
Reliable Anchor-Based Sensor
Localization in Irregular Areas

Bin Xiao, Member, IEEE, Lin Chen, Qingjun Xiao, and Minglu Li, Member, IEEE

Abstract—Localization is a fundamental problem in wireless sensor networks and its accuracy impacts the efficiency of location-aware

protocols and applications, such as routing and storage. Most previous localization algorithms assume that sensors are distributed in

regular areas without holes or obstacles, which often does not reflect real-world conditions, especially for outdoor deployment of

wireless sensor networks. In this paper, we propose a novel scheme called Reliable Anchor-based Localization (RAL), which can

greatly reduce the localization error due to the irregular deployment areas. We first provide theoretical analysis of the minimum hop

length for uniformly distributed networks and then show its close approximation to empirical results, which can assist in the

construction of a reliable minimal hop-length table offline. Using this table, we are able to tell whether a path is severely detoured and

compute a more accurate average hop length as the basis for distance estimation. At runtime, the RAL scheme 1) utilizes the reliable

minimal hop length from the table as the threshold to differentiate between reliable anchors and unreliable ones, and 2) allows each

sensor to determine its position utilizing only distance constraints obtained from reliable anchors. The simulation results show that RAL

can effectively filter out unreliable anchors and therefore improve the localization accuracy.

Index Terms—Wireless sensor networks, range-free localization, reliable anchor.

Ç

1 INTRODUCTION

LOCATION awareness is becoming increasingly important
in many sensor network applications and protocols,

such as environment monitoring, vehicle tracking, and
geographic-related routing protocols [1]. To acquire the
location knowledge, it is cost-inhibitive to equip each sensor
with a GPS receiver, and therefore only a limited number of
special nodes in a network can be GPS-enabled, which are
called anchors or beacons. Localization then becomes the
problem to accurately infer locations of the “unknown”
nodes with the assistance of only a few anchors. Localiza-
tion techniques can be roughly classified as range based or
range free. The range-based techniques depend on the
measurements of internode distances or angles, by packet
arrival time [2], signal strength [3], [4], the arrival angle of
signals [5]. Their inadequacies are their requirement of the
expensive per-sensor measuring equipments and their
vulnerability to environmental interference. The range-free
techniques, e.g., centroid approaches [6], multilateration [7],
[8], and multidimensional scaling (MDS) [9], can remove
this cost of ranging devices, by assuming the shortest paths
between anchors and sensors proportionate to their
euclidean distances.

Previous range-free localization work mainly assumes
regular sensor deployment areas [10], i.e., sensors are
uniformly and densely distributed in a convex region.
However, this assumption does not hold when a sensor
network is deployed in irregular areas with obstacles (or
holes interchangeably), because the packet delivery path
between two sensors can be distorted (or detoured) by
obstacles and this shortest path distance is dramatically
different from its geographical euclidean distance. These
distorting obstacles are inevitable in natural areas such as
valleys where sensors are deployed for habitat monitoring, as
well as in urban areas where sensors can be separated by
buildings. Therefore, when applying range-free techniques to
the concave areas, the position estimates may in fact contain
large errors [11]. One response to this irregular area problem
is to partially ignore the erroneous distance information by
using an improved multihop algorithm [12]. Yet, distorted
anchor information can mislead accurate position estimates.

One way to improve the accuracy of localization would be
to rule out distorted path information from some anchors,
which however has two particular difficulties. First, because
sensors do not have the global view of their network, they
have no way of determining which path information is
distorted and which is not. Second, while anchors can rely
on the information that they receive from other anchors that
are in an unobstructed (nondistorted) straight line path
because they are able to determine their mutual reliability
based on the calculation of an expected hop length, anchors
and sensors cannot rely on each other in this way because
sensors do not know their own locations and so cannot make
an expected hop-length calculation.

In this paper, we propose a novel range-free scheme
which we call Reliable Anchor-based Localization (RAL) and
bears the following three advantages compared with other
state-of-the-art work.
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. We introduce an accurate average hop-length
estimation algorithm, which can both tolerate irre-
gular radio propagation and the distortion effect of
obstacles. Traditional offline hop-length estimation
by Kleinrock equation [13] suffers from irregular
radio propagation, while the online method of DV-
Hop [7] is not robust to obstacle detours. Therefore,
we first use the minimum hop length from a
constructed reliable minimum hop length table to
rule out unreliable anchors distorted by obstacles,
and then apply the online hop-length estimation
similar to DV-Hop using only reliable anchors.

. The adopted sensor localization algorithm residing
on sensors can achieve high accuracy by heavily
relying on information provided by reliable anchors.
We first use the overlapping of ring and disk to get
an approximate estimate about the sensor location.
Here the ring shaped constraints are from anchors
within four hops, and the disk shaped constraints
are given by faraway anchors beyond four hops,
whose paths are probably detoured by obstacles.
With this approximate estimate about sensor loca-
tion and some minimum hop length as a threshold,
the sensor can tell which anchors are reliable and
which are not. With recognized reliable anchors, the
sensor can apply the basic MMSE multilateration [7]
to derive an accurate location estimate.

. We reduce the requirement for high anchor density
by the virtual anchor upgrade method. Potentially
all range-free algorithms may suffer from low
anchor density. Virtual anchors are selected for
those sensors with good localization accuracy, which
help alleviate the requirement for the high anchor
density. We propose a computationally efficient way
to select virtual anchors that can directly benefit
sensor localization, especially those without enough
number of reliable anchors.

We give theoretical analysis of the minimum hop length
for sensor networks with uniformly distribution and ideal
radio transmission. However, empirical results show that
the minimum hop length can be shortened due to radio
irregularity. To improve localization accuracy, we should
build the crucial minimum hop-length table offline that
relates to the real sensor deployed environment, in a way to
be adjusted empirically according to Degree Of Irregularity
(DOI). Each sensor can consult with the table with network
density (or interchangeably neighbor density) as its key. In
this paper, we present a scheme that enables each sensor to
independently estimate the number of neighboring sensors
online and treat it as the network density, which makes the
scheme more feasible in real applications.

