
Temporally or Spatially Dispersed Joint RFID Estimation
Using Snapshots of Variable Lengths

Qingjun Xiao
Key Lab of Computer Network and Information

Integration (Southeast University)
Ministry of Education, China
csqjxiao@seu.edu.cn

Min Chen Shigang Chen Yian Zhou
Department of Computer and Information

Science and Engineering
University of Florida, Gainesville, FL, USA
{min, sgchen, yian}@cise.ufl.edu

ABSTRACT

Radio-frequency identification (RFID) technology has been
widely used in applications such as inventory control, object
tracking, supply chain management. An important research
is to estimate the number of tags in a certain area covered by
readers. This paper extends the research in both temporal
and spatial dimensions to provide much richer information
for monitoring the dynamics of distributed RFID systems.
More specifically, we are interested in estimating the joint
properties of any two snapshots taken at arbitrary location-
s and arbitrary times in a system. With many practical
applications, there is however little prior work on this prob-
lem. We propose a joint RFID estimation protocol based
on a simple yet versatile snapshot construction. Given the
snapshots of any two tag sets, although their sizes may be
very different, we design a way to combine their information
and more importantly derive formulas to extract the joint
properties of the two tag sets from the combined information,
with an accuracy that can be arbitrarily set. Through formal
analysis, we determine the optimal system parameters that
minimize the execution time of taking snapshots, under the
constraints of a given accuracy requirement. Our simula-
tion results show that the proposed protocol can reduce the
execution time by multifold when comparing with the best
alternative approach in the literature.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: [Distribut-
ed Systems]; C.4 [Performance of Systems]: [Measure-
ment techniques]; H.4 [Information Systems Applica-
tions]: Miscellaneous

General Terms

Performance, Algorithm

Keywords

RFID; Cardinality Estimation; Random Hashing

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MobiHoc’15, June 22–25, 2015, Hangzhou, China.

Copyright c© 2015 ACM 978-1-4503-3489-1/15/06 ...$15.00.

http://dx.doi.org/10.1145/2746285.2746289.

1. INTRODUCTION
Radio-frequency identification (RFID) technology has been

widely used in various commercial applications, including in-
ventory control, object tracking, supply chain management,
auto-payment, etc [13, 7, 3, 9, 10]. RFID tags (each carrying
a unique identifier) are attached to merchandise at retail
stores, equipments at hospitals, or goods at warehouses,
allowing an RFID reader to quickly identify products, ac-
cess properties of each individual item, or collect statistical
information about a group of items.
An important system function is called RFID estimation [5,

4, 12, 8, 22, 15, 16, 21, 2], which is to estimate the number of
tags in a certain area covered by readers. This basic function
can be used to monitor the inventory level in a warehouse,
the sales in a retail store, and even the popularity of attrac-
tions in tourism [2]. It can also serve as a pre-processing step
to make other functions (such as tag identification [18, 11,
6]) more efficient. RFID estimation takes much less time to
perform than a full system scan that collects all tag IDs. This
makes it valuable since RFID systems operate at low wireless
rates and the execution time has been the key performance
metric in system design. Moreover, it does not identify any
tags, which avoids the privacy issue, particularly in scenarios
where the party performing the operation (such as warehouse
or port authority) does not own the tagged items.

Motivation: This paper extends RFID estimation in both
temporal and spatial dimensions to provide much richer in-
formation about the dynamics of a distributed RFID system.
We use two applications to explain the problems of tempo-
rally dispersed RFID estimation and spatially dispersed esti-
mation, respectively. Consider the application of monitoring
the inventory dynamics of a warehouse over time. We are
interested in the amount of goods moving in (i.e., the number
of new tags) and the amount moving out (i.e., the number
of departure tags) between any two reference time points,
without identifying the tag IDs, where the reference time
points may be evenly spaced by time intervals of a certain
length. The problem cannot be easily solved simply by esti-
mating the number of tags in the warehouse after each time
interval by traditional approaches [5, 4, 12, 8, 22, 15, 16, 21,
2]. For instance, if the number of tags at time 1 is estimated
to be 1000 and so does the number at time 2, we will not be
able to know whether no new tag has moved in or 1000 new
tags have moved in while all old tags have moved out. To
handle this problem, we need to take snapshots with more
detailed information about existing tags, such that from any
two snapshots taken at different times, we will be able to
estimate the joint properties of the corresponding two tag
sets, such as their union, intersection and difference, which

247

provide information for stocking dynamics about product
inflow and outflow.

In the second application, consider the supply chain man-
agement in a large logistics network. As tagged products
are shipped from location (component factory, assembly line,
warehouse, port, or other storage/retail facility) to location,
if each location takes periodic snapshots of its tag set and
keeps a series of such snapshots over time, we will be able
to make queries for joint estimation between any two snap-
shots, which may be taken from different locations or from
the same location at different times. Such joint estimation,
when performed over time across the network, gives a picture
about how goods flow through the logistics network. For
one application, this information can help diagnose errat-
ic shipments by identifying unexpected volumes that move
over supply chains with significant deviation from a pre-
established business plan — it has been reported that, due to
such logistic errors, more than 65% of the inventory records
did not match the physical inventory [14]. Without any
automatic tools, we will have to resort to manual inventory
check to discover the errors, which is laborious, expensive
and slow, especially when such inventory task needs to be
performed at daily basis.

Moreover, comparing with traditional RFID estimation
[5, 4, 12, 8, 22, 15, 16, 21, 2] (which were designed to operate
at a single time and a single place), the ability to jointly
consider any two temporally or spatially dispersed snapshots
will enable us to expand the applications mentioned earlier,
for example, by providing more detailed information about
changes in inventory and sales, by monitoring the flows of
tourists moving from place to place in a theme park, or by
serving as a pre-processing step to make some sophisticat-
ed functions such as continuous tag monitoring [17] more
efficient.

Problem, Challenge and Prior Art: From the above
applications, we abstract the problem of joint RFID estima-

tion, which is to estimate the joint properties of two arbitrary
sets of tags at different times or different locations in a large
distributed RFID system. The joint properties include the
cardinalities of the union, intersection and difference of the
two sets.

The key challenge is that when a snapshot is taken for
one tag set, we do not know which other set (at different
time/location) the joint estimation will be made with. In
fact, the snapshot can be paired with any other snapshot
taken in the past or future in the system.

There is little prior work on this practically interesting
problem. Directly related is the differential estimation method
(DiffEstm) [20], which focuses on the difference between two
sets and adopts a different problem model. It uniformly sets
the sizes of all snapshots based on the worst-case situation so
that any two can be paired. This is very inefficient because
the tag sets in a system can have very diverse sizes. For
example, in the previous logistics network application, a
warehouse may sometimes be almost empty, while carrying
tens of thousands of items at other times. Suppose the
largest set the system can handle is 50,000. Even if a tag
set at a certain time is down to hundreds, the size of its
snapshot will still have to be set according to 50,000 in [20].

