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ABSTRACT
Radio-frequency identification (RFID) technology has been
widely adopted by real-world industries. This paper presents
a new application for distributively deployed RFID systems,
wherein a user chooses multiple tag sets at will from different
spatial or temporal domains, and then connects them by set
operators (union, intersection and relative complement) to
form a set expression. The user is allowed to query for the
cardinality of an arbitrary set expression, which is called the
joint property of multiple sets. We focus on the problem of
estimating the joint property with bounded error, which has
many potential applications. One of them is to allow users
to check the number of tags in an arbitrary tag flow passing
through a distributed RFID system. For this problem, we
propose a solution with a novel design that supports versatile
snapshot construction: Given the snapshots of multiple tag
sets, although their lengths may be very different, our for-
mulas can estimate their joint properties, with an accuracy
that can be arbitrarily set. For the proposed estimator, we
formally analyze its bias and variance, and also the optimal
settings of protocol parameters to minimize the time cost of
taking a snapshot of a tag set. The simulation results show
that, under predefined accuracy requirement, our solution
can reduce time cost by multiple folds as compared with ex-
isting works named DiffEstm and CCF, which require all tag
sets must be encoded into snapshots with an equal length.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: [Distributed
Systems]; C.4 [Performance of Systems]: [Measurement
techniques]

Keywords
RFID; Cardinality Estimation; Random Hashing

1. INTRODUCTION
Over the past decade, radio-frequency identification (RFID)

technology has been widely used by industries such as ware-
house management, logistical control, and asset tracking in
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malls, hospitals or highways [5]. RFID systems can be con-
ceptually divided into two parts: RFID tags (each carrying
an unique ID) which are attached to physical objects, and
RFID readers, which are deployed at places of interest to
sense the existence of tags, quickly retrieve the tag IDs, or
gather the statistical information about a group ot tags.

An important fundamental functionality of RFID system
is called cardinality estimation, which is to count the num-
ber of tags in a physical region [3–5, 7, 14, 15, 18–20]. This
function can be used to monitor the inventory level of a
warehouse, the sales in a retail store or the popularity of a
theme park. Counting the number of tags takes much less
time than a full system scan that collects all tag IDs. This
is an important feature since RFID systems communicate
via low-rate wireless channels and the execution time cost is
the key performance metric in system design. In addition to
its direct utility, tag estimation can work as a pre-processing
step that improves the efficiency of tag identification process
[6, 13]. More importantly, since it does not collect any tag
IDs, the anonymity of tags can be preserved, particularly in
scenarios where the party performing the operation (such as
warehouse or port authority) does not own the tagged items.

Motivation. The previous work mainly focuses on estimat-
ing the cardinality of a tag set within the radio range of a
single reader [3–5,7,14,15,19,20], or estimating the union of
tag sets near multiple readers [3,14]. This paper studies the
cardinality estimation problem in a much more generalized
scenario: Multiple tag sets can be captured by a distributed
multi-reader system at different spatial or temporal domains.
As requested by system users, these tag sets may constitute
an arbitrary set expression using the operations of union
(∪), intersection (∩) and relative complement (\). We will
estimate the cardinality of this user-desired set expression,
which is called a joint property of multiple sets.

We use two applications to better illustrate the usefulness
of this joint property estimation problem. Just imagine we
are managing a large logistics network, where tagged prod-
ucts are shipped from one location (factory, warehouse, port,
or storage/retail facility) to another. Assume the reader
deployed at each location takes periodic snapshots of its local
set of tags and keeps a series of such snapshots over time.
When the end users want to know the quantity of goods
flowing from one location to the other, we are able to address
the query by estimating the cardinality of intersection be-
tween two snapshots from different locations. Furthermore, a
more complicated user query could be the quantity of goods
traversing a routing path comprised of multiple locations.
We can address the query by computing the cardinality of
the intersection among two or more tag set snapshots.

In the second application, imagine that we are monitoring
a warehouse for its inventory dynamics over time. We want
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to know the amount of goods entering (i.e., the number of
new tags) the warehouse, and the amount leaving (i.e., the
number of departed tags) between any two reference time
points. Suppose the warehouse has been deployed with an
RFID reader system to take periodical snapshots about the
existing tags. Then, a solution for this problem could be
examining the difference between two snapshots taken at dif-
ferent time points, which tells the information about product
inflow and outflow within the time interval. However, a key
challenge is that a large warehouse inevitably needs more
than one readers to achieve full coverage, and each reader
can take a snapshot only about its local set of tags. Note
that the snapshots taken by different readers may not be of
an identical length. When a user queries for the dynamics of
such a warehouse, he or she actually wants to know how the
union of multiple tag sets (scanned by readers at different
locations) fluctuates over time. Such a query will produce a
complex set expression — to compute the cardinality of the
set difference of two union tag sets at different time points.

Problem. From the above two applications, we can abstract
the problem of joint property estimation. It is to estimate
the cardinality of an arbitrary set expression that involves
multiple tag sets (whose number is denoted by k) existing in
different temporal or spatial domains. The protocol designed
to scan each tag set must be time-efficient, and its absolute
estimation error must be kept within a predefined bound at
a probability above a given threshold.

There are very limited prior studies on this problem. The
differential estimator (DiffEstm) [18] and the joint RFID
estimation protocol (JREP) [17] can estimate the set expres-
sion involving only two tag sets. Although the composite
counting framework (CCF) [8] provides a generalized esti-
mator for an arbitrary expression over multiple sets, it is de-
signed based on a different, relative error model, resulting in
large execution time, with unbounded worst-case time com-
plexity. Moreover, as multiple RFID readers are deployed at
different places to scan their surroundings periodically, the
tag sets they encounter may differ significantly in sizes. The
biggest tag set can be many times larger than the average-
sized tag sets. Both the prior solutions DiffEstm and CCF
encode each tag set into a data structure whose length is
determined by the size of the largest possible set (or even
the union of several largest tag sets for union estimation),
which causes unnecessarily long protocol execution time.

Our Contributions. First, for the generalized joint prop-
erty estimation problem, we propose a solution with a novel
design that supports versatile snapshot construction. It adopts
a two-phase protocol design between a reader and its nearby
tags to construct a snapshot of the tag set. The length of
the snapshot could be (but not necessary) proportional to
the size of the tag set, instead of being fixed to a large worst-
case value. Given the snapshots of any k tag sets, although
their lengths may be very different, we have derived closed-
form formulas to estimate the joint properties of the k sets.

Second, we analyze the means and variances of the es-
timated joint properties computed from the formulas. We
prove that the formulas produce asymptotically unbiased
results and they estimate the joint properties with an abso-
lute error (probabilistic) bound that can be set arbitrarily.
We also derive formulas for determining the optimal system
parameters that minimize the execution time of taking snap-
shots, under a given accuracy constraint for joint estimation.

Third, we perform extensive simulations, and the results
show that, by allowing the snapshots to have variable lengths,
the new solution significantly outperforms DiffEstm [18] and

CCF [8], both of which assume a fixed length for snapshots.
Under the same accuracy requirement, our new solution can
reduce time cost by over 80% as compared with the previous.

2. JOINT PROPERTY ESTIMATION
In this section, we formally define the research problem of

joint property estimation for multiple RFID tag sets.

Definition of Joint Properties. Suppose a distributed
RFID system, where tagged objects are moved from one
location to another. We use S1, S2, . . . , Sk to denote the
tag sets captured by RFID systems at different locations or
time points. They can form an arbitrary set expression as
connected by the union (∪), intersection (∩) and relative
complement (\) operations. The cardinality of such an ex-
pression is called a joint property of the k tag sets.