We have conducted extensive experiments to test RAL in
various network configurations. Simulation results show
that RAL scheme can successfully filter out unreliable
anchors. The obtained average hop length is much more
close to the real case than the one applying all anchors’
information. Comparing RAL with other range-free
schemes [7], [14], [12], we show that RAL can significantly
improve localization accuracy in irregular networks and is
insensitive to the global network density. Specifically, we

show the robustness of RAL for sensors to obtain accurate
location estimates when sensors are nonuniformly distrib-
uted, e.g., shape fitting, and DOIs are variant.

The rest of this paper is organized as follows: Section 2
describes work related to range-free localization techniques
in detail. Section 3 provides a motivating scenario where the
localization accuracy of sensors can be severely affected by
irregular areas. In Section 4, we first illustrate the location
problem due to obstacle detours, and then show the
analysis on average and minimum hop length to assist
identifying reliable anchors. Section 5 presents the RAL
scheme. We present our simulation results in Section 6.
Finally, Section 7 offers the conclusion.

2 RELATED WORK

Range-free localization techniques, which depend solely on
the content of received packets, use two main types of
algorithms, centroid [6] and hop count to localize sensors.
Centroid algorithms estimate the location of a sensor by
calculating the centroid positions of proximate anchors.
This requires a large number of anchors. In contrast, hop-
count algorithms, such as APS [7] and Hop-TERRAIN [8],
require only a small number of anchors. In APS, anchors
broadcast to the entire network both their locations and a
hop-count parameter initialized to one. The hop-count
value is increased at every intermediate hop and each
sensor records the minimum hop count as it receives it. In
this way, all nodes in the network have information about
the minimum number of hops to each anchor. Each anchor
computes the euclidean distances (very accurate) to other
anchors and estimates the average hop length which is then
propagated out to nearby nodes. The average hop length
that anchor i computes is given by

hli ¼
P

j6¼i;j2A dijP
j6¼i;j2A hij

; ð1Þ

where dij denotes the euclidean distance between anchor i
and j, hij denotes the hop count of the shortest path
between them, and A refers to the anchor set.

When the average hop-length information is available,
sensor k can estimate the shortest path length (Lki) to
anchor i by

Lki ¼ hik � hln; ð2Þ

where hik represents the hop count of the shortest path from
anchor i to sensor k, and hln denotes the average hop length
calculated using the anchor nearest to sensor k (e.g.,
anchor n). To determine the position of sensor k, the
multilateration technique based on all anchors can be used.
Linear least squares or nonlinear least squares minimization
solvers are commonly used to find the potential position
ðxk; ykÞ of sensor k that can minimize the following
equation:

ðxk; ykÞ ¼ arg min
X
i2A
ðLki � dkiÞ2; ð3Þ

where dki denotes the euclidean distances between sensor k
and anchor i.
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This approach is accurate insofar only when the shortest
paths between anchors and sensors approximate to their
euclidean distances. However, there may be large errors in
the distance estimates if the topology is not isotropic or
contains a hole [11]. In order to alleviate the influence of
holes, Shang et al. [14] suggest using only four nearest
anchors assuming that the shortest paths to the nearest
anchors may be less affected by irregularities, and this does
produce good results in some cases but with a drawback of
the possibility to falsely discard some good anchors which
can improve the localization accuracy.

Lim and Hou [15] proposed a linear mapping method
that transforms proximity measurements between sensor
nodes into a geographic distance embedding space in
anisotropic sensor networks. This transformation retains the
topological information and reduces the effect of measure-
ment noises on the estimation of geographic distances.
Wang and Xiao [12] presented an improved multihop
algorithm which utilized a hybrid approach to minimize the
effect from some erroneous distance estimations. The likely
position of a sensor is constrained in the intersection area of
all circles centered at anchors. The circle radii are approx-
imate to the estimated lengths of the shortest paths to these
anchors. The likely position ðxk; ykÞ of sensor k can be
obtained as

ðxk; ykÞ ¼ arg min
X
i2A
ðLki þ "i � dkiÞ2 þ !

X
i2A

"i;

subject to dki � Lki þ "i;
ð4Þ

where ! is the weight coefficient which is set to a large
value, "i is a slack variable which ensures that the
intersection area of all circles is nonempty. In this way,
the potential position of sensor k can only be selected from
the intersection area, thereby reducing the position devia-
tion resulting from the distorted distance measurements.
However, as the likely position is calculated based on the
summation of all anchors, the effect of distorted anchor
information cannot be totally eliminated, e.g., on the
average hop length.

3 MOTIVATING SCENARIO

In this section, we present a scenario in which a network is
deployed in an environment of obstacles and describe how
two different typical non-RAL localization approaches
attempt to localize sensors in irregular areas, i.e., multi-
lateration-based APS [7] and a hybrid approach by Wang
and Xiao [12]. Fig. 1 shows the network topology in which
there are four anchors (A1-A4), seven sensors (S1-S7), and a
large obstacle (in white). When anchors propagate their
position information, each sensor records the physical
location of each anchor and the hop count to it. It can be
seen that the shortest paths from anchors A1, A2, and A3 to
sensor S1 are approximately equal to their euclidean
distances but the presence of the obstacle means that the
shortest path from anchor A4 to sensor S1 requires a
lengthy detour around the obstacle along the path
(A4! S2! S3! S4! S5! S6! S7! S1). A direct,
unobstructed route between A4 and S1 might be, say, two
hops. Clearly, the current 7-hop path does not give
sensor S1 an accurate estimate of the direct distance to
anchor A4.

APS [7] would estimate the position of sensor S1 to be at
S10 with regard to the 7-hop distance to A4. The idea is that
the resulting position of a sensor is derived by minimizing
the deviation summation of the euclidean distances from
estimated lengths in the shortest paths to all anchors. Thus,
the coordinate that is calculated for sensor S1 may be
located in S10. Since the estimated length of the shortest
path, in hops, to anchor A4 is much larger than the actual
value, to minimize the deviation, the estimated position of
sensor S1 is located far away from anchor A4 (also far away
from its real position).

