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Abstract—In wireless sensor networks, an important research
problem is to use a few anchor nodes with known locations to derive
the locations of other nodes deployed in the sensor field. A category
of solutions for this problem is the iterative localization, which se-
quentially merges the elements in a network to finally locate them.
Here, a network element is different from its definition in itera-
tive trilateration. It can be either an individual node or a group of
nodes. For this approach, we identify a new problem called inflex-
ible body merging, whose objective is to align two small network el-
ements and generate a larger element. It is more generalized than
the traditional tools of trilateration and patch stitching and can
replace them as a new merging primitive. We solve this problem
and make the following contributions. 1) Our primitive can tol-
erate ranging noise when merging two network elements. It adopts
an optimization algorithm based on rigid body dynamics and re-
laxing springs. 2) Our primitive improves the robustness against
flip ambiguities. It uses orthogonal regression to detect the rough
collinearity of nodes in the presence of ranging noise, and then enu-
merate flip ambiguities accordingly. 3) We present a condition to
indicate when we can apply this primitive to align two network el-
ements. This condition can unify previous work and thus achieve a
higher percentage of localizable nodes. All the declared contribu-
tions have been validated by both theoretical analysis and simula-
tion results.

Index Terms—Ambiguity enumeration, noise toleration,
fine-grained localization, wireless sensor networks.

I. INTRODUCTION

F OR WIRELESS sensor networks, an important research
problem is to use a few anchor nodes with known loca-

tions to derive the locations of other nodes in the sensor fields.
Besides anchor locations, the additional information that are
assumed to be known are the distance measurements between
neighboring sensor nodes. These measurements can be taken by
a so-called ranging technique. We divide the available ranging
techniques into two categories according to their accuracy.
• Coarse-grained ranging techniques have low accuracy only
at meter level because they leverage the anisotropic atten-
uation of radio signals for distance measurement. This cat-
egory covers both the RSSI-based methods [1], [2] and the
hopcount-based methods [3]–[7].
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• Fine-grained ranging techniques can achieve much higher
accuracy at (sub)centimeter level since they utilize the
stable time of arrival (TOA) of certain signals, e.g., ultra-
wideband radio signals, or ultrasound signals [8].

In this paper, we adopt the fine-grained ranging techniques to
obtain the accurate measurements of internode distances.
For fine-grained localization, the existing solutions are di-

vided into two categories: whole-topology approach and iter-
ative approach. The former approach analyzes the whole net-
work topology directly, using some numerical optimization al-
gorithms. For example, anchor-free localization (AFL) method
models the network topology as a group of nodes interconnected
by springs [9]. The spring forces acting on the nodes are used as
heuristics that guide the nodes’ movement toward their lowest-
energy positions. Another example is MDS-Map, which ana-
lyzes the network topology directly using a technique called
multidimensional scaling [10]. These whole-topology methods,
however, share a drawback. The network topology they manip-
ulate contains too many free variables. Just imagine a topology
with 100 nodes. Since each node has two variables in 2-D
space, this system would contain 200 free variables in total.
Any methods that analyze it directly will get stuck easily in
local minima. This problem is exaggerated particularly in con-
cave-shaped topologies where the good initial guesses of node
locations are difficult to obtain.
In contrast, the iterative approach can reduce the number of

system variables under consideration by splitting a large net-
work topology into many small network elements [11]–[16]. An
element can be either an individual node or a group of nodes.
Each element has its own coordinate frame. To localize these el-
ements, we pick up two following certain rules and merge them
to share a coordinate frame and generate a larger element. This
merging operation is a primitive that can be applied recursively.
All the network elements can be localized when they share one
unified coordinate frame. The advantage of iterative approach
is that it can help avoid local minima by a dimension reduction
technique. Just imagine when merging two network elements,
we will tune their relative position and orientation to fit their
constraints. This means we only need to manipulate three free
variables in 2-D space, rather than handling the whole topology.
For the iterative approach, the previous works have inves-

tigated different necessary conditions for merging two network
elements. Iterative multilateration can merge an individual node
with a patch when the node is connected to the patch by at least
three distance measurements [11]. Patch stitching can align two
patches when they share at least three nodes [12]. CALL pro-
posed more generalized conditions than patch stitching, i.e., two
patches share two nodes and are connected by a link, or they
share one node and are connected by two links, or they are con-
nected by four links [13]. SWEEPS can merge a sensor with

1063-6692 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



XIAO et al.: ITERATIVE LOCALIZATION OF WIRELESS SENSOR NETWORKS 609

a patch ambiguously when the sensor connects to the patch by
only two links. The location ambiguities can be eliminated later
when sufficient constraints are available [14].
However, the previous studies in iterative localization pre-

sented only the necessary conditions for merging network el-
ements. They fail to provide the sufficient conditions that are
needed in practice. Thus, we unify the previously proposed con-
ditions and enhance them to consider also the collinear geom-
etry of sensor nodes. Besides the condition specification, there
exist two other fundamental issues that are far from being fully
addressed. 1) How to tolerate the ranging noise when we try to
align two network elements? The traditional tool of trilateration
can tolerate noise only when aligning a sensor to a patch [17].
The patch stitching can merge two patches only when they share
three nodes [12]. 2) How to enumerate the flip ambiguities when
merging network elements to guarantee the robustness of lo-
calization? These flip ambiguities can be caused by the nodes
that are just roughly collinear due to the interference of ranging
noise. The failure to enumerate them may cause the localization
error to be abnormally large.
In this paper, we solve the problem of merging two network

elements to form a larger one, which is called body merging.
Here, “body” is a term that refers to either a single node or a
patch. Note that a body may have a single or multiple ambigui-
ties. Thus, we describe them by the following three terms, which
are used throughout this paper:
• Rigid body: can have only one ambiguity;
• Inflexible body: has finite ambiguities;
• Flexible body: has a flexible part that can move continu-
ously and produces infinite ambiguities.

We focus on the problem of merging two inflexible bodies to
form a larger one, which has the following two subproblems:
• Accuracy: how to align the two bodies accurately by
finding their optimal relative position and orientation that
can minimize the mean squared error of their constraints;

• Robustness: The above optimal alignment can find only
one of the possibilities of aligning two bodies. We should
enumerate all the merging possibilities to ensure the ro-
bustness. Thus, we need to detect the collinear geometry
of nodes and enumerate flip ambiguities accordingly.