A major difficulty is that the number of possible set ex-
pressions is really huge. In order to tame the high complex-
ity, we start from a small group of special expressions. We
divide the union of all k sets S1∪S2 . . .∪Sk into subsets that
are mutually disjoint. They are called elementary subsets,
and the number of elementary subsets is merely 2k − 1.

As an example, in Fig. 1, we illustrate the Venn diagram
of three RFID tag sets S1, S2, S3, and we divide their union
into 23 − 1 = 7 elementary subsets. Each subset is denoted
by Nb3b2b1 , where b3b2b1 is a binary ranging from 001 to 111
that indicates whether the subset is included by S3, S2 or
S1. For instance, the subset N110 is included by S3 and S2,
but excluded by S1. In Fig. 1, N000 is a special case that
corresponds to the tags not included by any sets S1, S2 or S3.

N000

S1 S2

S3

N001 N010

N100

N011

N101 N110

N111

Figure 1: Venn diagram of three tag sets S1, S2, S3,
and illustration of elementary subsets Nb3b2b1 .

We formalize the concept of elementary subsetNbk...b2b1 as

Nbk...b2b1 =
(⋂1≤i≤k

bi 6=0
Si
) \ (⋃1≤i≤k

bi=0
Si
)
, (1)

where the bit bi indicates whether the elementary subset is
included or excluded by the ith set Si. It is equivalent to

Nbk...b2b1 =
(⋂1≤i≤k

bi 6=0
Si
) ∩ (⋂1≤i≤k

bi=0
Si
c), (2)

if applying the rule of relative complement A \ B = A ∩ Bc
to equation (1), where Bc is the absolute complement of B.

For a shorter notation, we replace Nbk...b2b1 by Nx, where
x is a decimal that is equal to the binary value bk . . . b2b1.
Hence, the definition of elementary subset in (2) becomes

Nx =
(⋂1≤i≤k

2i−1∧x6=0
Si
) ∩ (⋂1≤i≤k

2i−1∧x=0
Si
c), (3)

where 2i−1 ∧ x extracts the ith bit from x by bitwise AND
∧. There are two boundary cases: N2k−1 = S1 ∩ S2 . . . ∩ Sk
is the intersection of all sets, and N0 = S1

c ∩S2
c . . .∩Skc =

(S1 ∪S2 . . .∪Sk)c is the complement of the union of all sets.
For an arbitrary elementary subset Nx with 1 ≤ x < 2k,

we denote its cardinality by nx, and call it a joint property
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of the k tag sets S1, S2, . . . , Sk. If the cardinalities nx (1 ≤
x < 2k) of all elementary subsets are known, we can derive
the cardinality of an arbitrary set expression by summing
up the cardinalities of elementary subsets it includes. This
is because any set expression can be rewritten as the union of
several elementary subsets. As an example, let the queried
tag set be S3 ∩ (S2 ∪ S1). It is equal to S3 ∩

(
(S2

c ∩ S1) ∪
(S2 ∩ S1

c) ∪ (S2 ∩ S1)
)
. By applying the distributive law, it

becomes (S3∩S2
c∩S1)∪ (S3∩S2∩S1

c)∪ (S3∩S2∩S1). By
the definition of Nx in (3), it equals N5∪N6∪N7. Hence, the
queried cardinality |S1 ∩ (S2 ∪ S3)| is equal to n5 + n6 + n7.

The cardinality of such a set expression is called a compos-
ite joint property. A special case of composite joint property
is the cardinality of N0

c, which is equal to the union of all
elementary subsets Nx, 1 ≤ x < 2k. We denote such a union
cardinality as nc0, which is equal to

∑
1≤x<2k nx.

In a word, we emphasize on deriving the 2k − 1 elemen-
tary joint properties nx, and the composite joint properties,
whose total number is huge, are left to a secondary position.

Probabilistic Estimation. In many practical applications,
it often does not require to know the exact value of the joint
property nx, and an approximated value n̂x with desired
accuracy is adequate. In the following problem definition, we
require the absolute estimation error n̂x−nx to be bounded
by a predefined range ±θ at a probability of at least 1 − δ,
which is called the (θ, δ) model. Besides nx, we also consider
to keep the absolute estimation error of nc0 bounded by ±θ,
which can act as a representative of composite joint property.

Definition 1 (Joint Property Estimation Problem).
For joint properties nc0 or nx (1 ≤ x < 2k), the joint estima-
tion problem is to find an algorithm for generating estima-
tions n̂c0 and n̂x. They should satisfy the accuracy constraint:

Prob{nc0 − θ ≤ n̂c0 ≤ n
c
0 + θ} ≥ 1− δ

Prob{nx − θ ≤ n̂x ≤ nx + θ} ≥ 1− δ,
(4)

where nc0±θ and nx±θ are the confidence interval of estima-
tions n̂c0 and n̂x, respectively, and 1−δ is the confidence level.

An alternative way of specifying the estimation accuracy
is based on a relative error bound ε ∈ (0, 1):

Prob{nc0 (1− ε) ≤ n̂c0 ≤ n
c
0 (1 + ε)} ≥ 1− δ

Prob{nx(1− ε) ≤ n̂x ≤ nx (1 + ε)} ≥ 1− δ.
(5)

According to this model, the probabilities for the relative er-

rors
n̂c0−n

c
0

nc0
and n̂x−nx

nx
to fall into the range±ε are at least 1−δ.

This relative error model has been adopted by the previous
work [8,18], with a time complexity of O( 1

ε2J
ln 1

δ
), where J

is Jaccard similarity — the ratio of the intersection size of
all tag sets to the union size of all sets. However, 1

J
could be

very large, since the intersection size can be small or even
zero while the union size is very large, which may be the
routine case in practice, instead of being rare. For the ap-
plications in the introduction, there can be two warehouses
with few products moved between them, or there can be
times when few products are moved in or out of a warehouse.
In both cases, 1

J
is very large or even tends to infinite.

In conclusion, the relative error model, as a remanent from
the earlier literature on cardinality estimation of a single
tag set, is no longer suitable for joint property estimation of
multiple sets. Therefore, this paper adopts the absolute error
model in (4). The previous protocols named DiffEstm [18]
and CCF [8] are not designed under this model.

3. ALOHA-BASED RFID PROTOCOL
This section introduces a standardized RFID communica-

tion protocol based on slotted ALOHA, which can be used to
take a snapshot of a tag set without collecting any tag IDs.

3.1 ALOHA Communication Protocol
A reader communicates with the tags in its radio range,

using the following slotted ALOHA protocol, which is par-
tially compliant with the EPCglobal RFID standard [1].

Initially, the reader broadcasts a Query command to start
an ALOHA frame with m time slots and using R as random
seed. Upon hearing the command, a tag selects a time slot in
a pseudorandom fashion by a hash function H(id⊕R) mod
m, where m is the frame length, id is the tag ID, and ⊕ is
bitwise XOR that mixes tag id and random seed R.

Then, the reader transmits the m time slots one by one.
At the boundary of each two adjacent slots, it broadcasts a
QueryRep command to terminate the current slot and start
the next. As the slot index grows, the tags whose generated
hash values are consistent with the current slot index will
send out their responses.

By executing the above framed-slotted ALOHA protocol,
from the perspective of the reader, the responses of all tags
distribute uniformly in the frame with m time slots. Fur-
thermore, a sampling mechanism can be incorporated into
the ALOHA frame as a field in the frame header. Due to
the sampling, only p fraction (0 < p ≤ 1) of tags respond in
the frame and the rest of them just keep silent.

3.2 Empty/Busy Time Slots
A time slot is said to be empty if it contains no tag replies,

or busy if there are at least one tags responses. Busy slots
can be further classified into singleton slots (containing ex-
actly one tag response) and collision slots (containing at
least two tag responses). According to the EPCglobal RFID
standard [1], each tag response needs to contain a 16-bits
random number in order to differentiate singleton slots from
collision ones (or 96 bits for reporting a tag ID). By contrast,
if it only needs to distinguish empty slots from busy ones,
transmitting merely one bit is sufficient for indicating the
presence of a tag in the slot, which may reduce by multiple
folds the average time cost per slot. Symbolically, we use “0”
to denote empty state and “1” to denote busy state.

