in IT industries, e.g., Google [9], Ask.com

[16] and PostgreSQL. However, this algorithm still possesses

two inadequacies which open doors to further improvements.

Threat of Outliers. As mentioned before, the observation used

by HyperLogLog, which is the value of each register Mj , is

highly variant. To give an impression of the high variance, we

illustrate in Fig. 2 the probabilistic distribution for a register

to carry an arbitrary value k. The plot (a) is drawn in normal

scale, and the plot (b) is drawn by log scale for Y-axis. The

mathematical formula of this probabilistic distribution will

be described later in Eq. (3). Here, the two plots show that

it is a right-skewed distribution with a long tail stretching

out to the right side of the peak. Note that this property of

Mj distribution has no relation with the input stream data. It

originates from the uniform distribution of hash function h.

The registers whose value strongly deviates from the peak

are called outliers, which are most likely to exist on the right-

side long tail of the distribution as illustrated in Fig. 2(b).

In order to mitigate the impact of the outliers existing on

the right tail that have abnormally large register values, HLL

adopts harmonic average to aggregate the estimation results

of a register set. Our intuition is to completely remove the

impact of large outliers, by cutting off the right-side long tail

on such a histogram, which contains plenty of outliers instead

of useful information. It may appear that the outlier rejection

can be easily implemented by discarding the registers whose

values are much larger than the average. But the difficulty is

how to achieve the tail cutoff when the size of each register

is reduced to less than five bits for space saving.
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Fig. 2. Probability of register values, when m=512 and load factor n
m

=100.

Inefficient Register Encoding. The second inadequacy of

HyperLogLog is its inefficient encoding of each register

state. The size of a HLL register is five bits long, so that

the cardinality estimation by a single register can be up to

22
5 ≈ 4×109. A recent paper proposed to expand the register

size to six bits, in order to support the counting of big data on

Tera or Peta scale [9]. On the contrary, we discover that it is

possible to reduce the register size to four bits or even to three

bits, and meanwhile support the same large operating range.

Our inspiration comes from the Fig. 2(b), where only for

the sixteen highest bars between 4 and 19, their probabilities

are greater than 0.01%. It implies that, when the number of

registers m is on the scale of thousands, the spread of a register

set (i.e., the largest register value minus the smallest register

value) is less than sixteen in most cases. From the perspective

of information theory, it is redundant to use five bits to encode

each register, and four bits may be sufficient in most cases.

Moreover, in Fig. 2(a), only for the eight highest bars

between 5 and 12, their probabilities are greater than 2%.

These eight bars are the most informative part of a histogram,

and others are more prone to contain outliers, which implies

the possibility of abandoning the right tail for outlier rejection

and encoding each register by only three bits memory.

Conclusion. Our basic idea is that the memory per register

may be compressed to four bits or even to three bits with

no significant loss of useful information. Due to the smaller

register size, we can allocate a larger number of registers from

the same memory budget, which drives down the estimation

error. However, what we have proposed is lossy compression

of registers, and the challenge is how to avoid its side effect.

IV. MLE-BASED HYPERLOGLOG

Before introducing our algorithm, we replace the estimation

equation of HyperLogLog in (2) with an alternative formula in

(5), which is based on MLE (maximum likelihood estimation).

The analysis in this section is the theoretical foundation of

our own algorithm. Moreover, HyperLogLog has another

inadequacy, which is strongly biased when handling small

cardinalities (see Fig. 6(a) in the simulation section). Our

MLE-based substitute can solve this problem and provide

unbiased estimations in the entire measurement range.

A. Maximum Likelihood Estimator

In this subsection, we will present a maximum likelihood

estimator for the number of distinct elements in a data stream.

We analyze the probabilistic distribution for a HLL register

to carry an arbitrary k value, which has been illustrated in

Fig. 2, and we have the following theorem.

Theorem 1 (Probability of Register Value). The probability

for a register (for instance, the jth register Mj) to demonstrate

a particular value k is approximately

Pr{Mj = k} ≈
{

(

1− 1
m

)n
if k = 0,

(1− 1
m2k

)n − (1− 1
m2k−1 )

n if k ≥ 1.
(3)

Proof. Check Appendix A of the extended version [14].