Our Contributions: First, we propose a new solution for
the generalized joint RFID estimation problem based on a
simple yet versatile snapshot construction. It takes only
one pass of communication between a reader and tags to
construct the snapshot of a given tag set. The size of the

snapshot is roughly proportional to the size of the tag set,
instead of being fixed to a large worst-case value. Given the
snapshots of any two tag sets, although their sizes may be
very different, we propose a way to combine their informa-
tion and more importantly derive formulas to extract the
joint properties of the two sets from the combined informa-
tion.
Second, we formally analyze the means and variances of

the estimated properties computed from the formulas. We
show that the formulas produce asymptotically unbiased re-
sults and they estimate the joint properties with an absolute
(probabilistic) error bound that can be set arbitrarily. We
also derive the formulas for determining the optimal system
parameters that minimize the execution time of taking snap-
shots, under the constraints of a given accuracy requirement
for joint estimation.
Third, we perform extensive simulations to complement

the theoretical analysis. The results show that by allowing
the snapshots to have variable sizes, the new solution signifi-
cantly outperforms the existing method. For example, under
the same accuracy requirement, the new solution achieves
about 240% improvement in execution time when comparing
with DiffEstm.

2. PROBLEM DEFINITION
Consider a large distributed RFID system such as a supply-

chain network, consisting of multiple locations, where tagged
objects are shipped from location to location. At any time
and any location, there is a set of tags. Consider two ar-
bitrary sets of tags, N and N ′, at different locations or at
the same location but different times. We study the joint
properties of the two sets, including their intersection, union
and difference.
Let n = |N |, n′ = |N ′|, u = |N ∪ N ′|, m = |N ∩ N ′|,

d = |N − N ′|, and d′ = |N ′ − N |. With loss of generality,
we assume N is a larger set than N ′, and hence n ≥ n′. The
joint RFID estimation problem is to provide estimations û,
m̂, d̂, and d̂′ for u, m, d and d′ respectively, such that the
following pre-defined accuracy requirements are met:

Prob{û− k ≤ u ≤ û+ k} ≥ α (1)

Prob{d̂− k ≤ d ≤ d̂+ k} ≥ α (2)

Prob{m̂− k ≤ m ≤ m̂+ k} ≥ α (3)

Prob{d̂′ − k ≤ d′ ≤ d̂′ + k} ≥ α, (4)

where α is a probability value, and k is a probabilistic error
bound. For example, if α = 95% and k = 100, it requires
that the absolute error of each estimation should be within
k for a probability of no less than 95%.
An alternative way of specifying the estimation accuracy

is based on a relative error ǫ ∈ (0, 1).

Prob{û(1− ǫ) ≤ u ≤ û(1 + ǫ)} ≥ α (5)

Prob{d̂(1− ǫ) ≤ d ≤ d̂(1 + ǫ)} ≥ α (6)

Prob{m̂(1− ǫ) ≤ m ≤ m̂(1 + ǫ)} ≥ α (7)

Prob{d̂′(1− ǫ) ≤ d′ ≤ d̂′(1 + ǫ)} ≥ α, (8)

where the relative errors û−u
û

, d̂−d

d̂
, m̂−m

m̂
and d̂′−d′

d̂′
are

bounded by ±ǫ at a probability of at least α.

248

We do not adopt this model because it is very expensive
or even impossible to achieve as the values of m, d and d′

can be very small (down to zero). Consider m = 0. In this
case, we will have to make sure that m̂ = m = 0 in order
for (7) to be met, which means precise measurement of the
empty intersection, i.e., V ar(m̂) = 0. Because m̂ is derived
from the two snapshots, these snapshots cannot carry any
positive variance in their information based on which m̂ is
computed; note that the snapshots are independent due to
N ∪ N ′ = ∅. Recording precise information (such as IDs
of all tags) is very expensive; all existing RFID estimation
methods collect imprecise information from tags with non-
zero variance to save time for information collection.

One critical problem is that at the time when the snapshot
is taken for any tag set, we do not know which other snapshot
it will be paired with for joint estimation. Because it is
possible to pair with another snapshot with no common tag,
we will have to make the snapshot precise (thus expensive)
due to the requirement (7).

Finally, it arguably makes more sense to specify absolute
error bound in some practical scenarios. Consider the logis-
tics network application. Suppose we want to monitor the
volume of products flowing from a number of factories to
a number of assembly plants. Further suppose the volume
from a particular factory to a particular plant may range
from zero to ten of thousands in each pair of snapshots.
To get a rough idea about the volume, we may specify the
accuracy requirement as an absolute error bound of ±50
items with 95% confidence. If the actual volume is 10, even
though the relative error will be large, it does not change the
fact that the estimated volume remains very small, giving
correct assessment. On the contrary, if we specify a relative
error of 1% and the actual volume is 10, it will require the
estimation to have an absolute error of ±0.1 item, which is
not only expensive to achieve but also unnecessary. Note
that in this example we estimate small intersection from
snapshots of two large sets, not estimating the cardinality of
one tag set from its snapshot (e.g, bitmap) as the traditional
RFID estimation does.

3. PRIOR WORK

3.1 Differential Estimation
DiffEstm [20] gives a relative error model similar to (6)-

(8) but does not prove that its estimation results meet those
requirements. In fact, DiffEstm cannot always meet the rela-
tive error bound because it has positive variance in its snap-
shots, whereas the relative error model requires snapshots to
carry precise information as we have argued previously.

We give a simplified description of DiffEstm’s snapshot
construction: A reader makes a request (f, p, ...) to tags in
its coverage area. After a tag receives the request, with a
probability p, it will transmit in a slot randomly selected
from an ALOHA frame of size f . The reader will turn the
time frame into a bitmap snapshot of length f , with each
busy slot being 1 and each idle slot being 0. In the original
paper, the request carries a frame size F and a parameter f .
Each tag transmits in a randomly chosen slot, and the reader
only listens to the first f slots. This approach is equivalent
to a frame size of f with a sampling probability p = f

F
.

Figure 1 illustrates how DiffEstm works. After two bitmap
snapshots (on the top of the figure) are taken for two tag
sets, they are bitwise-ORed to produce a combined bitmap
(at the bottom). The difference and intersection of the two

11 0 0 110 0 10

 snapshot for
110 0 11 0 0the first tag set 0

1 0 11 01 1 1 11

1

 snapshot for

the second tag set

 combined bitmap
by bitwise OR

Figure 1: DiffEstm estimates the difference and
intersection between two tag sets by combining their
bitmap snapshots, which must have the same length
and the same sampling probability.

sets will then be derived from the information in the three
bitmaps, which must all contain a sufficient number of zeros
to ensure estimation accuracy [20].

11 11 1

10 tags
110 0 11 0 0 0

0 1 01 1 1 ...1

1

1000 tags
1 1 1 1 1

0 11 01 11

0 0 ...
 large bitmap

0 010 0 0 00 0 0 0 0 0 01

0 0 0 0 0

50% sampling

50% sampling

for a small set

1000 tags

50% sampling

0 0

Figure 2: Large snapshots for small tag sets.

In order to support bitwise-OR, DiffEstm requires that
all snapshots must have the same size and use a common
sampling probability. For any small tag set, if the common
sampling probability is very small, too few or even no tag
will be sampled for the snapshot construction. Hence, the
sampling probability will have to be reasonably large, as
illustrated by the top bitmap in Figure 2, where 10 tags
are recorded with 50% sampling probability. However, for a
large set, a significant sampling probability will cause all bits
to be set as ones (the second bitmap in the figure), unless
the bitmap size is sufficiently large (the third bitmap in the
figure). Now because the same large size has to be applied to
all snapshots, it becomes a great waste for small tag sets (the
fourth bitmap). Since each bit takes one time slot to get, a
large bitmap size means a long time for taking a snapshot,
even for a very small tag set.