We will design protocols that only require the RFID reader
to differentiate between empty slots and busy ones. From the
perspective of reader, an ALOHA frame is equivalent to an
array of bits recording the 0/1 states of the sequence of time
slots, which is called a bitmap that encodes the current set
of tags [5]. Afterwards, the three terms “tag set snapshot”,
“frame” and “bitmap” will be used interchangeably.

We assume that the RFID reader at each location invokes
the ALOHA protocol periodically to take a snapshot of the
set of tags currently in its radio range. For the tag sets S1,
S2, . . ., Sk in different spatial and temporal domains, let B1,
B2, . . ., Bk be the bitmaps that encode them, respectively.

4. A BASELINE SOLUTION
In this section, for implementing the joint property esti-

mation, we present a baseline solution that uses the bitmaps
B1, B2, . . . , Bk. This protocol implicitly assumes that all
these bitmaps must have an equal length and use a common
sampling probability, because it needs to apply the bitwise
OR operation to any subset of these bitmaps.

This baseline protocol is doomed to have poor time effi-
ciency, which is explained as follows. For a small tag set, if
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the sampling probability is very small, too few or even no tag
will be sampled for the snapshot construction. Hence, the
sampling probability has to be reasonably large, as depicted
by the first bitmap in Fig. 2, where 20 tags are recorded
with 40% sampling probability. However, for a large set, a
significant sampling probability will cause all bits to be set
as ones (as illustrated by the second bitmap in Fig. 2), unless
the bitmap length is sufficiently large (see the third bitmap
of Fig. 2). Now because the same large length has to be
applied to all bitmaps, it becomes a great waste for small
tag sets (the fourth bitmap of Fig. 2). Since each bit takes
one time slot to determine, a large bitmap length implies a
long time for taking a snapshot, even for a very small tag set.

20 tags,
40% sampling

2000 tags,
40% sampling

2000 tags,
40% sampling

large bitmap
for a small set 0

1

1

0

0

0

1

1

0

1

1

1

0

0

1

0

1

1

1

1

0

1

1

0

0

0

1

1

0

1

1

0

0

0

1

0

0

0

1

1

0

0

1

1

.

.

.

.

.

.

0

0

0

1

0

1

0

0

0

1

0

1

0

0

1

1

0

1

0

0

0

0

Figure 2: Inefficiency problem of baseline protocol
when handling small tag sets and large tag sets.

Therefore, the baseline protocol will waste execution time,
if the tag sets it handles dramatically differ in sizes. But still
we need it to compare with ours when conducting simulation
studies. So we describe its estimation equations as follows.

Union Cardinality Estimation. For the framesB1, B2, . . . ,
Bk, an important property is that, if a tag is sampled to
reply, it will respond in the same time slot among all frames.
This is because the tag uses the same hash function H(id⊕
R) mod m for slot selection in different frames, where m is
the common length of all frames and R is the random seed.

Out of the k bitmaps, we can arbitrarily select c bitmaps
and combine them by bitwise OR, which is denoted as Bi1 ∨
Bi2 . . . ∨Bic with 1 ≤ i1 < i2 . . . < ic ≤ k. Because a tag
responds at the same slot in all these frames, when calcu-
lating the bitwise OR, its duplicated responses in different
frames will be filtered automatically. Therefore, the OR of
c bitmaps Bi1 ∨ Bi2 . . . ∨ Bic is equivalent to the bitmap
encoding of the union of c tag sets Si1 ∪ Si2 . . . ∪ Sic [5].

For the cardinality of such a union set, a good estimator
is to use the fraction of zero bits in the corresponding OR
bitmap [5]. Specifically, let z be the fraction of zero bits in
an OR bitmap. Then, the corresponding union cardinality
can be estimated as −m log(z) / p, where m is the number
of bits in the OR bitmap, and p is the sampling probability.

Joint Property Estimation. Since the cardinality of any
union set is known, we can easily derive the joint property
n2k−1 = |S1 ∩ S2 . . . ∩ Sk|, which is the cardinality of the
intersection of all the k tag sets. According to the well-
known principle of inclusion and exclusion, n2k−1 is equal to

|S1 ∩ S2 . . . ∩ Sk| =
∑

1≤i1≤k
|Si1 | −

∑
1≤i1<i2≤k

|Si1 ∪ Si2 |

+
∑

1≤i1<i2<i3≤k
|Si1 ∪ Si2 ∪ Si3 | + . . .

+ (−1)k−1|S1 ∪ S2 . . . ∪ Sk|, (6)

where the union cardinalities |Si1 |, |Si1∪Si2 |, |Si1∪Si2∪Si3 |,
. . . , |S1 ∪S2 . . .∪Sk| all have unbiased estimators as stated.

Interestingly, (6) can be extended to estimating any joint
property nx with 1 ≤ x < 2k. By the definition of Nx in (3),

nx =
∣∣⋂1≤i≤k

2i−1∧x6=0
Si
∣∣− ∣∣(⋂1≤i≤k

2i−1∧x6=0
Si
) ∩ (⋃1≤i≤k

2i−1∧x=0
Si
)∣∣.

The first term |∩1≤i≤k
2i−1∧x6=0

Si| is the intersection of multiple

tag sets and hence can be estimated using (6). The second

term is the intersection of
⋂1≤i≤k

2i−1∧x6=0
Si and

⋃1≤i≤k
2i−1∧x=0

Si,

where the latter can be treated as a single tag set encoded
into the OR bitmap

∨1≤i≤k
2i−1∧x=0

Bi. Hence, the second term
can be regarded as the intersection of multiple sets with a
union set, and hence can also be estimated by (6).

Because this baseline protocol depends on the INClusion-
EXClusion principle in (6) for estimating the intersection of
multiple sets from their unions, we call it INC-EXC for short.

5. ADAPTIVE ESTIMATION PROTOCOL
We presents our Joint RFID Estimation Protocol named

M-JREP to derive joint properties of Multiple tag sets, even
when they are encoded into bitmaps of different lengths.

Naturally, it is desirable to let each bitmap have a different
length, depending on the cardinality of the tag set it encodes.
This inspires us to develop a new algorithm of combining k
bitmaps with variable lengths. The real difficulty is not at
how to combine k bitmaps; there are simple ways to combine
them. The real difficulty comes after the combination — how
to perform analysis on the information combined from non-
uniformly sized snapshots, how to use that information for
joint property estimation, and most importantly, how to en-
sure the satisfaction of accuracy requirements in (4). These
are the tasks that have not been fulfilled in the literature.

Our M-JREP protocol is comprised of two components: an
online encoding component for compressing each tag set into
a bitmap, and an offline analysis component for estimating
the joint properties of multiple tag sets, using their bitmap-
based snapshots. Whenever a bitmap encoding of a tag set
is collected by the online phase, the RFID reader offloads it
immediately to a central server for long-term storage and for
offline processing. Such an asymmetric design will push most
complexity to the offline component at the server side, while
keeping the online component at the side of reader and tags
(for raw data collection) as efficient as possible. We will
describe the online component in the first subsection, and
then the offline component in the subsequent subsection.

5.1 Online Encoding of a Tag Set
We use a two-phase protocol to encode tag set Si into

a bitmap with length proportional to the set size si. The
first phase generates an estimation for the number of tags si
with coarse accuracy, and the second phase uses the coarse
estimation ŝi to configure ALOHA frame length and re-
scan the tag set. It in fact is a common practice for RFID
researchers to use such a two-phase protocol for estimating
the cardinality of a single tag set [3], which will be explained
later in section 9 for related works. In following, we describe
the two-phase protocol with more details.