In the hybrid approach proposed in [12], the position of
sensor S1 is in the area of intersection of all circles centered
at anchors. The radii of circles are the estimated lengths of
the shortest paths from sensor S1 to anchors. A sampled
point in the overlapping area that satisfies (4) is selected as
the position of sensor S1. In this way, the resulting position
may be located in a position much closer to S100 since the
position is still affected by the unreliable anchor A4.

In both approaches, the accuracy of location estimation
of a sensor node in an irregular network topology is
compromised by the fact that they take into account
information from all anchors even though some provided
information is unreliable. In this scenario, the ideal
localization for sensor S1 can be derived by ignoring the
unreliable anchor A4. The potential position of sensor S1 is
still within the intersection area of all circles. However, only
reliable anchors (i.e., anchor A1, A2, and A3) are utilized in
position estimation. Consequently, the calculated coordi-
nates of sensor S1 can be very close to its actual position.
The issue in localization thus becomes how to distinguish
reliable anchors from unreliable anchors to a sensor node.
Note that an unreliable anchor to a sensor node may
become reliable to other nodes located in different areas if
no distorted paths are present.

4 AVERAGE AND MINIMUM HOP-LENGTH

ESTIMATION

In this section, we first identify the obstacle detour problem
to solve in this paper, which shows that for a detoured path
its hop-length estimates can be greatly diminished. This
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observation is the basic rational behind our scheme to
recognize and drop these detoured paths, whose hop-length
estimates abnormally shrink. Given the existence of
detoured paths, it is critical to derive accurate average
and minimum hop length to be utilized for sensor location
estimation. We show theoretical analysis of them based on
the perfect circular transmission range. More practically, we
have conducted experiments on networks with radio
irregularity (based on DOI model) and studied its impact
on the minimum hop length.

4.1 The Problem of Obstacle Detour

Assume that over a large area nodes are uniformly and
randomly distributed with the given density �. The area may
contain obstacles or holes. The wireless sensor network can
be modeled as an undirected graphG ¼ ðV ;EÞ. The node set
V is a set of wireless nodes, including the anchor set VA and
sensor set VS . The edge set E represents a set of virtual links
between nodes. The geographic positions of anchors are pre-
known. The target of our localization algorithm is to use
anchors and edge set to infer the sensor positions. It is
assumed that each sensor knows the network density. This
constraint can be relaxed as discussed in Section 5.5.

Given a network as shown in Fig. 2a, the shortest path
between anchors A1 and A2 is a 4-hop distance (A1! S1!
S2! A3! A2) in an isotropic network. Suppose that the
transmission range of each node is r and the euclidean
distance between anchors A1 and A2 is 3r. We can derive
that the average hop length for this 4-hop path is 0:75r.
However, if there is an obstacle between anchor A1 and A2
as illustrated in Fig. 2b, the shortest path has to detour along
the obstacle and becomes a 6-hop path (A1! S3! A4!
S4! S5! S6! A2). Now the calculated hop length is
0:5r, which is much smaller than that in the isotropic
network. Thus, in the absence of a global view of network
topology, a sensor (or an anchor) can infer a smaller average
hop length than a real one for the shortest path severely
distorted by obstacles. This then raises the question of how
to choose a hop-length threshold that would allow sensors to
make acceptably accurate determinations.

4.2 Average Hop-Length Estimation

In wireless sensor networks, assume that the wireless
communication range is r. Thus, the hop distance of a

communication link has a maximum distance of r. Given

the shortest path between node k and anchor i that contains

hik hops, it is implied that node k is at most hik � r distance

from anchor i. However, given any two nodes, there may

not be sufficient intermediate nodes for the shortest path to

lie along the straight line between the source and destina-

tion [16]. Suppose the euclidean distance between sensor k

and anchor i is dki, dki � hik � r and the average hop length is

hlki ¼ dki=hik. In [13], the following formula was derived to

show the average hop length hl and how it is affected by the

neighbor density � for sensors uniformly distributed in an

area. Fig. 3 visualizes the correspondingly increased 1-hop

length in densely distributed sensor networks for ideal

radio transmission with the range of 1.

hl ¼ r 1þ e�� �
Z 1

�1

e�
�
�ðarccos t�t

ffiffiffiffiffiffiffi
1�t2
p

Þ dt

� �
: ð5Þ

Given a shortest path with h hops, all intermediate hops

but the last one try to deliver the packet as far as possible.

Suppose that the average hop length for the previous

h� 1 hops is hlnormal. According to [13], hlnormal should

relate only to the neighbor density. The shortest path

length pl can be represented as follows:

pl ¼ ðh� 1Þ � hlnormal þ hllasthop; ð6Þ

where hllasthop denotes the length of the last hop. The length

of the last hop is usually unpredictable and within the range

of ð0; r�.
Then, the average hop length for the whole shortest path

can be given by

hl ¼ pl
h
¼ hlnormal þ

hllasthop � hlnormal
h

: ð7Þ

As we can see, the average hop length relates not only to

neighbor density (5) but also to the hop count of the shortest

path (7). The residue hllasthop�hlnormal
h depends heavily on the

hop count h. For example, when the shortest path has

n hops, hllasthop impacts the average hop length with a

variance within ð0; rn�. That is, when the hop count of a

shortest path is small, the length of the last hop greatly

affects the average hop length even in an isotropic network.

The last hop influence is gradually alleviated when the hop

count becomes larger.
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4.3 Minimum Hop-Length Estimation

Although (7) provides much accurate calculation on the
average hop length, it does not show a threshold regarding
average hop length to differentiate detoured paths from
normal ones. The following equations are for deriving the
minimal hop length in isotropic networks. If the average
hop length calculated from a path (assuming the path
length is known from the position of its two ends) is lower
than the minimum hop length in isotropic networks, we can
tell that the path has been detoured by obstacles and thus its
distance estimate is inaccurate.