By solving the problem, we make the following contributions.
• Condition: We present a precondition for merging inflex-
ible bodies: Degree of Constraint Degree of Freedom.
Its intuition is that two bodies should have enough con-
straints (sharing nodes or connected by links) to confine
their relative motions. This condition can unify the pre-
vious works and achieve higher localization percentage
than the state-of-the-art SWEEPS and CALL [14], [13].

• Accuracy: We propose an optimization algorithm to tol-
erate the noise in the constraints that connect two inflex-
ible bodies. Our basic idea is to model the two bodies as
connected by springs. Due to the spring forces, the bodies
can move and rotate to their minimum energy states that
minimize the mean squared error of constraints. The body
motions are modeled by the canonical physical model of
rigid body dynamics. This noise toleration algorithm is
more generalized than the traditional multilateration [17]
and patch stitching [12] since our algorithm can align two
bodies, no matter if they are nodes or patches. Our algo-
rithm is also fundamentally different from AFL [9], which
also adopts the heuristic of spring relaxation. Our method

is resilient against local minima, but AFL can easily trap
in local minima when dealing with concave networks. This
is because our method is essentially a dimension reduction
technique, which divides the network into numerous small
bodies and merges them recursively.

• Robustness:We present an algorithm to enumerate flip am-
biguities when merging two bodies. Such enumeration is
achieved by flipping one of the ambiguities across the node
set that is detected to be collinear. Our contribution is that
the previous work only considers the collinearity of anchor
nodes [14]. However, for body merging, the collinearity of
normal nodes can also produce flip ambiguities. Moreover,
a set of nodes can be just roughly collinear as interfered by
ranging noise. We can detect the rough collinearity using
the tool of orthogonal regression.

The declared contributions have been validated by high-fidelity
simulations configured with practical system parameters [15].
The rest of this paper is organized as follows. Section II re-

views network localization problem and the iterative localiza-
tion. Section III presents an optimization algorithm to merge
two bodies accurately. Section IV presents the condition for
merging two bodies uniquely. This condition considers both the
constraints between two bodies and their collinear geometry.
Section V proposes an algorithm to enumerate flip ambiguities
and guarantee merging robustness. Section VI presents the ex-
perimental results. Section VII concludes this paper.

II. BACKGROUND OF NETWORK LOCALIZATION PROBLEM AND

ITERATIVE LOCALIZATION

This section introduces the network localization problem
and describes the iterative localization approach that divides
the whole topology into bodies and merges them recursively.
Definition 1: The network localization problem is, given the

following inputs, to generate the outputs described as follows.
Inputs are twofold: 1) distance measurements between neigh-

boring nodes, and 2) a small proportion of special nodes called
GCF anchors whose locations are known in Global Coordi-
nate Frame (GCF). The anchor locations are assumed to contain
noise that is negligibly small, as compared to ranging noise. The
purpose of deploying anchors is to ensure the location estimates
of other nodes are defined in GCF.
Outputs are the sensor nodes, each of which has a unique lo-

cation estimate. Note that these location estimates should be de-
fined in the GCF, which is meaningful to end-users. The typical
GCF is the globally accepted GPS coordinate frame.
Example: An example of network localization is given in

Fig. 1. Fig. 1(a) illustrates the inputs. The pairwise distance
measurements are drawn as the edges between different nodes,
and the special GCF anchors are depicted as triangles.Fig. 1(b)
illustrates the outputs. The generated location estimates are
drawn as black dots. Some nodes are not covered by the black
dots because they have ambiguous location assignments. For
example, node 20 does not have a black dot since it can be
flipped across the line through nodes 15 and 21.
Iterative Localization: The above research problem can be

solved by the iterative localization approach, which is composed
of two phases: 1) divide the network topology into a set of small
bodies, each of which has its own coordinate frame; 2) merge
these bodies recursively to minimize the number of local coor-
dinate frames. We detail these two phases as follows.
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Fig. 1. Input and output of network localization problem. (a) Input: links and
GCF anchors. (b) Output: location estimates.

Fig. 2. Divide the network topology into elementary bodies.

Phase 1: Split the network topology into a list of bodies.
These bodies fall into two types: a global body whose coordi-
nate frame is the GCF, and numerous local bodies, whose co-
ordinate frames are their local coordinate frames (LCFs). The
global body contains all the anchor nodes initially. A local body
can be either a triangle or an individual node. For example, in
Fig. 2, the three nodes form a triangle with edges

. For this triangle, its LCF can be constructed
by placing the original point at node , letting the -axis go
through node , and placing node above the -axis. Another
example is the node , which constitutes a local body with only
one node. Its LCF can be built by placing the original point at
.
Phase 2:Merge the bodies iteratively to minimize the number

of bodies. After phase 1, we obtain a set of bodies, each of
which has its own coordinate frame. We can organize them as a
list: , where denotes the global body and

denotes a local body. From this body list, we select two
bodies (e.g., bodies and ) and merge them to share a co-
ordinate frame. This operation of selection and merging will be
performed recursively until we cannot find a body pair that can
be merged. This procedure finally outputs the global body
since all the nodes in this body have been localized in the GCF.
As a summary, this iterative localization framework has three
key research subproblems to address.
• How to choose two bodies that can be merged? This
problem of specifying “precondition” is to be addressed
in Section IV for unique body merging, and revisited in
Section V-A for body merging with finite ambiguities.

• We need to figure out how to merge two bodies. This
problem is twofold: 1) how to merge two bodies accu-
rately by tolerating the ranging noise, and 2) how to merge
two bodies robustly by enumerating flip ambiguities. The
accuracy issue will be handled in Section III, and the
robustness issue will be addressed in Section V-B.

Fig. 3. Merging of two bodies with constraint set . (a) Merge body
into body . (b) Constraint set .

III. ACCURATE BODY MERGING AGAINST NOISE

When aligning two bodies, a challenge is the inevitable pres-
ence of ranging noise, which degrades the accuracy of body
merging. To tolerate the ranging noise, we identify the problem
of minimizing the mean-squared error of the constraints that
connect two bodies. The solution we propose is more general-
ized than multilateration [17] and patch stitching [12].