Firstly, the RFID reader that covers the tag set Si invokes
an existing protocol to generate a coarse estimation of the
set size si. Because only a single tag set is handled in this
phase, the estimation accuracy is specified by the (ε, δ) model
in (5), in which the probability for the relative estimation
error to fall within the range ±ε is at least 1 − δ. Since
the accuracy is rather coarse, we often configure ε = 20%
and δ = 5%. To attain the goal, many existing protocols
can be applied, such as LoF [14], GMLE [7], PET [20] and
ZOE [19]. In order to attain the pre-defined estimation
accuracy of tag set size, the needed number of time slots for
scanning the tag set is O( 1

ε2
log(smax)) · log( 1

δ
) for LoF, or

O( 1
ε2

log log(smax)) · log( 1
δ
) for PET, where smax is an upper

bound for the size of any tag set, according to a recent survey
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study [3]. It is clear that the time expense is proportional to
the logarithm or even the log-logarithm of the tag set size.
Hence, the time cost of the first phase is negligibly small
when its accuracy requirement is coarse. For instance, when
the relative estimation error ε is 20% and δ is 5%, the time
cost of the LoF algorithm [14] is 32 log(smax).

Secondly, because the size of tag set has been coarsely
estimated by the first phase as ŝi, the reader can re-scan the
tag set by an ALOHA frame Bi whose length mi is linearly
proportional to ŝi. Then, the frame length mi satisfies

mi = minp∈(0,1]
{

2
dlog2(

ŝi
ρ

)e}
, (7)

where ρ is the load factor of the frame. Note that the frame
length mi is explicitly configured to an integral power of two.
Then, for any two frames, the length of the longer frame is
always integral multiple of the length of the shorter frame.

Equation (7) can be approximated as the primary time
cost of the online component for tag set encoding. Later in
section 7.1, we will prove that an optimized value of the load
factor ρ that minimizes (7) while satisfying the pre-defined
accuracy constraint of joint property estimation in (4) is

ρ = 1
2p kmax

(
−3 +

√
3
√

8p
(

θ2

kmaxsmaxZδ
2 + 1

)
− 5
)
, (8)

where θ is the bound of absolute estimation error, Zδ is
the 1 − δ

2
quantile of standard Gaussian distribution (e.g.,

Z0.05 ≈ 1.96), smax is the upper bound of the cardinality of
a tag set, kmax is the largest number of tag sets that may
involve in any user query, and p is the sampling probability.
Since smax, kmax, θ and Zδ are all fixed values, (8) can be
regarded a function of only one variable p. Let p∗ be the
optimal sampling probability that maximizes (8), which in
turn will minimize the time cost of encoding a tag set in (7).
It is clear that the value of p∗ only depends on smax, kmax, θ
and δ. Hence, p∗ is pre-determined for a system once these
parameters are set, and the best ρ is also pre-determined.

5.2 Offline Estimation of Joint Properties of
Multiple Tag Sets

In this subsection, we present an offline analysis algorithm
that derives the joint properties nc0 and nx, 1 ≤ x < 2k, of k
tag sets, using the bitmaps B1, B2, . . . , Bk. Without loss of
generality, we assume the bitmaps are sorted by their lengths
in non-descending order that satisfies m1≤m2≤ . . . ≤mk.

Although all these bitmaps are assumed by equation (7) to
have the same load factor ρ, our offline algorithm to describe
later can in fact work well if each bitmap Bi has its own load
factor ρi. We will prove in Section 6 that, only when ρ1 =
ρ2 = . . . = ρk = ρ, can we minimize the protocol time cost.

Expanded Bitwise OR. We introduce two bitwise opera-
tions which will be used later. In the binary representation of
a value y, let lo(y) be the location of the lowest-order 1-bit,
and let hi(y) be the location of the highest-order 1-bit. For
example, if the binary representation of y is 1010001, then we
have lo(y) = 1 and hi(y) = 7. A boundary case is that y is
equal to zero. In this case, we define hi(y) = 0 and lo(y) = 0.

For the bitmaps, we introduce an auxiliary bitmap called
expanded OR to combine them, which is noted byORbk...b2b1 .

ORbk...b2b1 =
∨1≤i≤k

bi 6=0
Expand(Bi, mhi(bk...b2b1))

The subscript bk . . . b2b1 indicates for each bitmap whether it
is involved in the expanded OR: If bi is one, then the bitmap
Bi is involved. Among the chosen bitmaps, the length of the
longest bitmap is mhi(bk...b2b1), because m1 ≤ m2 . . . ≤ mk

and hi(bk . . . b2b1) is the position of the highest 1-bit in bi-
nary bk . . . b2b1. The function Expand(Bi, mhi(bk...b2b1)) in-
creases the length ofBi to the largest bitmap lengthmhi(bk...b2b1)

by self replication, such that all bitmaps after expansion have
an equal length and can be combined by bitwise OR

∨
.

Figure 3 illustrates an example of applying expanded OR
to three bitmaps B1, B2 and B3. Among them, B3 is the
longest. We replicate B1 for one time and B2 for three times,
such that after expansion, all bitmaps are of the same length
and the bitwise OR operation can be used to combine them.
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Figure 3: Expanded OR of three bitmaps B1, B2, B3,
whose lengths are 4, 8, 16, respectively.

For simplicity, we replace ORbk...b2b1 by a shorter notation
ORy, where y is a decimal equal to bk . . . b2b1. Therefore,

ORy =
∨1≤i≤k

2i−1∧y 6=0
Expand(Bi, mhi(y)). (9)

It is always feasible to expand the bitmap Bi to have the
same length with the longest bitmap Bhi(y), because both
their lengths mi and mhi(y) are the powers of two by equa-
tion (7), and the ratio mhi(y)/mi is definitely an integer.

Expected Zero Fraction of ORy. We analyze the ex-
pected fraction of zero bits in the bitmap ORy. Let us focus
on just one bit in ORy, and we have the following property.

Property 1 (Probability of a Tag Assigning a Bit).
Considering an arbitrary bit in bitmap ORy and an arbitrary
tag from elementary subset Nx, when the bitwise AND of x
and y is non-zero, the probability of the tag assigning the bit
to one is p

mlo(x∧y)
; when x∧y is zero, the probability is zero.

Proof. Please check out the Appendix A.

According to Property 1, a tag has the chance to assign a
bit of ORy to one, only when it is in a subset Nx that satisfies
x ∧ y 6= 0. Because in such a subset Nx, any tag assigns the
jth bit of ORy at a probability of p

mlo(x∧y)
, the probability

that all tags in Nx do not assign this bit is (1− p
mlo(x∧y)

)nx .

Let X
(j)
y be the event that the jth bit in ORy remains

zero. The occurrence of the event needs all tags in any Nx
with x∧y 6= 0 do not assign this bit. Thus, its probability is

Prob{X(j)
y } =

∏x∧y 6=0

1≤x<2k

(
1− p

mlo(x∧y)

)nx . (10)

Let zy be the fraction of bits in ORy that remains zeros:

zy = 1
mhi(y)

∑
0≤j<mhi(y)

1
X

(j)
y
, (11)

where mhi(y) is the number of bits in bitmap ORy (see (9)),

and 1
X

(j)
y

is the indicator function of the event X
(j)
y , whose

value is one if the event occurs and is zero otherwise. Since
the zero fraction zy is the arithmetic mean of a large number
of independent variables, by the central limit theorem, zy
approximates a Gaussian distribution. Its expected value is

E(zy) = E
(

1
mhi(y)

∑
1
X

(j)
y

)
= 1

mhi(y)

∑
0≤j<mhi(y)

E(1
X

(j)
y

).
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Clearly, E(1
X

(j)
y

) = Prob{X(j)
y }. Hence, applying (10),

E(zy) = 1
mhi(y)

∑
0≤j<mhi(y)

Prob{X(j)
y }

= Prob{X(j)
y } =

∏x∧y 6=0

1≤x<2k

(
1− p

mlo(x∧y)

)nx .
Applying the approximation (1− p

m
)n ≈ (1− p

m′ )
m′
m
n which

works when m and m′ are both large, we have

E(zy) ≈
∏x∧y 6=0

1≤x<2k

(
1− p

mhi(y)

) mhi(y)
mlo(x∧y)

·nx

=
(
1− p

mhi(y)

)∑x∧y 6=0

1≤x<2k

mhi(y)
mlo(x∧y)

·nx
.