10 tags
110 0 11 0 0 0 150% sampling

0 1 01 1 1 ...1 0 11 01 110 0 0 0 0
1000 tags

50% sampling

Figure 3: Snapshots of variable sizes.

Naturally, it is desirable to let each snapshot have a dif-
ferent size, depending on the size of the tag set it records, as
illustrated in Figure 3. This will require us to develop new
methods of combining two snapshots (or two bitmaps) with
variable sizes. The real difficulty is not at how to combine
two bitmaps per se; there are simple ways to combine them.
The real difficulty comes after the combination — how to
perform analysis on the information combined from non-
uniform snapshots, how to use that information for joint
estimation, and most importantly how to ensure the accu-
racy requirements in (1)-(4). These are the tasks that have
not been investigated in the literature.

249

3.2 RFID Estimation and Union Estimation
There is a rich set of literature that estimate the cardi-

nality n of a single tag set [5, 12, 4, 8, 22, 15, 16, 21, 2],
typically giving an estimate n̂ with a relative error model of

Prob{n̂(1− ǫ) ≤ n ≤ n̂(1 + ǫ)} ≥ α, (9)

which is different from the model of joint estimation where
intersection and difference between two sets are estimated.
The execution time is a function of the relative error bound
ǫ. For example, the time of LOF is O(1

ǫ2
log n) [12], that

of PET is O(1
ǫ2

log log n) [22], and that of ZOE is O(1
ǫ2

+
log log n) [21]. The recent work of two-phase simple RFID
counting (SRC) [2] has the best performance to date.

When the tag set cannot be covered by a single read-
er, multiple readers will be needed, each covering a subset.
Many of the RFID estimation solutions can be easily ex-
tended for estimating the union size of the subsets. Among
them, SRCM [2] performs the best, achieving a reduction in
execution time by up to 300%, when comparing with others.
SRCM also uses bitmaps. For each subset, it create multiple
bitmaps, each under a different sampling probability. It then
identifies the best sampling probability and combines the
bitmaps of that probability from different subsets by bitwise
OR. The combined bitmap records all tags in the union and
can thus be used to estimate the union cardinality with the
method from [5].

What makes SRCM efficient is that as it scans one subset
after another, it leverages the information learned from the
previous subsets to reduce the number of bitmaps (different
sampling probabilities) it needs for each subsequent subset.
However, this method cannot be extrapolated to temporal-
ly/spatiall dispersed joint estimation where we do not know
which tag sets will be jointly estimated beforehand and thus
cannot leverage one set’s information to help reduce the
overhead for the other.

If we nevertheless want to apply SRCM to joint estimation,
we may use a common sampling probability that is optimized
for the worst-case scenario such that an error bound for the
union estimation will always be met. In this case, SRCM

will become DiffEstm except that the former considers only
union while the latter also addresses difference and intersec-
tion (which are more difficult to estimate and analyze).

4. JOINT RFID ESTIMATION PROTOCOL
This section presents our joint RFID estimation protocol

(JREP). Our protocol consists of two components: an online
encoding component for measuring the information of each
tag set and storing it in a bitmap called snapshot, and an
offline data analysis component for estimating the joint prop-
erties of two arbitrary sets such as intersection/union/difference
cardinalities, using their snapshots. We use an asymmetric
design to push most complexity to the offline component,
while keeping the online component as efficient as possible.

4.1 Online Encoding
Consider a snapshot taken at an arbitrary location and an

arbitrary time in a large RFID system of multiple locations.
Let N be the set of tags existing at the location and the
time when the snapshot is taken, and n be the number of
tags in N . The reader that performs the snapshot will first
get a rough estimation for the value of n by using an existing
cardinality estimation protocol [8, 12, 22]. It determines a

frame size f for the snapshot as follows:

f = min
p∈(0,1]

{2⌈log2(
np
ω

)⌉}, (10)

where p is a sampling probability and

ω = −3

4
+

√
3

4

√

4p
(k2

nmaxZα
2 + 2

)

− 5.

We use Zα to denote the 1+α
2

percentile for the unit normal
distribution. For example, when α = 95%, Zα = 1.96. Later
we will formally derive the above formulas that minimize the
time overhead of online encoding and the storage overhead of
the snapshot in the worst case, under the constraints of (1)-
(4). Let p∗ be the sampling probability that minimizes (10).
The value of p∗ only depends on nmax, k, and α. Hence, it is
pre-determined for a system once these parameters are set.
The encoding process is described as follows: The reader

broadcasts an encoding request with parameters f and p∗.
Upon receipt of the request, each tag decides with probabil-
ity p∗ whether it will participate in the encoding. If it does,
it selects a slot uniformly at random and transmit a pulse
during that slot. The reader monitors the status of each
slot — with the detection of a pulse, it records the slot as a
bit ‘1’; otherwise, it records a bit ‘0’. After the frame, the
reader has a bitmap of ones and zeros, which will be stored
and used later for joint estimation. We call this bitmap as a
snapshot of the tag set N .
The implementation of sampling may be done as follows:

Let M be a large integer. The reader broadcasts an integer
⌊p∗M⌋ instead of a floating number p∗. A tag computes a
pseudo-random value R(ID), where ID is the tag’s identifier
and R is a pseudo-random function (required by the C1G2
standard). The tag is sampled if R(ID) mod M < ⌊p∗M⌋.
The slot selection also leverages the random function R. The
tag computes R(ID | r) mod f , where r is a randomly-chosen
constant pre-configured with all tags, to make the values of
R(ID | r) and R(ID) independent of each other. With these
implementations, we have the following property established.

Property 1. Consider an arbitrary common tag in any

two sets N and N ′, whose frame sizes are f and f ′ respec-
tively, with f ≥ f ′. A tag is either sampled for encoding in

both frames or neither. ∀j ∈ [0, f), if the tag is sampled and

does not select the (j mod f ′)th slot in the frame of f ′, then
it will not select the jth slot in the frame of f .

Proof. It is easy to see that the tag will be either sam-
pled for both frames or neither, because the same pseudo-
random value R(ID) is used for sampling.
Suppose the tag does not select the (j mod f ′)th slot in

the frame of f ′. That is, R(ID | r) 6= j mod f ′. Because
both f and f ′ are the powers of two and f ≥ f ′, f ′ must be
able to divide f . Hence, R(ID | r) 6= j mod f , which means
the jth slot in frame of f is not selected.

4.2 Offline Joint RFID Estimation
Given two arbitrary snapshots, B and B′, which may be

taken at the same location but different times or at different
locations, we give the formulas for estimating their differ-
ence, intersection and union.

4.2.1 Expanded OR

Let f and f ′ be the sizes of B and B′, respectively. With-
out losing generality, suppose f ≥ f ′. According to (10), we
know that both f and f ′ are the powers of two. The reason

250

for them to be powers of two is to support the following
operation that combines the information from the snapshots
of two arbitrary tag sets for joint estimation.