The minimum hop length in networks with ideal circular
radio range can be derived as follows:

plmin : minimum path length in isotropic networks

hlmin : minimum hop length in isotropic networks

hlmin ¼ plmin
h

h ¼ 1; hlmin ¼ 0;

h ¼ 2; hlmin ¼ r
2;

h ¼ 3; hlmin ¼ rþhl
3 ;where hl is from ð5Þ;

h ¼ k; hlmin ¼ rþðk�2Þ hl
k ðk � 3Þ :

ð8Þ

When the hop count h is one, the minimum hop length is

zero, since the sensor can be very close to the anchor with

plmin ¼ 0. When h is two, the minimum hop length is r
2 , since

the sensor can be at the fringe of the 1-hop transmission range

r with plmin ¼ r. When h is three, the minimum hop length is
rþhl

3 , since the minimum distance for a 3-hop is at the outside

edge of the first ring with plmin ¼ rþ hl (the ring width is the

average hop length hl). When h is k, the minimum hop length

is rþðk�2Þhl
k , since the minimum distance for a k-hop is at the

outside edge of the ðk� 2Þth ring with plmin ¼ rþ ðk� 2Þhl.
To test the effectiveness of the above theoretical minimum

hop length in practical networks, we compare the theoretical
result with experimental minimum hop length with various
DOI values in Fig. 4. In experiments, we set the radio
transmission range to be 1 while sensors are uniformly
distributed in a 10� 10 area without holes. In this setting,
each sensor knows its position. All sensors broadcast
messages in the network and we are easy to get the shortest
physical distance among pairs of sensor nodes for a given
hop count to compute the minimal hop length. Since the

minimal hop length may be affected by the randomness of
network topology, we calculated its average from 10 experi-
ments. From Fig. 4, we can witness a good match between
theoretical minimum hop length (from (8) and its experi-
mental result in isotropic networks with zero DOI value.
However, the gap between them grows as the increase of
DOI value. This is because with a large DOI value, there are
non-negligible possibility for the presence of short range
links with crossed distance much smaller than radius r.

As a summary, three factors—sensor density (�), hop
count (h), and radio irregularity (DOI)—all influence the
minimum hop length in a wireless sensor network. There-
fore, in real systems, we shall establish an offline table to
reflect their combined influences on the minimum hop
length, by statistically collecting sensor density and hop-
count information, which cannot be fully addressed by (8).
This offline table provides the minimum hop-length lookup
capacity, indexed by two inputs (sensor density and hop
count). For instance, we can build such table from
experimental results in Fig. 5 where DOI ¼ 0. The built
empirical minimum hop-length table can help differentiate
the undetoured path (with normal hop length) from
detoured path (with abnormally diminished hop length),
in concave networks with the presence of radio irregularity.

5 RELIABLE ANCHOR-BASED LOCALIZATION

SCHEME

In this section, we describe our reliable anchor-based
localization scheme, which we call RAL. Anchors have their
pre-known accurate positions, such as equipped with GPS.
We carry out the RAL scheme in five consecutive steps:

1. the propagation of anchor information;
2. the identification of reliable anchor pairs and the

local calculation of average hop length;
3. the determination of the approximate area in which

a sensor is located;
4. the identification of reliable anchors for a sensor; and
5. the distributed position estimate in a sensor by using

reliable anchors.

These steps are performed at each node in a distributed
fashion, with steps 1 and 2 conducted in anchors and
steps 3-5 conducted in sensors.

64 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 1, JANUARY 2009

Fig. 4. Theoretical minimum HopLength versus experimental minimum
HopLength with different DOI values. Fig. 5. Experimental results for reliable minimal HopLength with different

neighbor densities and hop counts.



Algorithms 1 and 2 present the pseudocodes for the RAL
scheme. They depict the localization algorithms conducted
in anchors and sensors, respectively. Please note that the
parameter k represents the ID of a sensor or of an anchor. A
is a node set containing all anchors. Each sensor or anchor
contains a table that records the aforementioned reliable
minimal hop length for a given shortest path hop count and
neighbor density prior to the deployment of the wireless
sensor network. At runtime, similar to other range-free
localization approaches, RAL scheme ensures that anchors
first broadcast their locations and a count is set to one. Each
receiving node records the minimum hop count from an
anchor and then floods outward the new hop count which
is increased by one. Any packet containing a larger count
value for an anchor is ignored. Thus, all nodes in the
network obtain information as to the minimum number of
hops to each anchor. We will introduce the average hop-
length calculation procedure of anchors in Section 5.1. The
detailed location estimation in sensors will be discussed in
Sections 5.2 and 5.3. Section 5.4 will propose the virtual
anchor concept to further reduce localization errors for
sensors failed to find at least three reliable anchors.
Section 5.5 will address the network density issue and
how each sensor node can obtain neighbor density.

Algorithm 1. RAL algorithm resides in anchors
Input:

k: anchor ID, A: the anchor set;

ðxi; yi;hkiÞ where 1 � i � jAj and i 6¼ k: received position of

anchor i and corresponding hop count to anchor k;

Output:

hl: the average hop length;

1: for i 2 VA and i 6¼ k do

2: calculate the dki and hlki;
3: threshold ¼ lookup(density, hki);

4: if hlki > threshold then

5: reliable½i�¼true;

6: end if

7: end for

8: for i 2 VA and reliable½i� do

9: htotalk þ ¼ hik;
10: dtotalk þ ¼ dik;
11. end for

12: broadcast dtotalk and htotalk ;

13: collect dtotali and htotali from anchors, 1 � i � jAj;
14: hl ¼

P
dtotaliP
htotali

;

15: broadcast the hl to nearby sensors;

Algorithm 2. RAL algorithm resides in sensors

Input:

k: sensor ID, A: the anchor set;

hl: the average hop length broadcasted from a nearby

anchor;

ðxi; yi;hkiÞ where 1 � i � jAj and i 6¼ k: received position of

anchor i and corresponding hop count to sensor k;
Output:

ðxk; ykÞ: sensor k’s position estimate;

1: determine the approximate intersection area PAk from

anchor and hop info;

2: for i 2 VA do

3: calculate the maximal possible length dmaxki ;

4: hlki ¼
dmax
ki

hki
;

5: threshold ¼ lookup(density, hki);
6: if hlki > threshold then

7: reliable½i�¼true;