Using the sign function sgn (which equals to 1, 0 or −1 when
its input parameter is positive, zero or negative), we have

E(zy) ≈
(
1− p

mhi(y)

)∑
1≤x<2k

sgn(x∧y)·
mhi(y)
mlo(x∧y)

·nx
. (12)

Estimator of Joint Property nx. Using the fraction of
zero bits in ORy with 1 ≤ y < 2k, we are able to estimate
each joint property nx with 1 ≤ x < 2k. We will show
later that this essentially is a fully determined linear system,
which puts 2k−1 constraints over 2k−1 unknown variables.

By (11), we know that the variance of zy is inversely pro-
portional to the number of observations mhi(y). Hence, when
the number of slots mhi(y) in the frame ORy is sufficiently
large, we can approximate E(zy) by zy. Then, (12) becomes

zy ≈
(
1− p

mhi(y)

)∑
1≤x<2k

sgn(x∧y)·
mhi(y)
mlo(x∧y)

·nx
.

We will prove later that such an approximation indeed pro-
duces unbiased estimators. Taking the logarithm of both sides,

log(zy)
/

log
(
1− p

mhi(y)

)
≈
∑

1≤x<2k sgn(x ∧ y) ·
mhi(y)
mlo(x∧y)

· nx.

Applying the approximation log(1− p
m

) ≈ − p
m

for large m,

−mhi(y)
p

log(zy) ≈
∑

1≤x<2k sgn(x ∧ y) · mhi(y)
mlo(x∧y)

· nx.

If we define the measurement of the number of tags inORy as

ûy = −mhi(y)
p

log(zy), (13)

the above equation can be simplified as∑
1≤x<2k sgn(x ∧ y) · mhi(y)

mlo(x∧y)
· nx ≈ ûy. (14)

Applying (13) to each ORy bitmap, we can collect a vec-

tor of measurements û =
[
û1, û2, . . . , ûy, . . . , û2k−1

]T
. If

putting together the sizes of all elementary subsets, we can

obtain the vector of unknowns: n =
[
n1, n2, . . . , nx, . . . , n2k−1

]T
.

With û and n properly defined, (14) can be rewritten as

M n ≈ û, (15)

where M is the coefficient matrix defined in (16). Its element
uses y as row index and x as column index, 1 ≤ x, y < 2k.

M =

[
sgn(x ∧ y) ·

mhi(y)

mlo(x∧y)

]
(16)

For elements of M, if x ∧ y is zero, then sgn(x ∧ y) is zero,

and the expression sgn(x ∧ y) · mhi(y)
mlo(x∧y)

is treated as zero.

In Appendix B of the extended version [12], we prove that
the coefficient matrix M is non-singular and provide a recur-
sive formula for calculating M−1. Hence, we can solve the
equation system and obtain an estimator of joint properties.

n̂ = M−1 û (17)

Estimator of Composite Joint Property nc0. Among
the numerous composite joint properties, the largest and the
most important property is nc0 — the number of tags in the
union of all the sets. We estimate it as n̂c0 =

∑
1≤x<2k n̂x,

the sum of all elements in the vector n̂. After simplification,

n̂c0 = û2k−1 −
m2 −m1

m1
û1 −

m3 −m2

m2
û3 . . .

− mj+1 −mj

mj
û2j−1 . . .−

mk −mk−1

mk−1
̂u2k−1−1. (18)

6. THEORETICAL ANALYSIS
In this section, we analyze the bias and variance of the

M-JREP estimators. It is easy to prove that the estimators
n̂x in (17) and n̂c0 in (18) are asymptotically unbiased, due
to the rigid process by which they are derived. We place the
detailed proof of asymptotic unbiasedness in Appendix C of
the extended version [12]. In following, we focus on analyzing
their variances, which determine their estimation errors.

6.1 Probabilistic Distribution of Measurements zy
Because the zero fraction zy of bitmap ORy is the input

of M-JREP estimator, we need to first analyze its mean and
variance. By (11), the zero ratio zy is the arithmetic mean
of independent variables. When the number of variables
mhi(y) is large, according to the central limit theorem, zy
approximates a Gaussian distribution. The mean value of
zy is given in (12), and can be further simplified as E(zy) ≈
e−pωy , where ωy is defined below and its physical meaning
is the load factor of ORy.

ωy =
∑

1≤x<2k sgn(x ∧ y) · nx
mlo(x∧y)

(19)

Note that the symbol ωy is different from ρi, which later will
be used to denote the load factor of the frame Bi.

We derive in Appendix D [12] that the covariance of zero
ratio zy1 ofORy1 and zero ratio zy2 ofORy2 is approximately

Cov(zy1 , zy2) ≈
e
−pωy1∨y2−(1+p2ω∗y1,y2

) e
−p(ωy1+ωy2

)

min(mhi(y1),mhi(y2))
, (20)

where ω∗y1,y2 is density of common tags of ORy1 and ORy2 .

ω∗y1,y2 = min(mhi(y1),mhi(y2))
∑x∧y1 6=0
x∧y2 6=0

nx
mlo(x∧y1)mlo(x∧y2)

(21)

6.2 Variance of Cardinality Measurements ûy
We have defined the measurement of the number of tags

ûy in the OR bitmap ORy in (13). We will analyze the
covariance of cardinality measurement ûy1 of bitmap ORy1
and cardinality measurement ûy2 of bitmap ORy2 .

Cov(ûy1 , ûy2) = Cov
(
− mhi(y1)

p
log(zy1),−mhi(y2)

p
log(zy2)

)
Proved in Appendix E [12], the above equation approximates

Cov(ûy1 , ûy2) ≈ mhi(y1)mhi(y2)

p2 e
−p (ωy1+ωy2 ) Cov(zy1 , zy2).

By substituting Cov(zy1 , zy2) with its approximation in (20),

Cov(ûy1 , ûy2) ≈ 1

p2
max(mhi(y1),mhi(y2))·(

ep (ωy1+ωy2−ωy1∨y2 ) − (1 + p2ω∗y1,y2)
)
, (22)

where ωy can be found in (19), and ω∗y1,y2 is defined in (21).
When y1 = y2 = y, the above covariance becomes V ar(ûy).