A. Body Merging Optimization Problem

Merging two bodies is essentially to find a transformation
function between their two coordinate frames. This transforma-
tion contains two subcomponents: translation and rotation. The
transformation can be found due to the presence of constraints
that confine the two bodies’ relative moving and rotating. The
constraints can be either shared nodes or links with known
lengths to connect them. For example, in Fig. 3(a), the two
bodies share one node and are connected by two links. How-
ever, the challenge is, when given a set of constraints, how
to calculate the optimal transformation that can tolerate the
ranging noises within the constraints.
This paper probably is the first to identify the generalized op-

timization problem of accurately merging body into body
as shown in Fig. 3(a). Trilateration can be regarded a special
case of our problem, in which body is a single node and
body is a patch. Patch stitching is also a special case that aligns
two patches when they share at least three nodes [12].
We introduce the notations used to model constraints, the in-

puts of our problem. As shown in Fig. 3(b), a constraint is de-
picted as an edge, whether it is a sharing node or a connecting
link. One end of the edge is incident to body and is drawn as
a black dot. The other end is incident to body and is drawn
as a white node. When the length of the edge is zero, the cor-
responding constraint is a shared node. Otherwise, it is a real
distance measurement. The two bodies and can have mul-
tiple constraints to confine their relative motions.
Definition 2 (Constraint Set During Body Merging): During

the merging of body into body , the two bodies have a set of
constraints , where is the th constraint
contained in . Here, , where

measured length of the constraint .

weight of the constraint .

node index of that is contained in body .

node index of that is contained in body .

• (Note: In all figures throughout the paper, we draw node
as a black node and draw node as a white node.)

When a constraint corresponds to a node shared by body
and body , its length is zero and its two node indices
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Fig. 4. Body merging optimization problem.

are equal. Otherwise, a constraint is a link connecting the
two bodies. Its two node indices are different, and note
that should not be the indices of shared nodes.
For the constraints , it is inevitable for their length measure-

ments to contain noises, which can degrade the accuracy of body
merging. We thus formalize a problem to tolerate ranging noise
by minimizing the mean squared error in the constraints. This
problem is called body merging optimization problem.
Definition 3 (Body Merging Optimization Problem): Inputs

are the set of constraints that confines the relative motion be-
tween body and body , and the node locations in the two
bodies’ local coordinate frames. We assume the following:
• is the location of node contained in body .
• is the location of node contained in body .

Note that is defined in body ’s coordinate frame, and is
defined in body ’s coordinate frame. Thus, we can define the
constraint set with each of its constraints to have four fields

, where is the measured length of constraint ,
and is the weight to reflect ’s measurement accuracy. We
have illustrated all these notations in Fig. 4.
Variable to optimize is , which is a transformation func-

tion from body ’s coordinate frame to ’s coordinate frame.
The function can be defined as

(1)

where:
• is the translation component, which, as illustrated in
Fig. 4, is the position of axis origin of body in body
’s coordinate frame;

• is the rotation of body about body ’s axis origin.
With this transformation function, a position in body ’s
coordinate frame can be transformed to body ’s coordinate
frame as . Then, we can calculate the weighted error
of constraint as

(2)

where is the length of constraint estimated
from the two positions and . Thus, has reflected
the difference between the measured error and the estimated
error when given the function .
Objective function is the mean-squared error for all the con-

straints in set , which is noted as

(3)

where is the number of constraints in constraint set .
Output is the optimal transformation that can minimize the

objective function , which is noted as

Fig. 5. Iterative optimization based on rigid body dynamics.

Restriction: For the optimized transformation , the error
of each constraint has its magnitude below threshold

(4)

where:
• is the expected magnitude of ranging noise;
• is a constant that can be 3 for Gaussian noise.

B. Body Merging Optimization Algorithm

For the problem in Definition 3, we propose a solution called
body merging optimization algorithm. This algorithm revises
the transformation function recursively and finally outputs
the optimal transformation . Its basic idea is to model each
constraint as an elastic spring (see Fig. 5). Each spring casts its
force on body due to spring deformation. As directed by the
multiple spring forces, body moves and rotates, which can
be simulated by the physical model of rigid body dynamics [18].
In this process, body moves step by step toward the equilib-
rium where spring deformations are minimized. This is exactly
the objective function of the problem in Definition 3 that mini-
mizes the mean-squared error.
Although the heuristic of spring relaxation is also adopted

by AFL [9], our solution contributes the following novelties.
1) From theoretical perspective, AFL is susceptible to trap in
local minima, while our solution can alleviate such subopti-
mality problem, since our method is applied only to a small-
scale problem with three unknowns. 2) From technical perspec-
tive, in AFL’s model, the entities that are connected by springs
are just particles without volumes. These particles can move,
but they cannot rotate as our rigid bodies.
Pseudocode: We present in Algorithm 1 the pseudocode of

our body merging optimization algorithm. Its output is the op-
timal transformation function . With , the node posi-
tions in body can be converted to the coordinate frame of
body , and body can thus be merged into body . The in-
puts of Algorithm 1 are the initial guesses of translation and
rotation and the constraint set . Please
check Fig. 4 for the illustration of notations.
First, line 1 assumes that the axis origin of body ’s coordi-

nate frame has been moved to the centroid of all the points
that are contained by body (i.e., white points in Fig. 4).
The purpose of such moving of body is to make transla-
tion of body independent from its rotation . According
to Euler’s laws of motion, for a rigid body, the translation of its
centroid is independent from the rotation of this body about its
centroid [18]. This axis moving operation can be reversed after
the termination of Algorithm 1.
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Second, at lines 2–5, we use a loop to optimize the transla-
tion and rotation of body iteratively. At the beginning of
an iteration, we assume the current time is . At line 3, we
optimize the current translation and rotation at time to

at time , and then at line 4, optimize to
at time . The loop terminates at line 5 if the changes from
time to time are negligibly small. Note that both
lines 3 and 4 need to optimize translation and rotation
at time to the next time-slot, which is described below. Note
that we represent translation by vectors and represent
rotation by a orthogonal matrix, for the ease of exten-
sion to 3-D spaces.
1) Translation Optimization: Our equations in Fig. 5 can

optimize the translation at time to translation
at the next time. This optimization is directed by linear ac-
celeration of body , which equals , where is
mass,k which is the number of nodes in body , and
is net force combining all forces acting on body . The net
force requires the calculation of each individual force, e.g., the
th spring force . The direction of this force is a unit vector
pointing from to . The magnitude of this force
is the weighted error of this constraint, which is given in (2).
Here, weight within can be regarded as the
spring constant to capture the different error characteristics in
different constraints. The parameter when calculating
is the optimization step size. A rule of thumb is to configure it
as to balance between conver-
gence speed and potential oscillations.
2) Rotation Optimization: In Fig. 5, rotation at time

is optimized to at the next time. This optimization is di-
rected by angular acceleration of body , which equals

, where is inertial tensor of body and is
torque acting on it. With this angular acceleration , the next
orientation can be calculated bymultiplying Rodrigues’
rotation formula to

where we can set and . Themeaning
of left multiplying with is to rotate around
3-D unit vector by angle . Here, the operator is to convert
vector to its skew-symmetric matrix . This operator can be
used to transform vector cross product to matrix multiplication,
i.e.,

Given vector

Although these equations are defined in 3-D, they can easily
handle the cases in 2-D by setting value of each position to
zero and by setting each orientation vertical to -axis.