For an arbitrary non-negative k value, let Nk be the

number of registers, among the m registers, which carry the k
value. If observing exactly Nk registers carrying a particular

k value, the probability of this observation is Pr{Mj =
k}Nk , assuming these registers are mutually independent.

Then, the combined probability of making the observations

4
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N0, N1, . . . , N∞ for all the k values from zero to infinity is

as follows, under the condition that the stream cardinality is n.

Pr{N0, N1, . . . , N∞ | n} = m!
N1!N2!...N∞!

∞
∏

k=0

Pr{Mj = k}Nk

However, it is impossible to measure the number of registers

Nk for an arbitrarily large k value up to infinity, because each

register are given limited memory space (typically 5 bits). We

use a symbol K to characterize a register’s up-bound capacity

of recording k value. For example, if each register is given 5

bits, then it can record a limited range of k values starting from

0 up to 25−1 = 31, and in this case, K = 32. If each register

is of 4 bits, then the threshold K = 24 = 16. Considering

this upper limit of recording k values, the above probability

function needs to be modified, assuming only the availability

of the observations N0, N1, . . . , NK−1.

Pr{N0, N1, . . . , NK−1 | n} ≈ m!
N1!N2!...NK−1!

K−1
∏

k=0

Pr{Mj = k}Nk

This probability function is also called the likelihood of

unknown parameter n, when given the observations about the

number of registers carrying each value: N0, N1, . . . , N∞.

L(n |N0, N1, . . . , NK−1) ≈ m!
N1!N2!...NK−1!

K−1
∏

k=0

Pr{Mj=k}Nk (4)

Applying the well-known maximum likelihood estimation,

we can find the best n value that maximizes this log-likelihood

function, and we use the symbol n̂ to denote this optimized

estimation of the stream cardinality n.

n̂ = argmax
n

logL(n | N0, N1, . . . , NK−1) (5)

B. Gradient Ascent Solution for MLE

In this subsection, we present our solution to the MLE

optimization problem in (5). Although it is viable to solve this

problem symbolically by finding the closed-form root to the

equation ∂
∂n

logL(n | N0, N1, . . . , NK−1) = 0, this solution

will be complex and have low flexibility (We will demonstrate

this point in the next section, when the symbol K is configured

to some other value smaller than 25). Therefore, we choose to

solve this optimization problem numerically.

We use the following iterative optimization procedure to

obtain an optimized estimation of stream cardinality n:

n̂(i+1) = n̂(i) + η · ∂
∂n̂(i) logL(n̂(i) | N0, N1, . . . , NK−1), (6)

where ∂
∂n

logL(n |N0, N1, . . . , NK−1) is the gradient of log-

likelihood function, whose mathematical expression is given in

Appendix B, n̂(i) is the current estimation of n, n̂(i+1) is the

next-round estimation, η is the optimization step size assigned

to 2B m, and B is the smallest value among all registers.

For the above iterative optimization method, its computa-

tional cost is only to evaluate the gradient of log-likelihood

function for ten or twenty rounds. Moreover, we can speed up

its convergence, if we generate a good initial guess using the

closed-form cardinality estimator in (2) by HyperLogLog.

V. HLL-TAILCUT ALGORITHM

In this section, we reduce the size of each HyperLogLog

register from five bits to four bits, and we call the new

algorithm HLL-TailCut, because it essentially applies the long

tail cutoff technique to the histogram in Fig. 2. HLL-TailCut

reduces the memory cost of HLL by 20%. Unlike HLL, it can

support the counting of Tera- or Peta-scale data streams.

A. Base Register and Offset Registers

Our basic idea is to use a shared base register for storing

the smallest value among the set of HyperLogLog registers, so

that the m registers only need to store their offsets relative to

the base register. Intuitively, the offset stays in a much smaller

range than 25 (see Fig. 2) and can be encoded by less than five

bits. In following, we explain how to maintain the base register

and the m offset registers, upon the arrival of stream elements.

Let B be the shared base register that records the smallest

value of the HLL register set. Due to the base register, Eq. (1)

that updates each offset register M̃j should be changed to

M̃j := max
(

M̃j , ρ(x′)− B
)

, (7)

where M̃j has an upper tilde indicating it is the jth offset

register that records the offset of Mj relative to base register

B, ρ(x′) is the index of the bucket a stream element is mapped

to, and ρ(x′)−B is the offset of the bucket index relative to B.