V ar(ûy) ≈ 1
p2
mhi(y)

(
epωy −

(
1 + p2

∑
x∧y 6=0

mhi(y)
mlo(x∧y)2

nx
))

(23)
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6.3 Estimation Variance of Joint Property
The covariance Cov( ˆnx1 , ˆnx2) of any two joint property

estimations ˆnx1 and ˆnx2 , 1 ≤ x1, x2 < 2k, can form a matrix
Cov(n̂, n̂). According to the proof in Appendix F of [12],

Cov(n̂, n̂) = M−1 Cov(û, û) (M−1)T , (24)

where Cov(û, û) is a covariance matrix whose entry is in (22).
In following, we analyze the estimation variance of the

composite joint property nc0. Equation (18) is rewritten as

n̂c0 = û1 + (−m2
m1
û1 + û3) + (−m3

m2
û3 + û7) . . .+ (− mj

mj−1
·

̂u2j−1−1 + û2j−1) . . .+ (− mk
mk−1

̂u2k−1−1 + û2k−1). (25)

To simplify this equation, we define d̂j as

d̂j = − mj
mj−1

̂u2j−1−1 + û2j−1, with 2 ≤ j ≤ k. (26)

We have proved in Appendix C of [12] that d̂j is an unbiased
estimation of dj = |Sj \ (S1 ∪ S2 . . . ∪ Sj−1)|. Applying (26)
to (25), we have

n̂c0 = û1 +
∑

2≤j≤k d̂j . (27)

Then, V ar(n̂c0) = V ar(û1 +
∑

2≤j≤k d̂j). In Appendix G of

the extended version [12], we prove that Cov(d̂i, d̂j) ≈ 0 for
any i, j values with 2 ≤ i < j, and Cov(û1, d̂i) ≈ 0. Hence,

V ar(n̂c0) ≈ V ar(û1) +
∑

2≤j≤k V ar(d̂j), (28)

where V ar(ûy) is given in (23). By definition of d̂j in (26),

V ar(d̂j) =
mj

2

mj−1
2 V ar( ̂u2j−1−1) + V ar(û2j−1)

− 2
mj
mj−1

· Cov( ̂u2j−1−1, û2j−1).

By (22), Cov( ̂u2j−1−1, û2j−1) ≈ mj
mj−1

V ar( ̂u2j−1−1). Then,

V ar(d̂j) ≈ − mj
2

mj−1
2 V ar( ̂u2j−1−1) + V ar(û2j−1). (29)

Applying the above equation of V ar(d̂j) to (28), we have

V ar(n̂c0) ≈ V ar(û1) +
∑

2≤j≤k

(
V ar(û2j−1)− mj

2

mj−1
2 V ar( ̂u2j−1−1)

)
= V ar(û2k−1)−

∑
1≤j<k

mj+1
2−mj2

mj2
V ar(û2j−1). (30)

7. PROTOCOL PARAMETERS
In this section, we optimize the parameters of M-JREP

protocol, under the accuracy constraints of joint property
estimation in (4). There are many system parameters. But
the size of largest tag sets smax is a phenomenon of physical
world, and is beyond the control of RFID system. The
accuracy model (θ, δ) and the number of tag sets k totally
depends on the demand of users. Hence, only two parameters
are controllable and should be optimized, i.e., the load factor
ρi of the frame Bi and the common sampling probability p.

In the first subsection, we investigate the appropriate con-
figuration for the load factor ρi for frame Bi. In the second
subsection, we study how to optimize the sampling probabil-
ity p to minimize the execution time (or the size of frame Bi).

7.1 Configuration of Load Factors
Equation (4) requires that the probability for the absolute

estimation errors of joint properties nc0 and nx to fall within
±θ is at least 1−δ. We proved before that both n̂x and n̂0 are
asymptotically unbiased estimations and they approximate
Gaussian distributions. Hence, Eq. (4) can be translated to

V ar(n̂c0) ≤ (θ /Zδ)
2 and V ar(n̂x) ≤ (θ /Zδ)

2, (31)

where Zδ is 1− δ
2

quantile of standard Gaussian distribution.

Property 2 (Variance Upper Bounds). The tight up-
per bound of V ar(n̂x), 1 ≤ x < 2k, and V ar(n̂c0) is V ar(û2k−1).

V ar(n̂x), V ar(d̂j) ≤ V ar(n̂c0) ≤ V ar(û2k−1) (32)

Meanwhile, V ar(û2k−1) is tightly upper bounded by

V ar(û2k−1) ≤ 1
p2

sk
ρk

(
ep

∑
1≤i≤k ρi − (1 + p2

∑
1≤i≤k ρi)

)
. (33)

Proof. From (30), V ar(n̂c0) ≤ V ar(û2k−1). For proof of
other parts, see Appendix H of the extended version [12].

By the above property, V ar(n̂c0) and V ar(n̂x) are tightly
upper bounded by (33). Hence, the two constraints in (31)
can be tightened as

1
p2

sk
ρk

(
ep

∑
1≤i≤k ρi − (1 + p2

∑
1≤i≤k ρi)

)
≤ (θ /Zδ)

2, (34)

which guarantees that (31) is satisfied even in the worst case.
In our system design, we shall configure ρ = ρ1 = ρ2 . . . =

ρk as a system-wide optimal load factor, which will be ex-
plained at the end of this subsection. Then, (34) becomes

1
p2

sk
ρ

(
epkρ − (1 + p2kρ)

)
≤ (θ /Zδ)

2. (35)

In this subsection, we focus on the optimization of the load
factor ρ, and keep the sampling probability p temporally
fixed, whose optimization is postponed to the next subsec-
tion. Equation (35) has no explicit solution for ρ due to
the existence of exponential term epkρ. Hence, we apply the
Taylor series ex ≈ 1 + x+ x2

2!
+ x3

3!
+O(x4) to (35). Then,

1
p2

sk
ρ

(
1 + pkρ+ (pkρ)2

2
+ (pkρ)3

6
− (1 + p2kρ)

)
≤ θ2

Zδ
2

ρ ≤ 1
2pk

(
− 3 +

√
3
√

8p
(

1
ksk

θ2

Zδ
2 + 1

)
− 5
)
.

Assume the size of any tag set si is at most smax, and the
number of tag sets k involved in any query is at most kmax.
In the worst case sk = smax and k = kmax, we must ensure

ρ ≤ 1
2pkmax

(
− 3 +

√
3
√

8p
(

1
kmaxsmax

θ2

Zδ
2 + 1

)
− 5
)
. (36)

Since ρ = ρi = si
mi

, it is inversely proportional to the frame

length mi, which measures the protocol time cost for encod-
ing the tag set Si. Thus, we configure the target load factor
as large as possible under the constraint, and obtain Eq. (8).

We justify our choice of setting ρ = ρ1 = ρ2 . . . = ρk.
The left side of (34) is an increasing function in each ρi.
If we allow these load factors to be unequal and still set
their values to be as small as possible, then some of them
will be greater than the right side of (36) and others will be
small. Because S1, S2, . . . , Sk are arbitrary tag sets under
consideration, it means that some tag sets will be encoded
with their load factors greater than the right side of (36) and
some other will have smaller load factors. Let S′1, S

′
2, . . . , S

′
k

be the k tag sets with load factors greater than the right
side of (36). We should be able to perform joint estimation
on any k encoded tag sets without violating the accuracy
requirement. However, if we perform joint estimation on
S′1, S

′
2, . . . , S

′
k, because their load factors are larger than (36),

the constraint of (34) will not hold.

7.2 Optimization of Sampling Probability p

Because ρ = ρi = si
mi

, we have mi = si
ρ

. Recall that the

value of mi must be a power of two to support the expanded

OR of multiple ALOHA frames. Hence, mi = 2
dlog2(

si
ρ

)e
.

We want to choose the optimal sampling probability that
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minimizes the protocol execution time by keeping the frame
length mi as small as possible. Hence, we have the formula
for the frame length defined by section 5-A as (7) and quoted

here: mi = minp∈(0,1]{2dlog2(
ŝi
ρ

)e}, where the load factor ρ is
determined by (8), and the sampling probability p is hidden
inside (8) and needs to be optimized. The optimal p∗ that
can minimize mi depends on the pre-determined parameters
smax, kmax, θ and δ. We can numerically compute from (7)
the optimal sampling probability p∗ that minimizes mi.