When implementing the equations in Fig. 5, an issue that
one needs to be cautious about is that our rotation representa-
tion by 3 3 rotation matrices has the well-known problem of
numerical drift [18]. That is, after calling equation

for tens of iterations, may differ from
an orthogonal matrix. A mitigation is to replace by its
nearest orthogonal matrix, e.g., for every 20 iterations. Another
point that needs to take care of is that the denominators in Fig. 5
can equal to zero occasionally. Thus, the protection code for
such boundary conditions needs to be added.

C. Two Technical Issues Toward Robust Implementation

Conquer Local Minima Problem: Our body merging opti-
mization algorithm is essentially a greedy optimization algo-
rithm using the heuristic of linear acceleration and angular ac-
celeration of body . However, any heuristic algorithm that
is applied to nonlinear optimization would have the problem of
trapping in local minimawith a nonnegligible possibility. (Note:
Trilateration and patch stitching also have the problem.)
We therefore adopt the following strategy to address the

problem of local minima. We first generate multiple initial
guesses for the optimal transformation function . We
then feed these guesses separately into Algorithm 1. When all
the optimization terminates, we select the best solution with the
minimum mean-squared error as defined in (3). The key issue
that remains is how to generate a set of good-quality initial
guesses , which is briefly described as follows.
1) Guesses of Rotation in : We generate rotation

as , where is Euler angle that falls

randomly into . Half of the generated guesses of rotation
matrix will be multiplied with a reflection matrix.
2) Guesses of Translation in : We generate transla-

tion by the following bounding box algorithm. First, from
Fig. 4, we know that the physical meaning of translation is the
position of body ’s centroid in body ’s coordinate frame.
Thus, if we can find a bounding box that contains all the pos-
sible positions of body ’s centroid, then we can generate the
initial guesses of translation randomly inside the box. We can
find such a bounding box, for each constraint that connects the
two bodies, as shown in Fig. 6. The overlapped box of all the
bounding boxes can be used to generate the guesses of .
The bounding box in Fig. 6 corresponds to the constraint

whose two vertices are and whose length is . We denote
the centroid of body as . Note that position is defined in
body ’s coordinate frame, but the positions and centroid
are defined in body ’s coordinate frame. Then, we know that
this centroid must be included in the bounding box centered
at position with its radius to be , where

is distance between position and the centroid
and is the upper bound of measurement error of con-
straint length .
Mitigate Error Accumulation by Refinement Step:A common

problem exists for various iterative localization methods, called
error accumulation. It means that for each time we merge two
bodies, we introduce a small amount of error into the merged
body. Such error due to body merging can accumulate, as
the iterative merging process continues. This accumulation
will cause the increase of location error as the size of bodies
grows. However, our body merging optimization problem in
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Fig. 6. Bounding box for centroid of body .

Definition 3 neglects such location noise, i.e., the inaccuracy in
position estimates of and within the two bodies and .
It focuses only on tolerating the ranging noise in .
To address this error accumulation problem, we propose an

additional refinement step that executes each time after merging
two bodies by Algorithm 1. This refinement step is similar to the
AFL method [9]. It treats the resultant body merged from
and as a network of nodes connected by springs and relaxes
these springs to fine-tune the node positions (see line 2 and 3
of Algorithm 2). By relaxing the springs, the location errors of
nodes within a body can be redistributed evenly.

Algorithm 2: MergeTwoBodiesOptimally

Input: Bodies , ; Constraint Set

Output: Body by merging body into body
1 Use Algorithm 1 to get the optimal transformation
function from ’s coordinate frame to ’s
coordinate frame

2 Get the resultant body by merging the nodes in
with the nodes in whose coordinates are transformed
by

3 Refine this body by AFL spring relaxation [9]
4 Verify by testing whether the error of each edge is
below a threshold (see (4)), and if it fails, return

However, the refinement step alone cannot solve the error ac-
cumulation problem. The ultimate solution is the dense deploy-
ment of anchor nodes, whose location knowledge contains neg-
ligible noise as compared to the ranging noise. We have modi-
fied the refinement step to utilize such valuable anchor informa-
tion. Initially, all the anchors are contained in the global body.
Then, in the merging phase, when we merge global body with
a local body to get the resultant body , body will be-
come the new global body that contains the anchors. The refine-
ment step, when applied to such , will not modify the anchor
positions. Thus, other nodes, by relaxing their springs to these
anchors, can adjust their location estimates to reduce noise and
tame error accumulation.
To better utilize the deployed anchors, we make an adjust-

ment to the merging order of iterative merging process.
• When multiple pairs of bodies are available that can satisfy
body merging condition DOC DOF, we prefer the body
pairs that merge the global body with a local body.

There are two reasons for using this rule. One is that the an-
chor nodes within global body can help tame error accumu-
lation. The other reason is that the anchor nodes can help re-
ject incorrect ambiguities during body merging. Note that line 4

of Algorithm 2 checks whether the body after refinement
can satisfy the restriction that the error of each edge is below
a threshold. If this verification fails, Algorithm 2 will indicate
the failure to merge the two bodies and by returning an
empty node set. The topic of ambiguities enumeration and re-
jection will be discussed in detail in Section V.

IV. UNIQUE BODY MERGING CONDITIONS

In this section, we describe when we can apply the merging
primitive to uniquely merge two bodies. There are two neces-
sary conditions. One is the redundancy in constraints between
two bodies. The other is the noncollinear geometry of these
constraints. Our conditions can unify the previous works based
on global rigidity [11]–[13], and meanwhile consider the non-
collinearity that is not fully explored before [1], i.e., either ver-
tices of constraints can be collinear.

A. Unique Body Merging Condition: Redundant Constraints

For the unique merging of two bodies, a necessary condi-
tion is that, in body ’s coordinate frame ( contains at least
three nodes), the free variables of body are redundantly con-
strained. We formulate this condition as follows:

• DOF Calculation: If body contains only one node,
; otherwise, , due to the rotation of

.
• DOC Calculation: In constraint set , a shared node con-
tributes two DOC, and a connecting link contributes one
DOC. Sum all contributions to get the overall DOC.