B 11 0 0 110 0

B 1 0 0 0 0’ 0 1 01 0 00

Expand & Replicate 11 0 0 11 01
Bitwise

B
*

OR

Figure 4: Expanded OR of two bitmaps B and B′.

We introduce an auxiliary bitmap, which is called the
expanded OR between B and B′, and is denoted as B∗. The
expanded OR, which has been illustrated in Fig. 4, is defined
as follows: We know that f is a multiple of f ′. If f 6= f ′,
we will replicate B′ for f

f ′ times, such that it is expanded to
the same length of B. We then perform bitwise OR between
the two bitmaps, and the resulting B∗ is f bits long.

The operation of expanded OR may appear to be trivial,
but the implication of replicating the information of one
bitmap when combining with another bitmap is not obvious
at all. It requires rigorous analysis for its impact on esti-
mation accuracy as the technique was never used in RFID
estimation before.

Let N be the original tag set that is encoded by bitmap
B. The size of N is denoted as n. Let Xj , 0 ≤ j < f , be the
event that the jth bit in B remains zero after the n tags are
randomly sampled and encoded into this bitmap.

Prob{Xj} = (1− p

f
)n (11)

Let V be a random variable for the fraction of bits in B
that are zeros (We can also measure an instance value of V
from the snapshot B. This instance value will be used in the
estimator derived later). We have

V =
1

f

f−1
∑

i=0

1Xj ,

where 1Xj be the indicator variable of Xj , whose value is 1
when the eventXj occurs and 0 otherwise. Clearly, E(1Xj) =
Prob{Xj}. Hence,

E(V) =
1

f

f−1
∑

i=0

E(1Xj) =
1

f

f−1
∑

i=0

Prob{Xj} = (1− p

f
)n. (12)

Let N ′ be the tag set encoded by B′, n′ be the set size, and
Yj , 0 ≤ j < f ′, be the event that the jth bit in B′ is zero.

Prob{Yj} = (1− p

f ′)
n′

(13)

The above equation is also true for any bit in the expanded
B′ (for producing B∗). Let Zj , 0 ≤ j < f , be the event that
the jth bit in B∗ is zero. Since this bit is OR of the jth bit
in B and the (j mod f ′)th bit in B′, the event Zj happens
when both events Xj and Yj mod f ′ happens. Hence, we have

Prob{Zj} = Prob{Xj ∧ Yj mod f ′}
= Prob{Xj |Yj mod f ′} · Prob{Yj mod f ′}
= (1− p

f
)d(1− p

f ′)
n′

,

(14)

where Prob{Yj mod f ′} = (1− p
f ′)

n′

is from Eq. (13), and we

have Prob{Xj |Yj mod f ′} = (1− p
f
)d, because the condition

Yj mod f ′ , according to Property 1, suggests that all common
tags of N and N ′ won’t select the jth slot in the frame

of f , and consequently only the d tags in N −N ′ may select
this slot.
Following a similar process of deriving (12), we have

E(V ′) = (1− p

f ′)
n′

(15)

E(V ∗) = (1− p

f
)d(1− p

f ′)
n′

, (16)

where V ′ = 1
f ′

∑

1Yj and V ∗ = 1
f

∑

1Zj .
In the following, we give the estimators for the joint prop-

erties of N and N ′, including d, d′, m, and u.

4.2.2 Estimator of Set Difference d = |N −N ′|
Replacing the first term (1− p

f ′)
n′

in (16) byE(V ′), we have

E(V ∗) = E(V ′)(1− p

f
)d,

d =
lnE(V ∗)− lnE(V ′)

ln(1− p
f
)

. (17)

Replacing E(V ∗) and E(V ′) by their instance values V ∗ and

V ′ measured from B∗ and B′, we obtain the estimator d̂.

d̂ =
lnV ∗ − lnV ′

ln(1− p
f
)

(18)

Such replacement with instance values produces asymptoti-
cally unbiased results, which originates from the central limit
theorem and the multivariate δ-method [1], as explained
below. Since V ′ (or V ∗) is the arithmetic mean of a large
number of independent random variables V ′ = 1

f ′

∑

1Yj (or

V ∗ = 1
f

∑

1Zj), according to the central limit theorem, it
approximates a Gaussian distribution, and its variance is
inversely proportional to the number of random variables
f ′ (or f). Further consider that d̂ in (18) is a function
of V ′ and V ∗ with continuous first partial derivatives. We
can apply the multivariate δ-method, and conclude that the
estimation d̂ approximates a Gaussian distribution, whose

expected value is E(d̂) ≈ lnE(V ∗)−lnE(V ′)

ln(1− p
f
)

. Combined with

(17), we have E(d̂) equal to d asymptotically, when f and

f ′ are large enough. Later, we will derive the mean of d̂
with better accuracy.
Below we use a similar approach to derive the estimators

of d′, m and u.

4.2.3 Estimator of Set Difference d′ = |N ′ −N |
Based on the definitions of d and d′, we know that d =

n+ d′ − n′, where n+ d′ is the number of tags in |N ∪N ′|.
Applying it to (16), we have

E(V ∗) = (1− p

f
)n+d′−n′

(1− p

f ′)
n′

= E(V)(1− p

f
)d

′

E(V ′) / (1− p

f
)n

′

= E(V)(1− p

f
)d

′

E(V ′) /E(V ′)
ln(1− p

f
)/ln(1− p

f′
)
.

Solving the above equation for d′, we have

d′ =
lnE(V ∗)− lnE(V)− lnE(V ′)

ln(1− p
f
)

+
lnE(V ′)

ln(1− p
f ′)

.

Similar to the previous estimator, we can substitute the
expected values E(V), E(V ′) and E(V ∗) by their instance
values V , V ′ and V ∗ measured from B, B′ and B∗, and have

251

an asymptotically unbiased estimator d̂′ of approximately
Gaussian distribution for the intersection cardinality d′.

d̂′ =
lnV ∗ − lnV − lnV ′

ln(1− p
f
)

+
lnV ′

ln(1− p
f ′)

(19)

4.2.4 Estimator of Set Intersection m = |N ∩N ′|
We rewrite the expected value of V ∗ in (16) as

E(V ∗) = (1− p

f ′)
n′

(1− p

f
)n−m = E(V ′)E(V)(1− p

f
)−m

m =
lnE(V) + lnE(V ′)− lnE(V ∗)

ln(1− p
f
)

.

Substitute the expected values E(V), E(V ′) and E(V ∗) by
their instance values V , V ′ and V ∗, we have an asymp-
totically unbiased estimator m̂ of approximately Gaussian
distribution for the intersection cardinality m.

m̂ =
lnV + lnV ′ − lnV ∗

ln(1− p
f
)

(20)

4.2.5 Estimator of Set Union u = |N ∪N ′|
Multiplying both sides of Eq. (16) with (1− p

f
)n

′

, we have

E(V ∗)(1− p

f
)n

′

= (1− p

f
)d+n′

E(V ′)

E(V ∗)E(V ′)
ln(1− p

f
)/ln(1− p

f′
)
= (1− p

f
)uE(V ′)

u =
lnE(V ∗)− lnE(V ′)

ln(1− p
f
)

+
lnE(V ′)

ln(1− p
f ′)

.