8. SIMULATION STUDIES
We evaluate the performance of our M-JREP protocol by

simulations. The most related work include CCF (Compos-
ite Counting Framework [8]), which is based on the rela-
tive error model, and DiffEstm (Differential Estimator [18]),
which is also based on the relative error model and can only
handle two tag sets. Please check Section 2 for discussion on
the absolute error model and the relative error model. In this
section, we will compare our M-JREP protocol with CCF
and INC-EXC. Note that INC-EXC protocol in Section 4
degrades to DiffEstm [18], when it handles only two tag sets.

We will consider two performance metrics. First, given
the same accuracy requirement defined in (4), we compare
the execution times of all the three protocols. For M-JREP,
its execution time is measured as the number of time slots it
takes the reader to encode a tag set into a bitmap, including
the frame length mi and other slots needed to give an initial
rough estimation of tag set size si. We adopt GMLE [7] to
generate an initial estimate with a 95% confidence interval of
±20% error. The time cost of GMLE hence is approximately
1.544 · Z0.05

2/0.22 ≈ 148 slots [7].
Second, when the protocols are subject to the same aver-

age execution time, we compare their probabilities of meet-
ing a given error bound ±θ. The probability is measured as
the number of joint estimations that meet the error bound
divided by the total number of joint estimations performed
in the simulation. When presenting simulation results, we
only show the probability of successfully bounding the esti-
mation error of union cardinality nc0, and omit the bounding
probability of nx, since by Property 2, V ar(n̂x) ≤ V ar(n̂c0)
and the bounding probability of nx is always larger than nc0.

The system model is a distributed RFID system of mul-
tiple locations, where each reader periodically takes a snap-
shot of its local set of tags, whose number ranges from 0
to 50,000, with smax = 50, 000. The average cardinality of
a tag set is savg = 10, 000, which reflects that the normal
business flow of tagged objects is smaller than the worst-
case number that the system is designed to handle. The size
of each tag set will be taken from a Gaussian distribution
N (10000, 20002) truncated by the range (0, smax]. For the
accuracy requirement, we configure δ = 5% and θ = 800
by default. We will perform simulation studies with other
values of system parameters δ, θ, smax and savg as well.

8.1 Protocol Execution Time to Achieve the Same
Estimation Accuracy

We compare the average time cost of the three protocols,
which are forced to meet the same accuracy constraint. A
critical parameter that affects protocol performance is kmax,
the largest number of tag sets involved in a query. We
perform simulations with kmax set to the value 2, 4, 6 or 8.

Before simulation studies, we explain how to theoretically
configure the parameters of M-JREP, i.e., compute the value
of load factor ρ from (8) and the optimal sampling proba-
bility p∗ from (7). For different kmax values, we show the

corresponding ρ and p∗ in Table 1. We find that in most
circumstances with reasonable high accuracy, the optimal
sampling probability p∗ should be configured close to one in
order to avoid sampling error.

Table 1: Parameter Settings for M-JREP Protocol

Number of Sets kmax 2 4 6 8

Optimal Sampling Probability p∗ 1 1 1 1
Theoretical Value of Load factor ρ 0.86 0.28 0.14 0.09
Empirical Value of Load factor ρ 1.39 0.68 0.35 0.13

The theoretical values of ρ are set conservatively (on the
third row of Table 1) to guarantee that the accuracy con-
straint is satisfied even in the worst case. Alternatively, their
values can be set empirically through simulations for normal
situations. In our simulation, we first compute the initial
value of ρ from (8) and then perform bi-section search to
increase it as large as possible such that the resulting value of
mi will still satisfy the accuracy requirement. Consequently,
on the last row of the above table, when kmax equals 2, 4, 6
or 8, the load factor ρ is empirically configured to 1.39, 0.68,
0.35 or 0.13, respectively. It shows that, to support the user
queries that involve more tag sets, the load factor ρ must
decrease, which is consistent with equation (8).

In the second row of Table 2, we present the average execu-
tion time of M-JREP in simulations (using the empirical pa-
rameters in Table 1) . When INC-EXC and CCF realize the
same estimation accuracy, their execution times are shown
in the third and fourth rows of Table 2, respectively. Because
they are not designed for absolute error bound, there is no
formula to compute their frame length or the number of
hash values stored. With smax = 50, 000, we use exhaustive
search by simulation to find their minimum time cost that
can meet the error bound. Table 2 shows that the frame
length used by INC-EXC is at least 500% larger than that
of M-JREP, and the time cost of CCF is even higher. This
is because EXC-INC (or CCF) has to adopt a large frame
length (or store a large amount of tag hash values) to tolerate
the worst case of estimating joint properties for kmax tag sets
whose cardinalities range between 45,000 and 50,000. This
expensive time cost is fixed even when encoding small tag
sets whose average size is only about 10,000. The time costs
of CCF could get even worse than the results shown in the
last row of Table 2, if it is applied to another worst scenario of
estimating the intersection of multiple sets, which is empty.

Table 2: Comparison of Time Cost Among Protocols

Number of Sets kmax 2 4 6 8

Time Cost of M-JREP 10,274 21,072 40,234 77,044
Time Cost of INC-EXC 50,920 124,725 230,112 384,616

Time Cost of CCF for Union 42,244 168,976 380,196 675,904

To give a straightforward impression on the time costs of
M-JREP, INC-EXC and CCF, we configure kmax to 4 and
show their comparison results in Fig. 4, where the horizontal
axis is the size of a tag set, which varies from 100 to 50,000,
and the vertical axis is the number of time slots needed (or
hash values stored for CCF) to take a snapshot of the tag set.
Due to the nature of their designs, INC-EXC uses a constant
frame length of 124,725 slots, and CCF uses constant time
cost of recording 168,976 hash values. The frame length of
M-JREP is variable. It is small when the tag set is small. For
example, for a set of 10,000 tags, the number of time slots
needed by M-JREP is 2dlog2(10,000/0.68)e+148 = 16, 532, only
13% of what is needed by INC-EXC. The average time cost
of M-JREP is 21,072 shown by the solid horizontal line.
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Figure 4: Protocol execution time under the param-
eter settings: kmax = 4, smax = 50000, θ = 800, δ = 5%.

8.2 Estimation Accuracy under the Same Ex-
ecution Time

We compare the estimation accuracy of INC-EXC and M-
JREP, when giving them the same execution time, which is
configured by the second row of Table 2. Here, we omit the
results of CCF for space, which are worse than INC-EXC.

When presenting simulation results, a difficulty is that the
estimation accuracy is strongly affected by the sizes of tag
sets involved and their ways of overlapping. It is impossible
to present the simulation results of all the cases, and hence
we focus on only two of them. The first is an extreme case
that deals with kmax large sets (from 45,000 to 50,000) which
are slightly overlapped. The second case can be regarded as
a normal case that handles two large sets and kmax−2 small
sets whose sizes randomly distribute between 0 and 5,000.

The simulation results of the extreme case are shown in
Table 3, and the results of the normal case is in Table 4. In
both tables, our M-JREP protocol performs well, because its
probability of bounding absolute estimation error with θ is
always above 1−δ = 95%. In contrast, the accuracy of INC-
EXC is non-satisfactory for the normal case in Table 4, and
severely degrades when handling the extreme case in Table 3.

Table 3: Accuracy when Handling kmax Large Sets

Number of Sets kmax 2 4 6 8

Bounding Probability of M-JREP 95% 95% 95% 95%
Bounding Probability of INC-EXC 7.8% 9.6% 18.4% 28.8%

Table 4: Accuracy Comparison when Handling Two
Large Tag Sets and kmax − 2 Small Tag Sets

Number of Sets kmax 2 4 6 8

Bounding Probability of M-JREP 95% 96% 96.6% 99.6%
Bounding Probability of INC-EXC 7.8% 50.4% 86.6% 99%

9. RELATED WORK
Much existing RFID work concentrates on how to collect

efficiently the IDs of a group of tags, which is called tag iden-
tification. Since the tags communicate with a reader through
wireless medium, inevitably collisions will happen when mul-
tiple tags respond to the same reader simultaneously. Colli-
sion arbitration protocols mainly fall into two categories, i.e.,
tree-based protocols [13], and slotted ALOHA protocols [6].
The de-facto RFID standard, EPCglobal C1G2, is a variant
of the slotted ALOHA protocol [1].