This condition can unify the previous work that localizes indi-
vidual nodes and patches, including trilateration, collaborative
multilateration [11], patch stitching [12], and CALL [13]. We
explain this condition case by case as follows.
Case (a): Trilateration can be considered as an operation that

merges body containing only one node into body . As
shown in Fig. 7(a), body contains three nodes 1, 2, 3. Body
contains only node 0. Body has two DOF in the coordinate
frame of body because node 0 can move in two directions,
i.e., - and -directions. Trilateration requires at least three links
connecting body to body because the three links can pro-
vide three DOC to redundantly constrain the two DOF of body
. Otherwise, as shown in Fig. 8(a), node 0 can have an am-

biguous position assignment , if there are just two links
providing two DOC.

Case (b): Collaborative multilateration [11] can be consid-
ered as an operation that merges body containing two nodes
into body . As shown in Fig. 7(b), body contains three
nodes 1, 2, 4, and body contains two nodes 0, 3. Because
body contains more than one node, it has three DOF with
two translations and one rotation. Collaborative multilateration
requires four links connecting body to body , which can
provide four DOC and redundantly constrain the three DOF.
Otherwise, as shown in Fig. 8(b), the body can have four
spatial poses, i.e., , and , if there are
just three links providing three DOC.
Case (c): Patch stitching [12] is an operation that merges

body containing at least three nodes into body . As shown
in Fig. 7(c), body contains three nodes 1, 2, 3, and body
is drawn as a gray block. Patch stitching requires body and
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Fig. 7. Unique merging of two bodies whose constraints are redundant by satisfying the condition . (a) Node merging: .
(b) Link merging: . (c) Patch merging I: or 5, . (d) Patch merging II: . (e) Patch merging III:

.

Fig. 8. Ambiguous body merging with finite ambiguities due to nonredundant constraints that only satisfy . (a) Node merging:
. (b) Link merging: . (c) Patch merging I: . (d) Patch merging II: . (e) Patch merging III:

.

Fig. 9. Ambiguous body merging due to constraints collinearity. (a) Node merging: . (b) Link merging: . (c) Patch
merging I: or 5, . (d) Patch merging II: . (e) Patch merging III: . (f) Constraints collinearity.
(f) depicts the general case that a line passes through the nodes of each constraint. Thus, body can flip across the depicted lines and preserve constraint length.

to share at least three nodes 1, 2, 3 to fix body . Different
from a link that can provide one DOC, each shared node can
provide two DOC.
Cases (d) and (e): CALL [13] proposed two other conditions

that two patches can be merged uniquely, which are shown in
Fig. 7(d) and (e). Fig. 7(d) depicts the condition of one shared
node and two connecting links, which can provide four DOC.
Fig. 7(e) shows the condition of four connecting links, which
can also provide four DOC. If DOC is not redundant and is
equal to DOF, then body can have multiple spatial poses. In
Fig. 8(d), body has four ambiguities since it can be flipped
across the depicted lines. Fig. 8(e) also shows that, when
body is connected to body by only three links

, it can have four ambiguities. In fact, the upper
bound for the number of ambiguities for the case in Fig. 8(e) is
12, which will be proved in Section V-A.

B. Unique Body Merging Condition: Geometry of Constraints

Motivation: It is well known that, for multilateration, the
three nodes 1, 2, 3 in Fig. 7(a) must be noncollinear. Otherwise,
as shown in Fig. 9(a), the node 0 can flip across the depicted
line without changing the length of each constraint. However,
such noncollinearity checking is inadequate when applied to
body merging. This is because multilateration considers the
collinearity of only one end of the constraints (i.e., black nodes).
However, it is possible that either ends (i.e., black nodes and
white nodes) are collinear during body merging. For example,
in Fig. 9(b), the nodes 0, 1, 4 are collinear, and thus node 3 can

flip across the depicted line; in Fig. 9(c), the body can flip
across the line through the collinear nodes .
For unique body merging, we propose a necessary condi-

tion that fully considers the collinear geometry of constraint
set . The basic idea is that there does not exist a line to pass
through one vertex of each constraint. Otherwise, body can
flip across this line and has ambiguous realizations as shown in
Fig. 9. To describe the point set containing a vertex of each con-
straint, we define the concept of constraint point set.
Definition 4 (Constraint Point Set ): Assume that

is the constraint set during the merging
of body into body , as shown in Fig. 7(f). The constraint
point set corresponding to contains one of the nodes of
each constraint . The integer , which is between 0 and

(exclusive), can indicate which node ( or ) is contained
by . If the th bit of the integer is 1, point set
contains the node in constraint ; otherwise, point set
contains the node in constraint .
From the above definition, we know that the constraint point

set is denoted by , where integer is a bitmap showing
which end of each constraint will be included. For example,
in Fig. 9(f), constraint set contains three constraints: One of
them is a shared node (equal to ), and the other two are
links . Then, the constraint point set with

will contain three node indices since only
the middle digit is zero. Since binary equals decimal 5,
we often rewrite as .
With the concept of constraint point set, we can present a

necessary condition for the unique merging of two bodies in
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Theorem 1. This condition fully considers the collinearity of
different constraint point sets by varying value, which is il-
lustrated in Fig. 9(f) as black or white nodes combinations.
Theorem 1 (Constraint Set Noncollinearity): For the unique

merging of body into body , a necessary condition is the
noncollinearity of constraint set defined as follows.
• When body contains one node, constraint point
set is noncollinear with (or ).

• When body contains two nodes, constraint point
set is noncollinear for each .

• When body contains at least three nodes, con-
straint point set is noncollinear for each

, where is the number of
shared nodes, and these nodes are placed at the end of
constraint list .
Proof: When body contains one node as depicted in

Fig. 9(a), the three black nodes (noted as ) should
be noncollinear for unique merging. When body contains
two nodes as shown in Fig. 9(b), constraint sets with

must be noncollinear for unique merging. How-
ever, the two white nodes (noted as ) can be collinear
because the flipping of body across the line through
cannot change the locations of the two nodes in . When
contains at least three nodes as depicted in Fig. 9(c)–(e), any sets

with must be noncollinear. We
do not need to check the collinearity for be-
cause we want to set the higher bits to 1, which correspond
to the shared nodes between the two bodies.
Collinearity Testing: A key issue that arises from Theorem 1

is how to test the collinearity of a constraint point set .
However, the challenge is the interference of ranging noise,
which can make constraint point set roughly collinear,
as shown in Fig. 10. To test such rough collinearity, we propose
the following method with two steps.
• First, we obtain a line fitting the constraint point set

by orthogonal regression, as shown in Fig. 10.
• Second, we test whether the distance from each point to line

iswithina threshold that relateswith rangingnoise .
We use an example to show how we apply orthogonal regres-

sion to obtain a line that best fits a constraint point set .
The difficulty is that the node positions of may not be in
the same coordinate frame. As shown in Fig. 10, the constraint
point set contains seven node indices. Four of them

areblacknodes that are contained in body .Three of
them arewhite nodes that are contained in body .
Before applying orthogonal regression, we need to unify them in
the same coordinate frame. This is achieved by our bodymerging
optimization algorithm presented in Section III. But note that, if
there exist flip ambiguities due to collinearity, this algorithm can
obtain only one of possibilities to align their coordinate frames.
After thismerging,wecanapply the followingorthogonal regres-
sion algorithm toobtain thebest-fit line .