8: Lki ¼ hl� hki;
9: end if

10: end for

11: return the point ðxk; ykÞ from PAk satisfying (9);

5.1 Calculation of Average Hop Length

Equation (1) shows a simple way to derive the average hop
length when an anchor receives the hop count and position
information from other anchors. It assumes that information
is obtained in a regular network topology yet as we can see
in Fig. 2b where the shortest path between anchor A1 and
A2 must detour around an obstacle in irregular topologies
that are more close to real applications. Given anchor k, its
calculated average hop length hlk according to (1) in an
irregular topology can in fact be much smaller than the real
one. The smaller average hop length can lead to the
estimated distance from a sensor to unreliable anchors
longer than the actual distance while those to a reliable
anchor will be shorter. To avoid the wrong distance
estimation, in our calculation of the average hop length,
we filter out information between anchor pairs who are
incident on detoured paths. Fortunately, because anchor k
knows the actual euclidean distances to all other anchors, it
is possible to recognize a reliable anchor i by comparing
hlki ¼ dki=hki with the threshold a constructed minimum
hop-length table.

As shown in Algorithm 1, the function lookup(density, hki)
searches the hop-length table for a reliable minimal hop
length with the given neighbor density and hop count. If hlki
is larger than the threshold, anchor i is regarded as a reliable
anchor to anchor k. Otherwise, anchor i is eliminated from
the average hop-length calculation. Algorithm 1 first allows
that each anchor (i.e., anchor k) locally calculates the total
hop counts and distances using all paths linked to itself. In
our implementation, to increase accuracy we use all reliable
anchor pairs to compute the average hop length. In this way,
anchors can exchange the accumulated reliable hop counts
and corresponding euclidean distances, derive the average
hop length, and then distribute this information to nearby
sensors by controlled flooding.

5.2 Estimation of Approximate Location Area of
Sensor

When a sensor receives geographic information from
anchors, it can use hop count and average hop length to
independently estimate its likely location area. To accu-
rately locate its position, the sensor should be able to
identify reliable anchors and filter out unreliable ones who
are offering confused path information. As a sensor has no
knowledge of its location, to identify reliable anchors it
must first obtain an approximate location estimate and then
infer the maximal possible euclidean distances between
itself and anchors.

To successfully obtain an approximate location area for a
sensor, we propose a joint ring and overlapping circle
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approach. As shown in Fig. 6, sensor S1 is within 1-hop

distance of anchor A2 so it is safe to infer that sensor S1

should be located within the circular area having anchor A2

as its center and the transmission range r as its radius. The

minimal hop counts for anchors A1, A3, and A4 to reach

sensor S1 are, respectively, 2, 6, and 3. Similarly, sensor S1

should be located within the circular area centered atA1,A3,

and A4, with their respective radii being 2r, 6r, and 3r. The

likely location of sensor S1 is thus the overlapping area of

the four circles. To further reduce the overlapping area, in

this paper, we utilize overlapping ring for nearby anchors to

narrow down the area. As illustrated in Fig. 6, the likely

location of sensor S1 can be confined within the ring having

an inner radius 2 � Threshold2 and an outer radius 2r.

Threshold2 denotes the reliable minimal hop length for a

given neighbor density when the hop count is 2, which can

be obtained by looking up the hop-length table. However,

when anchors are four hops or more away from sensor S1

(like A4), we are cautious to only use circular areas to

minimize the impact from possibly detoured paths. In Fig. 6,

the shaded area indicates the likely location of sensor S1.
The joint ring and overlapping circle approach assumes

that nearby anchors (those within the range from 2 to

3 hops) are less likely to be affected by obstacles or holes.

This is a practical assumption since a detoured path along

the boundary of holes should have a rather large hop count.

Note that even if the estimated path length between an

anchor and a sensor is much larger than the real distance (as

between A3 and S1), the likely location of a sensor will not

be affected in this approach because we only apply the

constraint (6r) on the radius of the enlarged circle.

5.3 Localization Using Only Reliable Anchors

Once a sensor k knows its approximate location area, it can

identify reliable anchors to itself. From an obtained approx-

imate location area, sensor k can compute the possible

maximal euclidean distance to an anchor i by point sampling

in the approximate area. Let the maximal euclidean distance

be dmaxki and corresponding hop count be hki. The maximal

hop distance hlki ¼
dmax
ki

hki
can be utilized to determine whether

the anchor is reliable by comparing it with the reliable
minimal hop length as illustrated in Algorithm 2 (lines 6-9).

Algorithm 2 describes the operations carried out in a
sensor to locally estimate its position. Only reliable anchors
will be used for position estimate whose reliable value is
true. A sensor k computes the estimated path length Lki to
the reliable anchor i from the hop count hki and correlated
hop length hl. Sensor k samples the point ðxk; ykÞ from the
joint ring and overlapping circle area as in Fig. 6 that
satisfies the following equation:

ðxk; ykÞ ¼ arg min
X

reliable½i�¼true
jLki � dkij; 8i 2 A; ð9Þ

where dki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxk � xiÞ2 þ ðyk � yiÞ2

q
, ðxk; ykÞ 2 PAk, and

PAk is the likely location area of sensor k.
As we can see, Algorithm 2 can completely remove the

impact of distorted paths from unreliable anchors in any
irregular areas and yield accurate localization results. If a
sensor cannot acquire sufficient number (less than 3) of
reliable anchors, its location estimate could be far from its real
location and thus cause a large estimation error. This may
happen if anchors are sparsely or unevenly distributed in a
sensor network area. However, we can create virtual anchors
from precisely located sensors to accommodate this problem.

5.4 Virtual Anchor

When there are fewer than three reliable anchors identified
by a sensor, the area in which it is likely to be located will be
rather large and this could create a large estimation error.
One solution to this problem is to find neighboring sensors
that have been localized accurately and to use these as
“virtual” anchors to refine the localization. To select sensors
as eligible to act as virtual anchors, we first need to evaluate
how accurately a sensor has located itself. In [12], this was
evaluated by using the radius of the intersection area PAk.
The radius rk of PAk is defined as the maximum distance
between the estimated position ðxk; ykÞ to any other point
ðx; yÞ within the area, that is,

rk ¼ max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxk � xÞ2 þ ðyk � yÞ2

q
; 8ðx; yÞ 2 PAk: ð10Þ

When the radius rk is less than a given threshold,
sensor k is regarded as being eligible to act as a virtual
anchor. However, such method requires the testing of each
point in PAk and results in complicated computation.