Another branch of RFID research investigates how to ac-
curately estimate the cardinality of a tag set at low time
cost without any ID collection. To minimize the time cost, a
plethora of protocols have been developed, including unified
probabilistic estimator [5], lottery frame protocol [14], gen-
eralized maximum likelihood estimation [7], first non-empty

slot based estimation [4], probabilistic estimating tree [20],
average run based tag estimation [15], and zero-one estima-
tor [19]. An important recent study has proposed a two-
phase protocol named SRCs [3], which uses the first phase
to swiftly make a rough estimation of the tag cardinality,
and the second phase based on ALOHA frame for achiev-
ing better accuracy. Our M-JREP also adopts a two-phase
protocol for efficiently encoding a tag set into a bitmap.

A recent trend is to extend the tag counting problem from
a single set to multiple sets. Some researchers focus on two
tag sets scanned by a reader at different time points, and
estimate the cardinalities of their intersection/differences [9–
11, 16, 18]. Such information can help detect missing tags
(which exist in the previous tag set, but no longer in the
current set), remaining tags (existing in both sets), and
new tags (opposite to missing tags). Another work named
CCF is able to estimate the cardinality of an arbitrary set
expression [8]. It assumes that each tag set is encoded into a
sketch named k-min hash values [2] and the configured value
of k must be the same for the sketches of all tag sets.

However, the aforementioned previous studies on multiple-
set counting problem are limited from three perspectives.
First, most of them are not designed to handle a general set
expression, except the work in [8]. Second, all of them spec-
ifies the accuracy requirement by the relative error model.
Unfortunately, when the quantity to estimate approaches
zero, their time cost to meet the accuracy requirement sky-
rockets to infinity (see Section 2 for detailed discussion). The
correct choice is to use instead the absolute error model.
Third, previous work requires that all tag sets must be com-
pressed into data structures (called snapshots) with the same
length, such that multiple snapshots can be merged easily
to estimate the union of multiple sets [8,9,16,18]. However,
these snapshots may not have an equal length, especially
when the tag sets they encode dramatically differ in sizes,
which is commonly seen in real-world scenarios.

A very recent work [17] addresses this third problem by
allowing the bitmap-based snapshots of tag sets to have
adaptively different lengths, in order to improve the protocol
time efficiency. But it is still inadequate in that it only deals
with the joint cardinality estimation of two tag sets. In many
applications, it is required to estimate the cardinality of a
general set expression that may involve an arbitrary number
of tag sets. Our paper can solve this problem efficiently.

10. CONCLUSION
In this paper, we have formulated a problem called joint

property estimation, in which the cardinality of an arbitrary
set expression (involving multiple tag sets from different
spatial or temporal domains) is estimated with bounded
absolute error. We propose a protocol named M-JREP with
a novel design that allows multiple tag sets to be encoded
into bitmaps with varied lengths. It provides a new method
called expanded OR to combine the multiple bitmaps, and it
designs formulas to exploit the combined information, esti-
mate the cardinalities of all elementary subsets, and finally
calculate the cardinality of the desired set expression. We
have analyzed the bias and variance of M-JREP, and also the
optimal setting of its protocol parameters under predefined
accuracy requirements. We have performed extensive simu-
lation studies. The results show that our protocol can reduce
the execution time by multiple folds as compared with INC-
EXC and CCF protocols, which require all tag sets must be
encoded into length-consistent snapshots.
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APPENDIX
A. PROOF OF PROPERTY 1

We firstly define a few notations. In the binary format of
x, the series of one-bits from low end to high is at positions

`(x, 1), `(x, 2), . . . , `(x, bc(x)), (37)

where `(x, i) is the location of the ith one-bit in x, and bc(x)
is the number of one-bits in x (or called the bit count of x).
For simplicity, we denote
• the location of the lowest-order 1-bit `(x, 1) by lo(x), and
• the location of the highest-order 1-bit `(x, bc(x)) by hi(x).

By the definition of elementary subset Nx in (3), the one-
bits in binary format of x decide which tag sets will include
Nx, i.e., S`(x,1), S`(x,2), . . . , S`(x,bc(x)). Since the tag set Si
are encoded by the ALOHA frames Bi, the one-bits in x also
decide which frames may receive responses from tags in Nx.

B`(x,1), B`(x,2), . . . , B`(x,bc(x)) (38)

For this list of frames, the following properties establishes.

Property 3. For an arbitrary tag from the elementary
subset Nx, it may respond in (or be encoded by) the frames
B`(x,1), B`(x,2), . . . , B`(x,bc(x)). The tag will be sampled to re-
spond either in all these frames or in none of them, since the
sampling process is performed in a pseudorandom fashion.

Property 4. Assume a tag in Nx is sampled to respond,
and its list of encoding frames in (38) includes B`(x,i) and
B`(x,i′), where the former frame is no longer than the latter
m`(x,i) ≤ m`(x,i′). For an arbitrary slot number j, if the tag
does not pick the (j mod m`(x,i))th slot in frame B`(x,i), it
will neither select the (j mod m`(x,i′))th slot in B`(x,i′).

Proof. Suppose a tag id is sampled and does not select
the (j mod m`(x,i))th slot in frame B`(x,i), i.e., H(id⊕R) 6= j
mod m`(x,i). Since both m`(x,i) and m`(x,i′) are the powers
of two and m`(x,i) ≤ m`(x,i′), the former is able to divide the
latter. Thus, H(id ⊕ R) 6= j mod m`(x,i′), implying that
the jth slot in B`(x,i′) is not selected by the tag.

Property 5. Among the list of frames in (38), if in the
first frame B`(x,1), a tag in subset Nx does not select the
(j mod m`(x,1))th slot, then in any subsequent frame B`(x,i)
with i > 1, the tag neither selects the (j mod m`(x,i))th slot.

Consider an arbitrary tag id in elementary subset Nx. As
mentioned in (38), the frames that may receive responses
of the tag id are B`(x,1), B`(x,2), . . . , B`(x,bc(x)). Further con-
sider the bitmap ORy, which is the expanded OR of bitmaps
B`(y,1), B`(y,2), . . . , B`(y,bc(y)) as defined in equation (9). Among
these selected bitmaps as marked by y, the bitmaps that may
receive the response of tag id in the subset Nx are

B`(x∧y,1), B`(x∧y,2), . . . , B`(x∧y,i), . . . , B`(x∧y,bc(x∧y)). (39)

According to (9), the jth bit of bitmap ORy is the OR
of the (j mod m`(y,i))th bit in bitmap B`(y,i) with the index
i ranging from 1 to bc(y). But the tag in subset Nx only
appears in the list of bitmaps in (39). Hence, we only need
to analyze the probability for the tag to assign the (j mod
m`(x∧y,i))th bit in bitmap B`(x∧y,i) with i ∈ [1, bc(x ∧ y)].

As explained in Property 5, if the tag id does not select
the (j mod m`(x∧y,1))th slot in B`(x∧y,1), then it neither se-
lects the (j mod m`x∧y(i))th slot in B`(x∧y,i) for any i value.
Hence, the probability that the tag id picks the jth slot in
ORy equals the probability that the tag assigns the (j mod
m`(x∧y,1))th bit in B`(x∧y,1), i.e., p

m`x∧y(1)
= p

mlo(x∧y)
, where

lo(x∧y) and `(x∧y, 1) are the location of lowest 1-bit in x∧y.
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