Fig. 10. Test collinearity of constraint point set .

The second step is, with the best-fit line , to check whether
the distance from each constraint vertex in to line is
smaller than a threshold , where is the measure-
ment noise of constraint , and is an adjustable constant. If
so, then it is a clear sign for rough collinearity of constraint
point set . Otherwise, the distance from some vertex (e.g.,
node in Fig. 10) to the best-fit line must be larger than
the threshold. Thus, the constraint point set is regarded as non-
collinear. Only when there does not exist any collinearity as re-
quired by Theorem 1 can we merge two bodies uniquely.

V. BODY MERGING WITH FINITE AMBIGUITIES

In sparse networks, the condition for unique body merging
may not always be satisfied, i.e., rule of redundant constraints

. This section will relax this condition and con-
siders non-underdetermined constraints In such
situations, there may exist multiple ambiguities to merge two
bodies, which is shown in Fig. 8. In this section, we first prove
that there exist only finite ambiguities if given non-underdeter-
mined constraints between two bodies. We then present an algo-
rithm to enumerate flip ambiguities, which works well in sparse
networks and ensures location robustness.
We call our localization algorithm Iterative Inflexible Body

Merging (IIBM), which permits finite ambiguities for body
merging. Here, a body is called an “inflexible body” because
it can have multiple but finite ambiguities. In contrast, a rigid
body can have only one ambiguity, and a flexible body has a
flexible part that can move and produce infinite ambiguities.
The idea of finite ambiguities is also adopted by the state-of-

the-art SWEEPS [14] and CALL [13]. However, our algorithm
still makes the following contributions.
1) Better robustness against collinear constraints: There are
various cases of collinear geometry that can produce finite
ambiguities as shown in Fig. 9. We can handle all the cases
uniformly by the algorithm to present in Section V-B.

2) Higher percentage of localizable nodes: We equally apply
all the cases shown in Figs. 7 and 8 to:
• the merging of a local body into the global body;
• the merging of a local body into another local body.
In contrast, CALL [13] does not use the ambiguous cases
in Fig. 8(c) and (d) for the merging of two local bodies.

3) Tighter upper bound for ambiguities: We derive an upper
bound for the number of ambiguities when the two bodies
are connected by only three links, as depicted in Fig. 8(e).
The upper bound of 12we derived (see Theorem 5) is much
tighter than the bound of 24 provided by CALL [13].
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Fig. 11. Example of iterative inflexible body merging. (a) Input network.
(b) Network division. (c) Merge body into .

Example:We use an example to explain how the IIBM algo-
rithm localizes the sparse network depicted in Fig. 11(a).
First, the network topology is split into a list of bodies. As

shown in Fig. 11(b), the body list includes the following:
• the global body containing the three GCF anchors 4, 5,
6 with known coordinates in global coordinate frame;

• a local body corresponding to the triangle 0, 2, 3;
• a local body corresponding to the triangle 0, 1, 2;
• a local body corresponding to the triangle 0, 1, 4.
Second, merge the bodies iteratively by the following

steps. Since none of the local bodies have enough
connections to global body that can satisfy ,
we can only select two local bodies and merge them. The
local bodies and share two nodes 0 and 2 as shown in
Fig. 11(b), which can satisfy and corresponds to
the ambiguous merging case in Fig. 8(c). This merging can
generate the inflexible body in Fig. 11(c) with two ambigu-
ities since it can be folded across the line through nodes 0, 2.
Now, the new inflexible body and the global body have
four connecting links, which can satisfy and
corresponds to the unique merging case in Fig. 7(e). Thus,
body can be localized uniquely in GCF. Note that the wrong
ambiguity of (i.e., nodes 1, 3 on the same side relative to
line 0, 2) can be rejected during this merging. This is because
the wrong ambiguity cannot be aligned with the global body .
Specifically speaking, no matter how we adjust the spatial pose
of the wrong ambiguity of body by Algorithm 1, it is
impossible for us to reduce the error of all constraints below a
defined threshold (see line 4 of Algorithm 4 that returns ).

A. Condition of Non-Underdetermined Constraints

In this section, we prove the theoretical foundation of inflex-
ible body merging, i.e., when merging body with body ,
there exist only finite merging ambiguities, if the constraint set
is non-underdetermined and satisfies . Our proof

is based on solving quadratic equation systems, and we find that
the maximum number of ambiguities is 12.
Equation System: We present the governing equations in

(5), which have three unknowns in 2-D space. Two unknowns
are contained in translation , and one unknown is in rotation
. For this parallel equation set, its real-number solutions are

the ambiguities that the two bodies can be aligned. Note that
when body contains only one node (i.e., all nodes in
are equal to zero ), (5) can degrade to multilateration
and lose its variable . Thus, for the following analysis, we
assume the nodes do not overlap, which means at least one
of is nonzero.
Definition 5 (Governing Equations of Body Merging

Problem): During the merging of body into body ,

we have the constraint set as de-
fined in Definition 3. The purpose of merging is to find all the
real-number solutions of the following equation system:

(5)

For simplicity, the above equation omits the reflection of
body , which can later be implemented by left multiplying

each position of body by reflection matrix .

Lemma 2: We can convert (5) to the following equation
system about translation and rotational tangent value :

(6)

where is equal to and is the rotational angle of the
rotation matrix . Symbols are defined as follows:

where . Note that .

Proof: First, we can substitute rotation in (5) by rotation
matrix with angle

Simplification is achieved by introducing symbols .