In this paper, we propose to measure the location
accuracy of a sensor node with regard to the possible
distance variance from each reliable anchor. As shown in
Fig. 7, suppose there are three reliable anchors available for
sensor S1 and that the maximal and minimal possible
distances of the sensor to reliable anchors have been
calculated. The difference between the maximal (dmaxki ) and
minimal (dminki ) possible distances to given anchors, say
dP1P2, dP3P4, and dP4P5, reflects the size of the approximate
area of location and consequently the localization accuracy.
In this paper, we utilize the following equation to calculate
the average diameter of the intersection area:

dk ¼
P

reliable iðdmaxki � dminki Þ
number of reliable anchors

: ð11Þ
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Fig. 6. The shaded area as the approximate location area of a sensor.



When the calculated average diameter dk of sensor k is
less than a given threshold, it is selected as a virtual anchor.
Algorithm 3 depicts the virtual anchor selection process that
resides on each sensor. A sensor that is eligible to act as a
virtual anchor broadcasts its position information within a
given range, for example, a 3-hop range to minimize the
computation overhead. This process is similar to the anchor
information propagation except that it is not propagated to
the entire network. After a sensor receives the virtual
anchor location and corresponding hop-count information,
the virtual anchor will be treated as a normal anchor to
further refine its location accuracy. The anchor set becomes
A [ V A where V A is a set constituting of all selected virtual
anchors. The estimate position becomes

ðxk; ykÞ ¼ arg min
X

reliable i

jLki � dkij; 8i 2 A [ VA: ð12Þ

A sensor may become eligible to take on the role of a
virtual anchor during the course of the position refinement
iteration. Newly eligible virtual anchors can trigger the
iteration process that helps other sensors to update their
position estimates. To reduce computation overhead, for
those sensors who estimate their positions from at least
three reliable anchors or dk from (11) is small, they may
simply bypass such iteration process.

Algorithm 3. Virtual anchor algorithm resides in sensors

Input:

k: sensor ID, m: virtual anchor ID;

vaThreshold: the upper threshold to be a virtual anchor;

V A: the virtual anchor set;

Output:

updated virtual anchor set: sensor k can be added to V A;

ðxk; ykÞ: updated position of sensor k;
1: sensor k updates the intersection area PAk when

receiving position information from virtual anchor m;

2: if virtual anchor m is reliable then

3: sensor k updates its location ðxk; ykÞ estimate

according to (12) where m is a member of VA;

4: end if

5: calculate dk of sensor k according to (11);

6: if dk < vaThreshold then

7: sensor k is eligible to be a virtual anchor;

8: VAþ ¼ fkg;
9: broadcast the position info of sensor k as a virtual

anchor;

10: end if

5.5 Neighbor Density

As described in Section 4, we assume that each sensor have
the knowledge of network density that will be utilized in the
search of the reliable minimal hop length from the minimal
hop-length table. However, in real-world sensor networks,
the network density is usually unpredictable and such
knowledge may not be pre-known. Taking this into account,
we need to simplify our solution to practically let each sensor
obtain the network density estimate, or in an approximate
manner. A simple solution can use the number of neighbor-
ing nodes as the neighbor density for each sensor.

As was noted earlier in Fig. 3, the average hop length
varies slightly when the neighbor densities are above 15.
When the shortest path from an anchor to a sensor detours,
the calculated average hop length is generally much smaller
than the reliable minimal hop length no matter what the
estimated neighbor density is, which means this simplified
solution can still exclude unreliable anchors.

In our implementation, each sensor estimates the
number of neighbors by counting the number of broadcast
messages it has received from neighboring nodes or
through a neighbor information exchange mechanism.
When a sensor looks up the hop-length table, it utilizes
the estimated neighbor density rather than the global
network density. Later simulation results will confirm that
RAL is not sensitive to the neighbor density parameter.
Reliable anchor-based localization with estimated neighbor
density yields better results than other approaches.

6 SIMULATION RESULTS

This section provides detailed quantitative comparisons of
RAL with the localization algorithm described in [7], [14],
[12], i.e., multilateration approach, four-nearest-anchors
approach and hybrid approach. In the localization process,
the multilateration approach will utilize information re-
ceived from all anchors while four-nearest-anchors ap-
proach will only employ the four nearest anchors. In our
simulation, nodes and anchors were uniformly and ran-
domly distributed in three topologies: an isotropic square
area, a C-shaped area and an S-shaped area. The transmis-
sion range of each sensor or anchor was normalized as 1.
The square area was normalized with a side length 5. Thus,
given the neighbor density that denotes the number of
sensors within a unit circle, we can roughly estimate the
total number of sensors distributed in a simulated area.

We evaluated different localization schemes in the metric
of localization estimation error, that is, the distance between
the estimated position and its true position of a sensor. The
result of the multilateration method was obtained using
linear least square followed by nonlinear least square
optimization. We compare RAL with the hybrid approach
[12] with and without iterations by using the virtual anchor
technique. The plotted data illustrated in following figures
represent the average result of 100 trials in randomly
generated network topologies. In simulations, we set the
network density of 36 and anchor number of 30 or
otherwise stated.