Substitute the expected values E(V ′) and E(V ∗) by their
instance values V ′ and V ∗, we have an estimator û of ap-
proximately Gaussian distribution for the union cardinality.

û =
lnV ∗ − lnV ′

ln(1− p
f
)

+
lnV ′

ln(1− p
f ′)

(21)

4.2.6 Traditional Estimator of n = |N | and n′ = |N ′|
We estimate n and n′ based on the classical work in [19]:

n̂ =
lnV

ln(1− p
f
)

n̂′ =
lnV ′

ln(1− p
f ′)

, (22)

where n̂ and n̂′ denote the estimated values.

4.2.7 Reduction to DiffEstm [20] and PZE [5]

It is interesting to see that when we set f = f ′, the
estimators (18), (19) and (20) are reduced to the estimators
of DiffEstm. If we further set the sets identical, i.e., N = N ′,
the union estimator (21) becomes the PZE estimator in [5],
similar to those in (22) for a single set. Hence, DiffEstm and
PZE are special cases of our estimators. Note that PZE
repeats a small frame with a small sampling probability
many times to reduce estimation variance. Here we use a
larger bitmap (with a larger sampling probability) to reduce
variance. The two approaches are equivalent [2].

The most fundamental difference in (18), (19), (20) and
(21) from the prior art is the generalized semantics of V ∗,
which is the fraction of bits that are zeros in the bitmap
B∗ combined from two bitmaps of variable sizes, f and
f ′, where each bit in the smaller bitmap has to be used
multiple times in order to enable bitwise OR. However, it
is not intuitive why this multiple use of the same bits will
work in estimation until we formally analyze the estimation

accuracy under such a maneuver of combining information
from non-uniform bitmaps.

5. ANALYSIS
In this section, we analyze the accuracy of the joint esti-

mations d̂, d̂′, m̂ and û. To derive them, we will need the
mean and variance of n̂ (n̂′), which can be found in [19]:

E(n̂) ≈ n+
1

2p
(eω − ωp− 1) (23)

V ar(n̂) ≈ f

p2
(eω − ωp− 1), (24)

where ω = pn
f

is called the load factor of bitmap B;

E(n̂′) ≈ n′ +
1

2p
(eω

′ − ω′p− 1) (25)

V ar(n̂′) ≈ f ′

p2
(eω

′ − ω′p− 1), (26)

where ω′ = pn′

f ′ is the load factor of bitmap B′.

5.1 Mean and Variance of d̂

We first derive E(d̂) and V ar(d̂). From (18) and (22), we

rewrite the formula for d̂ as

d̂ =
lnV ∗

ln(1− p
f
)
− n̂′ ·

ln(1− p
f ′)

ln(1− p
f
)
. (27)

The statistical properties of n̂′ are known. The values of p,
f , f ′ are also known. The first term is denoted as n̂∗:

n̂∗ =
lnV ∗

ln(1− p
f
)
. (28)

We have derived the mean and variance of n̂∗. Due to space
limitation, we omit the process, which will be reported in a
longer journal version.

E(n̂∗) ≈ n∗ +
1

2p
(eω

∗ − ω∗p− 1)

V ar(n̂∗) ≈ f

p2
(eω

∗ − ω∗p− 1),

where

n∗ = d+ n′ f

f ′ , ω∗ =
pd

f
+

pn′

f ′ , (29)

and ω∗ is the load factor of B∗. When f = f ′, we see that
(28) and (21) are equivalent. In this case, n̂∗ = û, and B∗

can be regarded as an encoding of the union of the two sets.
Based on (27) and (29), using the fact that ln(1−x) ≈ −x

when x is sufficiently small, the expected value of d̂ is

E(d̂) = E
(

n̂∗ − n̂′ ·
ln(1− p

f ′)

ln(1− p
f
)

)

≈ E(n̂∗ − f

f ′ n̂
′)

= d+
1

2p
(eω

∗ − ω∗p− 1)− f

f ′
1

2p
(eω

′ − ω′p− 1).

Recall from the previous section that all proposed estimators
are asymptotically unbiased.
The variance of d̂ is derived as follows.

V ar(d̂) ≈ V ar(n̂∗ − f
f ′ n̂′)

= V ar(n̂∗) + f2

f ′2
V ar(n̂′)− 2 f

f ′Cov(n̂∗, n̂′)

252

We have derived that Cov(n̂∗, n̂′) ≈ f
f ′ V ar(n′); the process

is omitted due to space limitation. Hence,

V ar(d̂) ≈ V ar(n̂∗)− f2

f ′2 V ar(n̂′). (30)

The above equation implies that V ar(d̂) is smaller than

V ar(n̂∗). Intuitively, because d̂ is calculated from n̂∗ and

n̂′, the estimation d̂ should contain the estimation error of
both n̂∗ and n̂′. However, our analysis shows that the two
estimates n̂∗ and n̂′ positively correlate with each other, i.e.,
Cov(n̂∗, n̂′) > 0, which causes the variance of d̂ smaller.

5.2 Mean and Variance of û

From (21), (22), and (28), by the fact that ln(1−x) ≈ −x

when x is sufficiently small, we have û ≈ n̂∗− f−f ′

f ′ n̂′. Hence,

E(û) ≈ E(n̂∗)− f − f ′

f ′ E(n̂′)

= u+
1

2p
(eω

∗ −ω∗p− 1)− f − f ′

f ′
1

2p
(eω

′ −ω′p− 1)

V ar(û) ≈ V ar(n̂∗) +
(f−f ′)2

f ′2 V ar(n̂′)− 2
f−f ′

f ′ Cov(n̂∗, n̂′).

Since Cov(n̂∗, n̂′) ≈ f
f ′ V ar(n′), we have

V ar(û) ≈ V ar(n̂∗)− f2 − f ′2

f ′2 V ar(n̂′). (31)

5.3 Mean and Variance of m̂

From (20), (22), (28), we have m̂ ≈ n̂+ f
f ′ n̂′ − n̂∗. Hence,

E(m̂) ≈E(n̂) +
f

f ′E(n̂′)− E(n̂∗) ≈ m+
1

2p
(eω −ωp− 1)

+
f

f ′
1

2p
(eω

′ −ω′p− 1)− 1

2p
(eω

∗ −ω∗p− 1)

V ar(m̂) ≈V ar(n̂) +
f2

f ′2 V ar(n̂′) + V ar(n̂∗)

+ 2
f

f ′Cov(n̂, n̂′)− 2Cov(n̂∗, n̂)− 2
f

f ′Cov(n̂∗, n̂′).

We have derived that Cov(n̂, n̂′) = f
p2
(e

mp
f − m

f
p2 − 1) and

that we have derived that Cov(n̂∗, n̂) ≈ V ar(n̂) + (f
f ′ −

1) f
p2
(e

mp
f − m

f
p2 − 1). Also using Cov(n̂∗, n̂′) ≈ f

f ′ V ar(n′),

we have

V ar(m̂) ≈ V ar(n̂) +
f2

f ′2 V ar(n̂′) + V ar(n̂∗)

+ 2
f

p2
(e

mp
f − m

f
p2 − 1)− 2V ar(n̂)− 2

f2

f ′2 V ar(n̂′)

=V ar(n̂∗)− V ar(n̂)− f2

f ′2 V ar(n̂′) + 2
f

p2
(e

mp
f − m

f
p2 − 1).