Handle Overflow of Offset Register. We define each offset

register to be four bits long. Thus, an offset register’s recording

capacity K is 24 = 16, implying that the recorded offset value

must be smaller than K = 16. However, occasionally, the

offset values ρ(x′) − B of some stream elements are at least

K. We use the term “overflow” to refer to the attempts of

updating the offset register M̃j to the K value or above.

In order to handle the overflow event, we scan the m offset

registers to find the smallest offset value, which is denoted as

∆B. If ∆B is non-zero, it implies that the shared base register

B can be increased by this amount to reduce the offset value

stored in each offset register. We call this operation “update

the base register”: Whenever B is increased by ∆B, each offset

register M̃j needs to be decreased by ∆B, as they record the

offsets to B. Thanks to this base register updating operation,

we can easily count the data streams on Tera or Peta scale.

After the increase of the base register by ∆B, the new

offset value ρ(x′) − B in (7) may become smaller than K.

If that is true, then the overflow event disappears. Otherwise,

the overflow problem can not be resolved, and the jth offset

register has to be truncated by the cutoff bound K as follows.

M̃j := max
(

M̃j , min(ρ(x′)− B, K − 1)
)

(8)

B. Pseudocode of HLL-TailCut

In this subsection, we describe the procedure of the HLL-

TailCut algorithm (also abbreviated as HLL-TC), which can

be divided into two parts: an online component that updates

the base register B and offset registers M̃j , 0 ≤ j < m, upon

the arrival of stream elements, and an offline component that

estimates the stream cardinality n using these registers.

5
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We present the pseudocode of the online component in

Algorithm 1. We use the term “truncated register” to refer

to the sum of base register B and offset register M̃j . The

Algorithm 1 essentially maintains a set of truncated registers

B + M̃j , 0 ≤ j < m. Different from the HLL register Mj

maintained by (1), these truncated registers chop off the long

tail of a histogram (like in Fig. 2) by the bound B+K, and the

chopped part is stacked above the (B+K−1)th bar, due to the

line 9. Thus, the resultant histogram will exhibit an edge peak

distribution with a spike close to the tail truncation point.

Algorithm 1: Online Component of HLL-TailCut

1 initialize B and M̃j to zero, for each j ∈ [0,m)
2 foreach element e in data stream S do

3 x :=h(e), j := 〈x1x2 · · ·xb〉, x′ := 〈xb+1xb+2 · · · 〉
4 if ρ(x′)− B ≥ K then // detect overflow

5 ∆B := min0≤j<m M̃j

6 if ∆B > 0 then

7 B := B +∆B // update base register

8 foreach j ∈ [0,m) do M̃j := M̃j −∆B

9 M̃j := max
(

M̃j , min(ρ(x′)− B, K − 1)
)

Since the online component above no longer maintains the

HLL register Mj , we need to modify the offline estimation

equation in (2), using the newly designed base register B and

offset registers M̃j . A straightforward solution is to replace

Mj by the jth truncated register B + M̃j .

n̂ = αm ·m2 ·
(
∑

0≤j<m 2−(B+M̃j)
)−1

(9)

C. Performance Evaluation of HLL-TailCut

In this subsection, we evaluate how the estimated result by

(9) is affected, when we truncate the right-side tail of a HLL

histogram by B+K. In Appendix C of extended version [14],

we prove HLL-TC in (9) can generate unbiased estimations,

if each offset register M̃j is given four-bits memory. In

Appendix C, we also prove that, if multiple HLL-TC

estimators are deployed at different locations, these estimators

can be composed to estimate the union of data streams.

In following, we use experiments to verify that the tail

cutoff across the boundary B+16 has negligibly small impact

to the cardinality estimation by (9). We plot the evaluation

results in Fig. 3. The subfigure (a) illustrates the estimation

bias E(n̂− n)/n, where n is the actual cardinality and n̂
is the estimated value. The subfigure (b) depicts the relative

standard deviation of estimated results
√

V ar(n̂)/E(n̂). We

illustrate both the results of LinearCounting and HLL-TC,

which are configured with the same number of memory units:

LinearCounting is given m bits, and HLL-TC is given m offset

registers. Plot (a) shows that the tail cutoff won’t cause severe

bias to HLL-TC, when the cutoff bound is B + 16.