6.1 C-Shaped Topology

Fig. 8 shows the performance comparison in the C-shaped
topology for four different approaches. The circles represent
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Fig. 7. Assessment of the sensor localization accuracy.



the real positions of nodes (solid circles for anchors and
empty circles for sensors), and the lines represent the sensor
estimation error. The average and maximal estimation
errors of all schemes are listed in the figures. The
comparison results show that the multilateration with all
anchors (Fig. 8a) has the worst performance. This is because
the position estimate will be affected by all anchors even
though some of them in the C shape offer inaccurate
information. Fig. 8b shows that using only four nearest
anchors can give a better result since nearby anchors are
less likely to be distorted by holes. The localization accuracy
can be further improved by the hybrid approach as
illustrated in Fig. 8c which selects points within a circling
intersection area centered from all anchors. However, the
distorted path may still affect the position estimation in the
procedure for selecting points from the intersection area.
The comparison shows that the RAL scheme (Fig. 8d) yields
the best result since its localization is based on reliable
anchors which can successfully eliminate the influence from
distorted paths. Compared to the hybrid approach, RAL
scheme can reduce the average localization error by
(0:46�0:29

0:46 ¼) 36.96 percent.

6.2 Reliable Anchor Selection

In the RAL scheme, both anchors and sensor nodes need to
select only reliable anchors for accurate distance estimate in
irregular areas. The reliable anchor selection can greatly
affect the average hop-length calculation as denoted in
Algorithm 1, and the estimate position accuracy of a sensor
as denoted in Algorithm 2. Thus, we conducted simulations
as the setting in Fig. 8 to validate the effectiveness of RAL of
filtering out unreliable anchors. Fig. 9a illustrates the average
hop length calculated by anchors with or without filtering
out unreliable anchors. The flat line shows the global average
result by filtering out unreliable anchors, which can reflect
the real hop length. However, this empirical value is smaller
than the theoretical average hop length from (5), partly
because the last hop may decrease the average hop length to
some degree (as shown in (7)). The fluctuating lines are the
result calculated by each anchor locally. When an anchor
calculated the average hop length based on information from
all other anchors (totally 29), the value deviates tremen-
dously from the flat line, which is normally much smaller
than the real one. This is because detoured paths always
introduce small hop length. Applying the RAL scheme, the
locally computed average HopLength by each anchor is close
to the flat line and can be used by neighboring sensors.

Fig. 9b illustrates the reliable anchor number obtained by
each node. The first 30 nodes are anchors and the left nodes
are sensors. Although a few nodes get 30 reliable anchors,
most of them have much less reliable anchors in C-shaped
sensor distribution areas.

6.3 Neighbor Density and DOI Impact

Now we investigate the impact of neighbor density on the
localization estimation accuracy. The comparison results of
three approaches were carried out in three topologies,
which are shown in Fig. 10. The multilateration approach
using only the four nearest anchors obtains almost the same
estimation error for a given network topology no matter
what the neighbor density is. This is because it always
chooses four nearest anchors to locate a sensor. It can also
be observed that in the other two localization schemes the
localization error decreases slightly as the number of
neighbors increases.
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Fig. 8. Localization result comparisons: (a) Multilateration with all anchors. AvgError ¼ 1:3, MaxError ¼ 4:059. (b) Multilateration with four nearest
anchors. AvgError ¼ 0:4744, MaxError ¼ 1:72. (c) Hybrid approach. AvgError ¼ 0:4553, MaxError ¼ 1:8291. (d) RAL approach. AvgError ¼ 0:29,
MaxError ¼ 1:95546.

Fig. 9. Filtering out unreliable anchors to improve the localization
accuracy with 183 sensors and 30 anchors. (a) Average hop length with/
without unreliable anchors. (b) Reliable anchors number.



As shown in Fig. 10a, in an isotropic topology, multi-

lateration using all anchors and RAL produces much better

results than using only four nearest anchors. However, the

performance of multilateration using four nearest anchors is

much closer to reliable Anchor-based scheme because the

nearest anchors can partly remove the distorted path

information from faraway anchors in both C-shaped and

S-shaped topology. In all three simulated topologies,

reliable anchor-based scheme consistently outperforms the

other two schemes, which we contribute to the identifica-

tion of reliable anchors in the localization process.
We also show the effectiveness of our algorithm with the

presence of different radio irregularity as illustrated in
Fig. 11. It indicates that in C-shaped topology, the average
estimation error of our approach slightly increases when the

DOI is large. In S-shaped topology, we can observe
simulation results where our RAL scheme can always
outperform the other three.

6.4 Anchor Number Impact

In the simulation setting, we varied the number of anchors
to observe its impact on localization errors. Fig. 12a shows
that in an isotropic topology, multilateration using only
four nearest anchors has the worst localization perfor-
mance, the result of most anchors being eliminated in the
localization process. In both isotropic and irregular envir-
onments, the RAL scheme benefits from increased anchors
to have decreased overall estimation error because of more
reliable anchors available.

Figs. 12b and 12c show the average localization errors in
irregular areas, i.e., C-shaped and S-shaped topologies. In the
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Fig. 11. Performance comparisons in networks with different DOIs. (a) C-shaped topology and (b) S-shaped topology.

Fig. 12. Estimate errors in terms of anchor number in variant network topologies. (a) Isotropic topology, (b) C-shaped topology, and (c) S-shaped

topology.

Fig. 10. Estimate errors in terms of neighbor density in variant network topologies. (a) Isotropic topology, (b) C-shaped topology, and (c) S-shaped

topology.



multilateration approach with all anchors, since the newly
added anchors do not promise to provide a close approxima-
tion between the euclidean distance and shortest path
distance, we see fluctuations in the average estimation error
when increasing the number of anchors. In contrast, the
precision of the other two localization schemes constantly
improves as the number of anchors increases. When the
number of anchors is up to 20 (around 10 percent of the total
number of nodes), the localization error of RAL gradually
reaches a stable value (between 0.3 and 0.2). RAL approach
consistently outperforms the multilateration with only four
nearest anchors with the increasing of anchor number.

6.5 S-Shaped Topology with Uniform and
Nonuniform Distribution

Fig. 13 compares three localization approaches in the
S-shaped topology and shows that the RAL approach is
not sensitive to accuracy of the estimated neighbor density.
In the simulation, each sensor counted its neighbors
through the message exchange, regarding the number of
neighbors as the local network density. To identify reliable
anchors, a sensor needs to use the estimated density to look
up the reliable minimal hop-length table. Without the
knowledge of the global network density, the RAL scheme
can practically get a rough estimate of the neighbor density,
which in turn can effectively distinguish reliable anchors in
the localization process. RAL can generate better results
(smallest values for both the average and maximum
localization errors) than the other two approaches.