(32)

5.4 Mean and Variance of d̂′

From (20), (22), (28), we have d̂′ ≈ n̂∗−n̂− f−f ′

f ′ n̂′. Hence,
we can calculate

E(d̂′) ≈ E(n̂∗)− E(n̂)− f − f ′

f ′ E(n̂′)

≈d′ +
1

2p
(eω

∗ −ω∗p− 1)− 1

2p
(eω −ωp− 1)

− f − f ′

f ′
1

2p
(eω

′ −ω′p− 1)

V ar(d̂′) ≈ V ar(n̂∗) + V ar(n̂) + (
f − f ′

f ′)2V ar(n̂′)

+ 2
f − f ′

f ′ Cov(n̂, n̂′)− 2Cov(n̂∗, n̂)− 2
f − f ′

f ′ Cov(n̂∗, n̂′).

The three covariances are known when we previously derive
the variance of m̂. Therefore,

V ar(d̂′) =V ar(n̂∗) + V ar(n̂) + (
f − f ′

f ′)2V ar(n̂′)

− 2V ar(n̂)− 2
f − f ′

f ′
f

f ′ V ar(n̂′)

=V ar(n̂∗)− V ar(n̂)− f2 − f ′2

f ′2 V ar(n̂′).

(33)

Because the estimators approximate Gaussian distribu-
tions, the accuracy requirements of (1)-(4) can be turned into

a set of constraints on bounded V ar(d̂), V ar(d̂′), V ar(m̂),
and V ar(û). The following property shows that these con-
straints can be turned into a single one on V ar(n̂∗), which
will be used to determine the optimal system parameters.
The proof of the property is omitted due to space limitation.

Property 2. V ar(n̂∗) is an approximately tight upper

bound of V ar(d̂), V ar(d̂′), V ar(m̂), and V ar(û).

6. SYSTEM PARAMETERS
We have already known that the distributions of joint

estimations, d̂, d̂′, m̂, and û, approximate Gaussian distri-
butions. Our requirement is to bound the estimation error
of each joint property by a constant k with high probability,
as stated in (1)-(4). In this section, we try to set the op-
timal system parameters f and p to minimize the protocol
execution time, subject to the accuracy requirement.

6.1 Load Factor
Consider the requirement (1) on the union cardinality es-

timation û, which specifies a confidence interval of width 2k
at a confidence level of α. For a Gaussian distribution with
E(û) ≈ u, the requirement on û is translated to:

Zα

√

V ar(û) ≤ k V ar(û) ≤ k2

Zα
2 , (34)

where Zα denotes the 1+α
2

percentile for the unit Gaussian
distribution. Similar, the requirement (3)-(4) can be trans-
lated to

V ar(m̂) ≤ k2

Zα
2 , V ar(d̂) ≤ k2

Zα
2 , V ar(d̂′) ≤ k2

Zα
2 . (35)

In order to cover all possible cases, due to Property 2, all

these constraints (1)-(4) can be replaced by V ar(n̂∗) ≤ k2

Zα
2 .

f

p2
(

eω
∗ − ω∗p− 1

)

≤ k2

Zα
2

n

pω

(

(1− p)ω∗ +
1

2
ω∗2 +

1

6
ω∗3

)

≤ k2

Zα
2

Taylor
Expansion

(36)

253

From (29), we have ω∗ = pd
f

+ pn′

f ′ = pn
f

− pm
f

+ pn′

f ′ =

ω + ω′ − pm
f
. If m = 0, then ω∗ = ω + ω′, which maximizes

the left side of (36). We consider this worst-case constraint
in terms of m. Hence,

n

pω

(

(1− p)(ω + ω′) +
1

2
(ω + ω′)2 +

1

6
(ω + ω′)3

)

≤ k2

Zα
2

1

ω

(

(1− p)(ω + ω′) +
1

2
(ω + ω′)2 +

1

6
(ω + ω′)3

)

≤ k2p

Zα
2n

.

To satisfy the above constraint in the worst case in terms of
n (which is bounded by nmax), we have

1

ω

(

(1− p)(ω+ω′)+
1

2
(ω+ω′)2 +

1

6
(ω+ω′)3

)

≤
k2p

Zα
2nmax

.

(37)

In our system design, we shall set both w and w′ for a
system-wide optimal load factor. With ω′ = ω, we have

1

ω

(

(1− p)2ω +
1

2
(2ω)2 +

1

6
(2ω)3

)

≤ k2p

Zα
2nmax

ω ≤ −3

4
+

√
3

4

√

4p
(k2

nmaxZα
2 + 2

)

− 5. (38)

Because w = np
f
, it is inversely proportional to the frame

size f , which measures the protocol execution time when
encoding the tags in B. Hence, we should set our target
load factor as

ω = −3

4
+

√
3

4

√

4p
(k2

nmaxZα
2 + 2

)

− 5. (39)

We justify our choice of setting ω = ω′ above. The left
side of (37) is an increasing function in both ω and ω′. If
we allow ω′ 6= ω and still set their values to be as small as
possible, then one of them will be greater than the right side
of (39) and the other will be smaller. Because N and N ′ are
arbitrary tag sets under consideration, it means that some
tag sets will be encoded with their load factors greater than
the right side of (39) and some others will have smaller load
factors. Let N1 and N2 be two sets with load factors greater
than (39). We should be able to perform joint estimation
on any two encoded sets without violating the accuracy re-
quirement. However, if we perform joint estimation on N1

and N2, because their load factors are larger than (39), the
constraint of (37) will not hold.

6.2 Frame Size and Sampling Probability
From (38) and w = np

f
, we have

f ≥ np

− 3
4
+

√
3
4

√

4p
(

k2

nmaxZα
2 + 2

)

− 5
. (40)

Recall that the value of f is set to be a power of two in
order to support expanded OR between the snapshots of
any two tag sets. We want to choose the optimal sampling
probability that minimizes the protocol execution time by
keeping the frame size f as small as possible. Hence, we
have the formula for the frame size as quoted in Section 4.1:

f = min
p∈(0,1]

{2⌈log2(
np
ω

)⌉}, (41)

where p is a sampling probability and the load factor ω is
determined by Eq. (39). It requires a prior knowledge of n,
the number of tags in N , which can be estimated through an
existing protocol such as GMLE [8], LOF [12] and PET [22].

The optimal sampling probability p∗ that minimizes f de-
pends on the pre-determined parameters nmax, k and α.
Hence, it can be pre-computed.