VI. HLL-TAILCUT+ ALGORITHM

In this section, we reduce the size of each offset register to

three bits, and save the memory cost by over 40% than HLL.
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Fig. 3. Performance of HLL-TailCut allocated with 512 offset registers, each
of which is given four bits memory.

A. Bias Problem of the Naive HLL-TailCut

When the offset register size reduces to three bits, we assign

the cutoff bound K to 23 = 8, and then we can reuse the online

component in Algorithm 1 to maintain the base register B and

each offset register M̃j , upon the arrival of stream elements.

However, the offline analysis component in (9) used by the

naive HLL-TailCut has a serious “estimation bias” problem,

which will be identified and explained as follows.

HLL-TC adopts an estimation equation in (9) similar to

HyperLogLog. For this solution, we illustrate its experimental

results in Fig. 4. The subfigure (a) shows that HLL-TC with

cutoff bound K = 8 produces the estimation bias of −5.2%.

This is because, when the offset register is three bits and K
reduces to eight, the percentage of registers truncated by (8),

called overflow probability, will greatly increases to about 5%.

Thus, a non-negligible fraction of offset registers are truncated.

To make things worse, in Fig. 4(a), the bias of HLL-TC

exaggerates to −5.2% by a non-linear curve, implying that we

cannot compensate such bias simply by applying a constant

corrector to the biased estimation result.
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Fig. 4. Performance of HLL-TailCut configured with 512 offset registers,
each of which is given three bits.

Interestingly, the standard deviation of HLL-TC decreases

from 4.6% shown in Fig. 3(b) to 4.4% shown in Fig. 4(b).

This is because more outliers in the long tail are discarded, as

the tail cutoff bound changes from 16 to 8. More aggressive

outlier rejection brings a small degree of accuracy gain.

B. Probabilistic Model of Truncated Register

To address the negative bias problem of HLL-TC, we will

propose a HLL-TailCut+ algorithm, which modifies the MLE-

based HyperLogLog algorithm discussed in Section IV. We

have already depicted its performance in Fig. 4. Plot (a) shows
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that it can provide unbiased estimations in the entire range, and

plot (b) shows that it has comparable accuracy with HLL-TC.

Before introducing this new algorithm, in this subsection,

we analyze the probability of a truncated register B + M̃j to

exhibit an arbitrary k value. The key difficulty for this analysis

is that, during the execution time of the online component, the

shared register B is not a fixed value, but gradually increases

as the register set receives more and more stream elements.

We begin by defining several notations. Let b be the final

value which the base register B has been updated to. Note

that b is typically a small value even for a very large stream

at the scale of 109. For example, let the number of registers

m be 1024. When the stream size n equals 102m, the b value

alternates between 4 and 5, as in Fig. 7(a). When n increases

to 106m (about 109), the b value grows only to 17 or 18.

As the base register B undergoes the step-by-step increase

in the range of [0, b], the register set consisting of m offset

registers will receive different numbers of stream elements.

• When B is equal to 0, we assume that the register set

receives n0 distinct stream elements.

• When B is equal to 1, the register set receives n1 stream

elements that are distinct from the previous n0 elements.

• . . .

• When B is equal to b, the register set receives nb stream

elements that are distinct from the elements n0, n1, . . . ,
nb−1 received when B is equal to the previous values.

The purpose of our problem is to estimate the total cardinality

n of the data stream, which is equal to n0 + n1 + . . .+ nb.

Let M̃
(0)
j , M̃

(1)
j , . . . , M̃

(b)
j be the values of the jth offset

register, when the base register B is fixed to 0, 1, . . . , b and

the register set independently receives n0, n1, . . . , nb distinct

elements, respectively. For example, M̃
(1)
j is the value of jth

offset register, when the base register B is fixed to 1 and

the register set receives n1 unique elements that are totally

different from the n0 elements received when B is still zero.

After the register set receives all the n = n0+n1+ . . .+nb

stream elements, the jth truncated register B + M̃j becomes

B + M̃j = max(B + M̃
(0)
j , B + M̃

(1)
j , . . . , B + M̃

(b)
j ).