Fig. 14 shows the simulation results for the hybrid
approach, RAL with pre-known network density, RAL with

estimated network density. The localization performance
with estimated density using neighboring numbers is very
close to the performance using pre-known network den-
sities. These two curves are almost overlapping in different
neighbor density environments. Both RAL schemes (with or
without network density information) can achieve smaller
average position estimation error than the hybrid approach
did. The reason is that when the shortest path from an
anchor to a sensor detours along an obstacle, the calculated
hop length is generally much smaller than the reliable
minimal hop length no matter what the neighbor density is
estimated. Consequently, unreliable anchors can be ruled
out for both RAL schemes in most cases. Thus, even without
knowing the network density in advance, sensors can use
the estimated neighbor density to accurately identify
reliable anchors and achieve reliable location accuracy. This
point is critical in practice where the network density is
unavailable in randomly deployed networks.

Fig. 15 compares three localization approaches in the
nonuniformly distributed S-shaped topology and shows
that the RAL approach is not sensitive to nonuniform
sensor distribution. From the empirical results, RAL can
generate better results (smallest values for both the average
and maximum localization errors) than the other two
approaches. This satisfying performance of RAL in this
network configuration with nonuniform sensor distribution
is that when sensor density is above 20, the average hop
length seldom changes, which can be seen from Fig. 3.

6.6 Virtual Anchor Impact

Virtual anchors can be applied to enhance the sensor
location accuracy when a sensor cannot find at least three
reliable anchors, which could happen given the sparse or
uneven distribution of anchors. Fig. 16 shows the localiza-
tion error when virtual anchors are selected to further
reduce the localization errors. In this evaluation, sensors
were uniformly deployed in a C-shaped topology. Only
15 initial anchors were randomly deployed in this area as
shown in Fig. 16a. In the beginning, when the RAL scheme
was performed with 15 anchors, a number of sensors have
large localization errors either because they did not have
three reliable anchors available or because the overlapping
area was too large for accurate localization. Fig. 16b
illustrates the position estimate deviation of each sensor
without running the virtual anchor algorithm. The average
estimation error was about 0.39. Fig. 16c shows the result
when we carried out iterative location update process with
newly selected virtual anchors. The threshold for defining a
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Fig. 13. Localization result comparisons: (a) Multilateration with all anchors. AvgError ¼ 1:35, MaxError ¼ 3:0996. (b) Hybrid approach in a concave
area. AvgError ¼ 0:3568, MaxError ¼ 1:579. (c) RAL with estimated neighbor density. AvgError ¼ 0:2867, MaxError ¼ 1:51.

Fig. 14. Localization errors with/without network density information.



virtual anchor was 0.2 in our simulation. The sensors that
were eligible to act as virtual anchors broadcasted their
position information within a predefined range (in this
simulation, we set it to be a 3-hop range). Sensors were able
to update their location estimates with improved accuracy
by receiving broadcasted messages from virtual anchors.
Newly eligible virtual anchors may appear throughout the
iterative process. The average localization error decreases as
the number of virtual anchors increases accumulatively.
Compared with the hybrid method with iterations, our RAL
method can finally allow more nodes to be treated as
anchors (170) with minimized localization error. The
reasons for this improvement could be: 1) in the proposed
RAL, the unreliable anchor impact is removed in the
average hop-length calculation; 2) RAL’s virtual anchor
selection is more accurate. In our approach, we use the
average diameter from different reliable anchors to indicate
the accuracy of sensor’s localization. However, the hybrid
approach uses the maximal length from the estimated
location of a sensor in the potential overlapping area where
we set the threshold to be 0.3. Fig. 16d shows the final
location result in the iterative update process. Most sensors
were eligible for virtual anchors and can locate themselves
precisely. The average estimation error has been success-
fully reduced to 0.17.

We now investigate the effect of the initial anchor
number on the RAL performance applying virtual anchor
mechanism in the C-shaped topology. We varied the
number of initial anchors from 3 to 60. As shown in
Fig. 17, the RAL algorithm enhanced the location accuracy
for sensors applying virtual anchor algorithm, which
constantly performs better than the pure RAL algorithm.
However, virtual anchors cannot replace initial anchors
because a shortage of initial anchors means that none or
only a few of sensors are eligible for the role of virtual

anchors. The iteration process terminates quickly and not
many sensors can benefit from it. Increased number of
initial anchors is always better than using pure RAL
algorithm since more reliable virtual anchors can be
obtained with more real anchors.

7 CONCLUSION

In this paper, we propose a RAL scheme to reduce sensor
localization errors in WSNs by eliminating the adverse
impact of unreliable anchors detoured by obstacles. If the
average hop length of the multihop path from an anchor is
smaller than a predefined minimum hop length, we classify
the anchor as a detoured and unreliable anchor. The RAL
scheme can, therefore, minimize the impact of unreliable
anchors in the online average hop-length estimation and
sensor-anchor distance estimation. For the crucial minimum
hop length, we have presented both theoretical analysis and
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Fig. 16. (a) Network topology with 15 anchors. (b) Initial localization result by RAL. (c) Reduced average estimation error in the iterative location
update process. (d) Final localization result by RAL.

Fig. 17. Localization errors with virtual anchor mechanism in the
C-shaped topology.

Fig. 15. Localization result comparisons: (a) Multilateration with all anchors. AvgError ¼ 1:50, MaxError ¼ 3:52. (b) Hybrid approach in a concave
area. AvgError ¼ 0:48, MaxError ¼ 1:77. (c) RAL with estimated neighbor density. AvgError ¼ 0:31, MaxError ¼ 1:45. Outer S-shaped neighbor
density is 20 and inner S-shaped neighbor density is 40.



empirical results, showing the ability of our minimum hop-
length table in reflecting the impact of radio irregularity,
last hop distance, and different network density. The way to
identify detoured path in the paper can be further extended
to navigating mobile robots reliably in wireless sensor
networks [17], e.g., avoiding the collision with obstacles.
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