7. SIMULATION RESULTS

7.1 Simulation Setting
We evaluate the performance of the proposed JREP proto-

col and compare it to DiffEstm [20] for joint estimation. For
the union estimation, we also want to compare with SRCM,
the best protocol among those that were originally designed
to estimate the cardinality of a tag set covered by multiple
readers. Assuming that the optimal sampling probability
is known, SRCM becomes equivalent to DiffEstm in union
estimation. See Section 3.2.
We consider two performance metrics. First, when the

two protocols are subject to the same average execution
time, we compare their probabilities of meeting a given error

bound. The probability is measured as the number of joint
estimations that meet the error bound divided by the total
number of joint estimations performed in the simulation. In
favor to DiffEstm and SRCM, we assume that they know the
optimal sampling probability that maximizes their worst-
case probabilities of meeting the error bound. The original
paper [20] does not give a formula for this optimal sampling
probability. We obtain it through exhaustive search by simu-
lations. Second, given an accuracy requirement as defined in
(1)-(4), we compare the execution times of the two protocols.
The execution time is measured as the number of time slots
it takes the reader to encode a tag set in a snapshot bitmap,
including the frame size f and other slots needed to give
an initial rough estimation of n (Section 6). For JREP, we
invoke GMLE [8] to generate a raw estimation of n with a
95% confidence interval of ±10% error.
The system model is a distributed RFID system of mul-

tiple locations, where each reader periodically takes a snap-
shot of its local set of tags, whose number ranges from 0 to
50,000, with nmax = 50, 000. The average number of tags in
a set is chosen to be 10,000, which reflects that the normal
business flow of tagged objects is smaller than the worst-
case number that the system is designed to handle. The
size of each tag set will be taken from a truncated normal
distribution Norm(10000, 20002) in the range of [0, nmax].
For the accuracy requirement, we set α = 95% and k = 500
by default. We will also perform simulation with other values
of k and α.

7.2 Estimation Accuracy under Same Execu-
tion Time

We first set the parameters for JREP so that it satisfies
the accuracy requirement of α = 95% and k = 500, i.e., the
difference between the estimated values (d̂, d̂′, û, m̂) and
the true values (d, d′, u, m) is bounded by 500 with 95%
probability. We can compute the value of ω from (39) and
then the values of f and p from (41). However, since the
value of f is rounded up to the power of two to support
the operation of expanded OR, these two parameters are in
fact set conservatively. Alternatively, we can set their values
empirically through simulations (similar to [2]). We first
compute the initial value of ω from (39) and then perform
bi-section search to reduce it as small as possible such that
the resulting values of f and p from (41) will still satisfy the
accuracy requirement. As a result, the load factor ω is 0.735.

254

Table 1: Probability for intersection cardinality estimation (m) by JREP (ω = 0.735) to meet the bound k = 500
`
`
`

`
`
`
`

`
`̀

n(×103)
n′(×103)

[0, 5) [5, 10) [10, 15) [15, 20) [20, 25) [25, 30) [30, 35) [35,40) [40, 45) [45, 50)

[0, 5) 1.00 — — — — — — — — —
[5, 10) 1.00 1.00 — — — — — — — —
[10, 15) 1.00 1.00 1.00 — — — — — — —
[15, 20) 1.00 1.00 1.00 1.00 — — — — — —
[20, 25) 1.00 1.00 1.00 1.00 1.00 — — — — —
[25, 30) 1.00 1.00 1.00 1.00 1.00 1.00 — — — —
[30, 35) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 — — —
[35, 40) 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 — —
[40, 45) 0.99 0.99 0.99 1.00 0.99 1.00 1.00 1.00 1.00 —
[45, 50) 0.98 0.99 0.99 1.00 0.99 1.00 1.00 1.00 0.99 0.99

Table 2: Probability for union cardinality estimation (u) by JREP (ω = 0.735) to meet the error bound k = 500
`
`
`

`
`
`
`

`
`̀

n(×103)
n′(×103)

[0, 5) [5, 10) [10, 15) [15, 20) [20, 25) [25, 30) [30, 35) [35,40) [40, 45) [45, 50)

[0, 5) 1.00 — — — — — — — — —
[5, 10) 1.00 1.00 — — — — — — — —
[10, 15) 1.00 1.00 1.00 — — — — — — —
[15, 20) 1.00 1.00 1.00 1.00 — — — — — —
[20, 25) 0.99 1.00 1.00 1.00 0.99 — — — — —
[25, 30) 1.00 1.00 1.00 1.00 0.99 1.00 — — — —
[30, 35) 0.99 0.99 0.99 0.99 0.99 1.00 1.00 — — —
[35, 40) 0.98 0.98 0.99 0.99 0.97 1.00 0.99 0.99 — —
[40, 45) 0.97 0.97 0.97 0.97 0.96 0.99 0.99 0.98 0.97 —
[45, 50) 0.95 0.96 0.97 0.98 0.96 0.99 0.97 0.98 0.97 0.96

Table 3: Probability for intersection cardinality estimation (m) by DiffEstm (f = 18405) to meet k = 500
`
`
`

`
`
`
`

`
`̀

n(×103)
n′(×103)

[0, 5) [5, 10) [10, 15) [15, 20) [20, 25) [25, 30) [30, 35) [35,40) [40, 45) [45, 50)

[0, 5) 1.00 — — — — — — — — —
[5, 10) 1.00 1.00 — — — — — — — —
[10, 15) 1.00 1.00 1.00 — — — — — — —
[15, 20) 1.00 1.00 1.00 1.00 — — — — — —
[20, 25) 1.00 1.00 1.00 1.00 0.98 — — — — —
[25, 30) 1.00 1.00 0.99 0.98 0.97 0.94 — — — —
[30, 35) 1.00 1.00 0.98 0.97 0.94 0.89 0.85 — — —
[35, 40) 1.00 1.00 0.96 0.96 0.91 0.89 0.82 0.76 — —
[40, 45) 1.00 0.99 0.94 0.89 0.86 0.79 0.72 0.73 0.67 —
[45, 50) 1.00 0.96 0.92 0.88 0.82 0.77 0.74 0.68 0.61 0.51

Table 4: Probability for union cardinality estimation (u) by DiffEstm/SRCM (f = 18405) to meet k = 500
`
`
`

`
`
`
`

`
`̀

n(×103)
n′(×103)

[0, 5) [5, 10) [10, 15) [15, 20) [20, 25) [25, 30) [30, 35) [35,40) [40, 45) [45, 50)

[0, 5) 1.00 — — — — — — — — —
[5, 10) 1.00 1.00 — — — — — — — —
[10, 15) 1.00 1.00 1.00 — — — — — — —
[15, 20) 1.00 1.00 1.00 0.99 — — — — — —
[20, 25) 1.00 0.99 0.99 0.98 0.94 — — — — —
[25, 30) 0.99 0.97 0.95 0.93 0.91 0.87 — — — —
[30, 35) 0.96 0.94 0.90 0.88 0.85 0.81 0.75 — — —
[35, 40) 0.91 0.89 0.84 0.84 0.78 0.76 0.71 0.67 — —
[40, 45) 0.86 0.82 0.77 0.73 0.70 0.66 0.62 0.61 0.56 —
[45, 50) 0.78 0.72 0.69 0.67 0.64 0.60 0.59 0.56 0.51 0.42

Table 1 shows the probability for the intersection estima-
tion m̂ by JREP to meet the error bound 500. We simulate
two tag sets of sizes n and n′, with n ≥ n′. The first column
shows the range from which n is chosen uniformly at random.
For example, the first range is [0, 5000) and the last range
is [45000, 50000). Be ware that the numbers of in the first
column have a unit of 1000. The first row shows the range
from which n′ is chosen. Similarly its first range is [0, 5000)
and the last range is [45000, 50000). Because we require
n ≥ n′, the combinations of n and n′ above the diagonal
are invalid. Each cell in the table shows the probability of

meeting the error bound when n and n′ are chosen from
specified ranges. For example, consider the left bottom cell
inside the table, where n is chosen from [45000, 50000) and n′

from [0, 5000). The probability of meeting the error bound
is 98%, which is measured from 1,000 simulation runs, each
with two tag sets N and N ′ arbitrarily generated and the
number m of common tags randomly chosen from the range
[0, n′].
Table 2 shows the probability for the union estimation û

by JREP to meet the error bound 500. All probabilities
in both tables are greater than 95%, which confirms our

255

0

2

4

6

8

10
2

10
3

10
4

5 x 10
4

N
u

m
b

er
 o

f
T

im
e

S
lo

ts
 (

x
1

0
4
)

Tag Set Size n

JREP Average Time Cost

DiffEstm
JREP

Figure 5: Time comparison with k = 500 and α = 95%

analytical results that the proposed estimators satisfy the
accuracy requirements (1) and (3). The same is true for

difference estimations d̂ and d̂′, which are not shown due to
space limitation.