Because B+ M̃
(0)
j ,B+ M̃

(1)
j , . . . ,B+ M̃

(b)
j are independent,

the cumulative probability for B+M̃j (i.e., the probability for

the jth truncated register to carry a value of at most k) is

Pr{B + M̃j ≤ k | n0, n1, . . . , nb} =
∏

0≤i≤b Pr{B + M̃
(i)
j ≤ k | ni}. (10)

Here, it needs the cumulative distributions of the jth truncated

register Pr{B+M̃
(i)
j ≤ k | ni}, when the base register is fixed

to a value i ranging from 0 to b. If the base register is equal to

b value, the cumulative distributions Pr{B + M̃
(b)
j ≤ k | nb}

is given in the following theorem. When the base register is

equal to other values 0, 1, . . ., or b− 1, we can easily obtain

their corresponding cumulative probability, if we replace the

symbol b in (11) by 0, 1, . . ., or b− 1, respectively.

Theorem 2 (Cumulative Distribution of Truncated Register

B + M̃
(b)
j with Fixed Base Register). When the base register

B is fixed to a value b and the register set receives nb distinct

elements, the probability for the truncated register B + M̃
(b)
j

to exhibit a value of no more than k is as follows.

Pr{B + M̃
(b)
j ≤ k | nb} ≈ (11)

{

(

1− 1
m2k

)nb
if 0 ≤ k ≤ b+K − 2

1 if k ≥ b+K − 1

Proof. Directly derived from Theorem 1.

By applying (11) to (10), we can obtain the cumulative

probability of the jth truncated register Pr{B + M̃j ≤
k | n0, n1, . . . , nb}. We refrain from expanding this formula,

which otherwise will become too complicated. Then, with the

cumulative probability in (10), we can derive the probability

density function for the jth truncated register B + M̃j .

Pr{B + M̃j = k | n0, n1, . . . , nb} = (12)






















0 if k < b

Pr{B + M̃j ≤ k | n0, n1, . . . , nb} if k = b

Pr{B + M̃j ≤ k | n0, n1, . . . , nb} −
Pr{B + M̃j ≤ k−1 | n0, n1, . . . , nb}

if k > b

Here, the probability for the truncated register to take a value

less than b is zero, because the base register B increases to b
after receiving all the n elements, which makes it impossible

for the truncated register B + M̃j to be smaller than b.

C. Maximum Likelihood Estimator

As the probability for a truncated register B + M̃j to carry

an arbitrary k value is available in (12), the only problem

that remains is how we use this parameterized probabilistic

model with b unknown variables n0, n1, . . . , nb, to generate

an unbiased estimation of the total stream cardinality n.

We address the problem by estimating the b unknown

parameters one by one. When the base register B is about

to increase from zero to one, we estimate n0, the number

of distinct elements received. To accomplish this task, since

the base B is still zero, we can use directly the maximum

likelihood estimator in Section IV. Note that when the

estimation of n0 is smaller than m, we will use instead the

estimated result by LinearCounting [19] for better accuracy, as

inspired by the work [16] that argues LinearCounting is more

accurate than HyperLogLog if given enough memory space.

Then, following the principle of mathematical induction, we

assume that the stream cardinalities n0, n1, . . . , nb−1 all have

been estimated as n̂0, n̂1, . . . , ˆnb−1, at the time that the base

register B is about to update to 1, 2, . . . , b, respectively. Based

on them, we will further estimate the next unknown variable

nb. The likelihood function of nb is as follows.

L(nb | N0, N1, . . . , Nb+K−1) =
m!

N0!N1!...Nb+K−1!
·

∏b+K−1
k=0 Pr{B + M̃j = k | n̂0, n̂1, . . . , ˆnb−1, nb}Nk (13)
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The probability density function Pr{B+M̃j = k | n0, n1, . . . ,
nb} of truncated register B+M̃j is in (12). We replace the true

values of n0, n1, . . . , nb−1 by their estimated values in (13).

By maximizing the log-likelihood function of nb, we obtain

an optimized estimation of nb.

n̂b = argmax
nb

logL(nb | N0, N1, . . . , Nb+K−1) (14)

To solve this maximum likelihood problem efficiently, we use

a steepest-ascent optimization method, which is described in

the Appendix D of the extended version [14].