Then, the above equations can be transformed by tangent half-
angle formulas to a polynomial system about .
Root Finding: By solving the equation system in (6), we can

give out the upper bounds of the number of ambiguities for dif-
ferent cases satisfying . Theorem 3 is for the case
in Fig. 8(d). Theorems 4 and 5 are for the case in Fig. 8(e).We do
not need to prove the upper bounds for the cases in Fig. 8(a)–(c)
because they correspond to bilateration and patch stitching and
have been proved by previous work.
Theorem 3: There are at most four ambiguities during the

merging of body into body , if:
• they can satisfy the condition of ;
• they share at least one node as shown in Fig. 8(d).
Proof: The following two parallel equations can be estab-

lished from the two constraints in Fig. 8(d):

with and

The first equation corresponds to the zero-length link with
, and it is additionally assumed , which can be

realized by a translation of body ’s coordinate frame. From
the first equation, it can be known that translation is equal to
. From the second equation that follows (6), two roots can be
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derived for variable since is already known and the second
equation is quadratic in . With a known , we have only one
, and thus only one rotation , since . Considering
the reflection of body , which can double the number of
ambiguities, variables can have at most four solutions, and
thus Fig. 8(d) can have four ambiguities.
Theorem 4: There are at most eight ambiguities during the

merging of body into body if:
• they can satisfy the condition of ;
• they do not share a node as shown in Fig. 8(e);
• a node of body is incident to two links, e.g., .
Proof: The following two parallel equations can be estab-

lished from the three links in Fig. 8(e), however with two links
incident to a same node in , i.e., :

with or and

The first equation corresponds to these two links with
, which can be realized by moving the original

point of body to this shared sensor. The first equation has
two roots for since two circles have two intersection points.
The second equation directly follows (6), by which a known
, we can derive two roots for rotation . Considering the
reflection of body can have eight ambiguities.
Theorem 5: There are at most 12 ambiguities during the

merging of body into body if:
• they can satisfy the condition of ;
• they are connected by three links as shown in Fig. 8(e).
Proof: The following derivations assume that body con-

tains at least three nodes and the number of links equals 3,
to make it a determined system with , which is
shown in Fig. 8(e). It is also assumed that there are no zero-
length links , and there do not exist two links
sharing a sensor .
Before the elimination of variable in (6), note that

are linear in , and is quadratic in . The next step therefore
is to reduce the degree of by eliminating the quadratic term

; otherwise, the resultant, after the elimination variable in
(6), can have a high degree in .
First, it is assumed that in (5) equals zero, which can be re-

alized by a temporary translation of body ’s coordinate frame,
and thus the following equation can be established:

(7)

Therefore, the degree of can be reduced to one in
(8) by substituting with

(8)

By elimination of variable in (8), (9) is established. The
elimination technique used is linear elimination since the suf-
ficient and necessary condition for the two polynomials in (8)

to have a common root for variable is that the determinant of
their associated Sylvester matrix should vanish

(9)

This common root, by eliminating ’s quadratic term, is

(10)

The polynomial without in (9) is quartic in because each
row of is linear in . We, however, can further reduce (9)
to a cubic polynomial by substitutions of with

. Equation (9) can be expanded to

(11)

The following analysis shows that (11) is cubic in . With
, we have

Moreover, we have and
. Therefore

Because

By the substitution of with
can be reduced to

be linear in , and thus reduce (11) to be cubic in .
The quadratic curve about in (7) and the cubic curve about

in (11), according to Bézout’s theorem, has intersection
points in complex space. In fact, given special inputs, these six
intersection points can all stay in real space in our experiments.
Given a translation , there is only one value as indicated by
(10) and thus only one rotation with . Considering
the reflection of body , the number of solutions for is
at most 12.

B. Flip Ambiguity Enumeration

Motivation: For inflexible body merging, a key point is how
to enumerate the finite ambiguities during merging of two
bodies. The existence of multiple ambiguities can be caused by
the following:
• the lack of redundancy in constraints as shown in Fig. 8;
• or the collinearity of constraints as shown in Fig. 9.
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In Section V-A, we presented a method to enumerate ambigui-
ties, which however is a symbolic algorithm that solves polyno-
mial equation systems. It is difficult to enumerate the flip am-
biguities that are caused by the rough collinearity of constraint
point set due to interferences of ranging noise.
In this section, we propose a numerical algorithm to enu-

merate flip ambiguities with the presence of ranging noise. Our
observation is that a symmetry property exist for the flip ambi-
guities in Fig. 8(a)–(d) and in Fig. 9(a)–(e). That is, if we can
obtain one ambiguity and flip it across the collinear nodes, then
we can get the remaining ambiguities. For example, in Fig. 9(d),
the other ambiguity can be obtained by flipping the depicted am-
biguity across the line through nodes . The most diffi-
cult case is in Fig. 8(d), where there are two flip lines and
four flip ambiguities. In this situation, the second ambiguity is
obtained by flipping the first ambiguity across , the third am-
biguity is obtained by flipping the first ambiguity across , and
the fourth ambiguity is obtained by flipping the first ambiguity
across then across .
We present in Algorithm 3 the pseudocode of our algorithm to

enumerate flip ambiguities, which can improve the robustness
against collinearity. First, we test the collinearity of each con-
straint point set at lines 2–6. Our collinearity detection at
line 6 can tolerate the presence of ranging noise, thanks to the
ability of orthogonal regression in detecting rough collinearity
of a constraint point set. Second, we use detected flip lines to
enumerate flip ambiguities at lines 7 and 8.

C. Algorithm Complexity and Ambiguity Explosion Problem

We analyze the computational complexity of our proposed al-
gorithms from two perspectives. One is the cost of bodymerging
primitive. The other is the complexity of our localization algo-
rithm that iteratively invokes the merging primitive.
Our body merging primitive is to merge inflexible body

with inflexible body to generate the resultant body and
enumerate the flip ambiguities. Its computational complexity is

, where

number of ambiguities in body .

number of ambiguities in body .

number of nodes in the merged body .

Fig. 12. Example of ambiguity explosion.

number of constraints between bodies , .

number of shared nodes between bodies , .