For JREP, the frame size depends on the size of tag set
to be encoded. With an average size of 10,000 tags and
ω = 0.735, the average execution time of JREP is 18,405
slots in our simulation. We use the same number of slots for
DiffEstm (or SRCM), and the simulation results are shown
in Tables 3 and 4, where the probability for m to meet the
error bound 500 can be as low as 51% when both n and n′

are large, and the probability for u to meet the error bound
can be as low as 42%, which is much worse than what JREP
can achieve at the same time cost.

7.3 Execution Time to Achieve Same Accuracy
Next, we fix the accuracy requirements with α = 95% and

k = 500, and compare the execution times of JREP and
DiffEstm for taking a bitmap snapshot of a tag set. Because
DiffEstm is not designed for absolute error bound, there is
no formula to compute its frame size. With nmax = 50, 000,
we use exhaustive search by simulation to find its minimum
frame size that can meet the error bound. The results are
shown in Fig. 5, where the horizontal axis is the size of a tag
set, which varies from 100 to 50000, and the vertical axis is
the number of time slots needed to take a bitmap snapshot
of the set. Due to the nature of its design, DiffEstm uses a
constant frame size of 67,000 slots. The frame size of JREP
is variable. It is small when the tag set is small. For example,
for a set of 5000 tags, the number of time slots needed by
JREP is 8,192, only 12% of what’s needed by DiffEstm. The
average time cost of JREP is shown by the solid horizontal
line. Similar results are observed from simulations with
different accuracy requirements (whose results cannot be
included due to limited space).

8. CONCLUSION
This paper studies the problem of joint cardinality esti-

mation: Given any two tag sets in a large RFID system,
estimating their union cardinality, intersection cardinality,
and difference cardinalities. We propose a solution called
JREP that adapts its snapshot based on the size of the tag
set that it records. Variable-sized snapshots are combined
through expanded OR to support joint estimation. We de-
rive a full set of estimators, analyze their accuracies, and
provide formulas for setting the optimal system parameters.
We demonstrate that the new solution is much more efficient
than the prior art.

9. ACKNOWLEDGMENTS
This work was supported in part by the National Nat-

ural Science Foundation of China under Grant 61300024,
Jiangsu Provincial Natural Science Foundation of China un-
der Grant BK20130634, China Specialized Research Fund
for the Doctoral Program of Higher Education under Grant
20130092120036, and National Science Foundation of United
States under grants CNS-1409797 and CNS-1115548.

10. REFERENCES
[1] G. Casella and R. L. Berger. Statistical Inference. 2nd

Edition, Duxbury Press, 2002.
[2] B. Chen, Z. Zhou, and H. Yu. Understanding RFID

counting protocols. Proc. of ACM MOBICOM, 2013.
[3] M. Chen, W. Luo, Z. Mo, S. Chen, and Y. Fang. An

efficient tag search protocol in large-scale RFID systems.
Proc. of IEEE INFOCOM, April 2013.

[4] H. Han, B. Sheng, C. Tan, Q. Li, W. Mao, and S. Lu.
Counting RFID tags efficiently and anonymously. Proc. of
IEEE INFOCOM, 2010.

[5] M. Kodialam and T. Nandagopal. Fast and reliable
estimation schemes in RFID systems. Proc. of ACM
MOBICOM, 2006.

[6] S.-R. Lee, S.-D. Joo, and C.-W. Lee. An enhanced dynamic
framed slotted aloha algorithm for RFID tag identification.
Proc. of IEEE MOBIQUITOUS, pages 166–174, 2005.

[7] T. Li, S. Chen, and Y. Ling. Efficient protocols for
identifying the missing tags in a large RFID system.
IEEE/ACM Transactions on Networking, 21(6), 2013.

[8] T. Li, S. Wu, S. Chen, and M. Yang. Energy efficient
algorithms for the RFID estimation problem. Proc. of
INFOCOM, 2010.

[9] W. Luo, Y. Qiao, and S. Chen. An efficient protocol for
RFID multigroup threshold-based classification. Proc. of
IEEE INFOCOM, April 2014.

[10] W. Luo, Y. Qiao, S. Chen, and T. Li. Missing-tag detection
and energy-time tradeoff in large-scale RFID systems with
unreliable channels. IEEE/ACM Transactions on
Networking, 22(4):1079 – 1091, August 2014.

[11] J. Myung and W. Lee. Adaptive splitting protocols for
RFID tag collision arbitration. Proc. of ACM MOBIHOC,
2006.

[12] C. Qian, H. Ngan, and Y. Liu. Cardinality estimation for
large-scale RFID systems. Proc. of IEEE PERCOM, 2008.

[13] Y. Qiao, S. Chen, T. Li, and S. Chen. Energy-efficient
polling protocols in RFID systems. Proc. of ACM Mobihoc,
May 2011.

[14] Y. Rekik. Inventory inaccuracies in supply chains: How can
RFID improve the performance? Wiley Encyclopedia of
Operations Research and Management Science, 2010.

[15] V. Shah-Mansouri and V. Wong. Cardinality estimation in
RFID systems with multiple readers. IEEE Transactions on
Wireless Communications, 10(5):1458–1469, May 2011.

[16] M. Shahzad and A. X. Liu. Every bit counts: Fast and
scalable RFID estimation. Proc. of ACM MOBICOM, 2012.

[17] B. Sheng, Q. Li, and W. Mao. Efficient continuous scanning
in RFID systems. Proc. of IEEE INFOCOM, 2010.

[18] H. Vogt. Efficient object identification with passive RFID
tags. Proc. of IEEE PERCOM, 2002.

[19] K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor. A
linear-time probabilistic counting algorithm for database
applications. ACM Transactions on Database Systems,
15(2):208–229, June 1990.

[20] Q. Xiao, B. Xiao, and S. Chen. Differential estimation in
dynamic RFID systems. Proc. of IEEE INFOCOM, 2013.

[21] Y. Zheng and M. Li. Zoe: Fast cardinality estimation for
large-scale RFID systems. Proc. of IEEE INFOCOM, pages
908–916, 2013.

[22] Y. Zheng, M. Li, and C. Qian. Pet: Probabilistic estimating
tree for large-scale RFID estimation. Proc. of IEEE
ICDCS, June 2011.

256