Because the stream cardinalities n0, n1, . . . , nb all have

been estimated, we can obtain an estimation of the total stream

cardinality as n̂ = n̂0 + n̂1 + . . .+ n̂b. We call this algorithm

HLL-TailCut+ (abbreviated as HLL-TC+). Unlike HLL-TC,

this algorithm has no bias problem as illustrated in Fig. 4(a).

D. Analysis of Memory Cost

The memory cost of HLL-TC+ is the number of offset

registers m multiplied by three bits, and its relative standard

error is roughly 1.0√
m

. We obtain this relative error 1.0√
m

by

applying HLL-TC+ to a fixed cardinality (e.g., ten million) for

ten thousand times, and then calculating the relative standard

deviation of estimated results. Later in Table II, we will

use more extensive experiments to verify this relative error

equation also applies for other m values and other n values.

Since the standard error of HLL-TC+ is 1.0√
m

and that of

HLL is 1.04√
m

, we can show HLL-TC+ only needs 55% memory

of HLL to attain the same accuracy. Let mHLL-TC+ (or mHLL)

be the number of registers used by HLL-TC+ (or HLL). Then,

we have 1.0√
mHLL-TC+

= 1.04√
mHLL

, to attain the same accuracy. Since

the register size of HLL is five bits and that of HLL-TC+ is

only three bits, the memory cost of HLL-TC+ divided by that

of HLL is
MemoryHLL-TC+

MemoryHLL
= 3 bits ·mHLL-TC+

5 bits ·mHLL
≈ 3

5 ·
(

1.0
1.04

)2 ≈ 55%.

VII. EXPERIMENTS

In this section, we evaluate the performance of our proposed

HLL-TC and HLL-TC+ algorithms, and compare them with

state-of-the-art algorithms, including HyperLogLog (HLL) [7]

and HyperLogLog+ (HLL+) [9]. Note that we have shared

online the source code of all these four algorithms [15].

Experiment Setup. For each cardinality estimator, we will

evaluate two performance metrics: the average estimation bias

and the average estimation error when given a same amount of

memory. We will evaluate the performance of the cardinality

estimators under three different scenarios. First, we assume

very limited memory budget, no more than a few hundreds

bytes per stream, to support cardinality measurements with

coarse accuracy ranging from 4% to 10%. Second, we

assume the available memory is several kilobytes per stream,

which enables highly accurate estimations with the expected

errors lower than 2% or even 1%. Third, we would like to

verify whether our HLL-TailCut+ estimator can support the

measurement of extra large streams whose cardinalities exceed

4× 109. This bound is important since a five-bit HLL register

can only count cardinalities up to 22
5 ≈ 4× 109.

Coarse-Accuracy Estimation. We consider the coarse

accuracy σ ≈ 4.4%. Then, the number of registers m should be

(1.0/0.044)2 ≈ 512 for HLL-TC+, occupying 512×3 = 1.54k
bits memory. We give the same amount of memory to the other

three algorithms, and depict their performance in Fig. 5.

Fig. 5(a) shows that all four algorithms are approximately

unbiased. Fig. 5(b) shows that the estimation error of HLL is

slightly smaller than the error of HLL+. This is because HLL

defines the register size to be five bits to support the counting

of data on Giga scale, while HLL+ enlarges the register size

to six bits, to extend the operating range to Tera or Peta

scale. Hence, when given the same memory budget, HLL+ can

allocate a smaller number of registers than HLL. Fig. 5(b) also

shows that our HLL-TC and HLL-TC+ algorithms can provide

smaller estimation error. This is because HLL-TC and HLL-

TC+ have compressed the register size to four bits and three

bits, respectively. Given the same amount of memory, they can

allocate more registers to achieve higher accuracy.
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Fig. 5. Compare cardinality estimators with the same 1.54k bits memory.

Fine-Accuracy Estimation. We consider the estimation error

σ ≈ 1.1%. To achieve such fine accuracy, HLL-TC+ needs

about (1.0/0.011)2 ≈ 8192 registers, which occupies 24.58k
bits memory. We give the same amount of memory to the other

three algorithms, and evaluate their performance. Fig. 6(b)

shows that HLL-TC+ provide the best accuracy among the

four algorithms, and its expected error is 1.0/
√
m ≈ 1.1%.
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Fig. 6. Compare cardinality estimators with the same 24.58k bits memory.

Fig. 6(a) shows that HLL has a high spike that is strongly

biased. This is because, in the small region around 2.5m =
2.5 · 8192 · 3 bits

5 bits
≈ 12288, HLL makes a switch between

LinearCounting and its raw estimation equation in (2). This

bias problem has also been elaborated by previous work [9].

As shown in Fig. 6(a), this bias problem has been solved

by HLL+, HLL-TC and HLL-TC+, however using different

methods. HLL+ corrects the bias in a brute-force way [9]: It
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empirically calculates the bias of 200 hundred reference values

in the small region from 2m to 5m, and then interpolates

between the 200 reference points to determine the correction

to apply for any given raw estimation value by (2). In contrast,

our HLL-TC addresses this problem elegantly, by substituting

the equation (2) with a MLE estimator in (5), within the small

region from 2m to 5m. Our HLL-TC+ also does not have the

bias problem, because it uses the MLE estimator in (14).

Extra Large Measurement Range. The previous experiments

only show the evaluation results for cardinalities up to one

million. In following, we will verify that our HLL-TC+ can

measure extra large streams that have over four billions distinct

elements. Unlike HyperLogLog+ which increases the register

size to six bits to support such large streams, we only need an

array of three-bits offset registers (whose number is m) plus

a single base register which is at least six bits long.

We list in Table II the average estimation bias and error of

our HLL-TC+ algorithm, when it is given different numbers

of registers m, such as 210, 212 and 213. We only show the

experimental results of a single stream cardinality value 16×
109, since it takes days to process such a large data stream

for ten thousands times. In this table, the second column lists

the average estimation bias of HLL-TC+, which is negligibly

small as compared with its standard deviation shown in the

third column. This implies that our algorithm can unbiasedly

estimate extra large streams beyond the bound of four billions.

TABLE II
APPLY HLL-TC+ TO DATA STREAMS WITH 16× 109 DISTINCT ELEMENTS.

Register Number (m) Avg Bias Std Deviation Error Eqn

1024 -0.02% 3.13% 1.00/
√
m

4096 -0.06% 1.56% 1.00/
√
m

8192 -0.01% 1.11% 1.00/
√
m

The last column of Table II rewrites the standard deviation

of estimated results (shown in the third column) into the form

of a constant divided by
√
m. It shows that the standard

deviation of our algorithm can be accurately approximated by

1.0/
√
m. According to our previous analysis in Section VI-D,

if the expected relative error of HLL-TC+ is 1.0/
√
m, then it

can save 45% memory cost than traditional HyperLogLog.

ACKNOWLEDGEMENT

This work is supported in part by National Natural Science

Foundation of China under Grants 61502098, 61632008

and 61320106007, by Jiangsu Provincial Natural Science

Foundation of China under Grant BK20150629, by National

Science Foundation of United States under Grant STC-

1562485, by a grant from Florida Cybersecurity Center, by

Jiangsu Provincial Key Lab of Network and Information

Security under grant BM2003201, by Key Lab of Computer

Network and Information Integration of Ministry of Education

of China under Grant 93K-9, and by Collaborative Innovation

Center of Novel Software Technology and Industrialization.

VIII. CONCLUSION

This paper studies a fundamental problem called cardinality

estimation, in the domain of one-pass processing of streaming

data. We present a new solution named HLL-TailCut+, which

is able to reduce memory consumption by 45% than the

state-of-the-art HyperLogLog. This remarkable improvement

originates from a technique we proposed that truncates the

right-side long tail of the register distribution of HyperLogLog.

This technique brings two key benefits — improve estimation

accuracy by rejecting outliers in the long tails, and compress

the register size by recording only eight highest bars in the

histogram of HLL. Therefore, our algorithm can provide the

standard error 1.0√
m

using only three-bit memory per register.

Moreover, this HLL-TailCut+, based on maximum likelihood

estimation, can provide approximately unbiased estimations

in the entire range of cardinality, even at the point where it

switches to LinearCounting for handling small streams.
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