There are totally combinations, for ambiguities in body
and ambiguities in body . For each combination, the two
ambiguities are treated as two rigid bodies and are merged by
Algorithm 2. The complexity of Algorithm 2 is be-
cause its most expensive operation is the refinement step that
fine-tunes the locations of each node in the merged body .
After Algorithm 2, we need to further invoke Algorithm 3 to
enumerate flip ambiguities. Since Algorithm 3 needs to check
each constraint point set for collinearity, its computational cost
is , where is the number of links between
two bodies which is often smaller than .
Our localization algorithm invokes the body merging primi-

tive iteratively. Its computational cost is difficult to express as a
function of network size, because it is also affected by network
sparsity level and specific network topology. For example, we
can deploy the network topology in Fig. 12 on a bridge to mon-
itor structural health. In this special topology, the computational
cost of our localization algorithm grows exponentially with the
network scale. This is because when we merge two bodies (e.g.,
ABCD and CDEF), the number of ambiguities of the merged
body will double due to the flip line CD. Since there are totally
seven flip lines, the number of ambiguities will grow exponen-
tially to 2 after we merge all the local bodies in the network.
Such a phenomenon is called “ambiguity explosion.” As de-
scribed before, the computational cost of our merging primitive
is proportional to the number of ambiguities. Thus, when am-
biguity explosion exists, the cost of our localization algorithm
can grow exponentially. However, the depicted topology is just
an extreme case to have such a long chain of ambiguous body
merging. In our experimental networks in rectangular field and
in O-shaped field, the chain of exponential growth is frequently
broken after three or four times of body merging. The subse-
quent redundant body merging can help reject parts of ambigu-
ities accumulated.
To mitigate ambiguity explosion problem, we apply an addi-

tional rule to the merging order of iterative merging process.
• When multiple pairs of bodies are available that can satisfy
the merging condition , we prefer the body
pair whose constraints have the largest .

The intuition for this rule to prefer large value is
that the larger this value is, the smaller the chance for body
merging to increase the number of ambiguities, and also the
greater the chance to reject incorrect ambiguities.
However, the above rule may collide with the previously

mentioned rule that prefers the merging of global body with
local body (call it embedding). We resolve the collision as
follows. Name the rule that prefers embeddings as rule 1, and
name the rule that prefers largest value as rule 2.
• First, we try to apply rules 1 and 2 jointly. It means that
we use rule 1 to get a list of body embeddings, and apply
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TABLE I
SYSTEM PARAMETERS TO BE TESTED

Fig. 13. Comparisons in bodymerging accuracy. (a) GCF anchor
. (b) GCF anchor .

rule 2 to this list to find the body embeddingwith the largest
value. If this body pair can satisfy the condi-

tion of , then output it directly.
• Otherwise, we abandon rule 1 and adopt rule 2 alone.

VI. SIMULATION RESULTS

In this section, we use simulation results to verify the con-
tributions we declared. We first verify that our body merging
optimization algorithm is more generalized than the traditional
algorithms (i.e., multilateration and patch stitching) in tol-
erating ranging noise. We then show that our flip ambiguity
enumeration algorithm can improve the robustness of body
merging. We further show that our generalized merging condi-
tion can achieve higher localization percentage
than with state-of-the-art CALL [13]. Finally, we present the
integrated testing results showing that our IIBM algorithm can
localize concave networks with uneven density distribution.

A. Experimental Settings

We adopt ultrasonic TOA for ranging whose radius is 6 m
and noise is 2 cm. Similar ranging parameters are adopted in
citation [15]. In Table I, we list the system parameters that can
be adjusted for sensor networks, e.g., network degree, anchor
percentage, shape of network deployment region, and the error
in deployed GCF anchors. We will investigate their impact on
the localization performancemetrics, including localization per-
centage, and average localization error. A nonconventional per-
formance metric is the accuracy of body merging that is quan-
tified by the mean squared error of constraints between two
bodies. It can regarded as the average deformation of springs
between two bodies.

Fig. 14. Flip ambiguity enumeration during body merging. (a) Test case (c).
(b) Test case (d).

Fig. 15. Comparisons in localization percentage. (a) Fixed anchor number .
(b) Fixed network degree .

B. Body Merging Accuracy by Tolerating Ranging Noise

This experiment is to show that our body merging opti-
mization algorithm in Algorithm 1 can handle all the cases
in Fig. 7(a)–(e) while achieving high body merging accuracy
that is proportional to ranging noise. In contrast, the traditional
multilateration can only handle the case in Fig. 7(a), and patch
stitching is designed for the case in Fig. 7(c).
In Fig. 13, we assume the merging is between the global body

and a local body, and all the nodes in the global body are GCF
anchors. We then assume that the error in GCF anchor positions
is zero in Fig. 13(a) and is equal to range noise in Fig. 13(b).
Our purpose is to simulate the effect of error accumulation in
Fig. 13(b), i.e., larger localization error in the global body due
to the increased number of nodes.
Fig. 13(a) shows that our body merging optimization algo-

rithm can tolerate ranging noise and achieve high accuracy
for all the cases of body merging (see Fig. 7). Fig. 13(a) also
shows that when handling case (a), we can achieve accuracy
comparable to multilateration; when handling case (c), we can
achieve higher accuracy than patch stitching. This is because
when local body contains multiple nodes, it will have local-
ization noise in its own coordinate frame. Patch stitching will
not modify these node positions after merging. However, we
will refine the merged body using AFL spring relaxation
(see Algorithm 2). The most outstanding advantage is that all
the cases can be handled in a unified manner since the two
groups of nodes are aligned based on rigid body dynamics.
Fig. 13(b) shows that our body merging optimization al-

gorithm can mitigate the error accumulation problem, i.e.,
the error in node positions within a body get increased in
repeated merging process. In Fig. 13(b), we simulate this effect
by increasing the location error of global body from zero to
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Fig. 16. Integration test results: Localization of whole networks by IIBM algorithm. (a) %.
(b) %. (c) %.
(d) %.

ranging noise . Then, our body merging optimization algo-
rithm outperforms multilateration when handling case (a) and
outperforms patch stitching when handling case (c). Such an
advantage is because we apply refinement to merged body
to tolerate the positioning uncertainties in body .

C. Robust Body Merging Against Unexpected Flipping

For body merging, it is important to discover the collinear
geometry in constraint set and enumerate flip ambiguities, as
discussed in Sections IV-B and V-B. We use the experiments
in Fig. 14 to show our flip ambiguity enumeration algorithm in
Algorithm 3 can handle all the collinear cases in Fig. 9.
Fig. 14(a) shows that our algorithm can enumerate flip ambi-

guities for patch merging. A patch with nodes 0, 1, 2 is merged
with another patch 1, 2, 3, 4. They share two nodes 1, 2 and
have one connecting link . Since the three nodes 1, 3, 2 are
collinear, this second patch has two possible realizations that are
marked with gray and red colors separately.
Fig. 14(b) depicts an abnormal case whose number of ambi-

guities is three. Our algorithm can handle such a case. The patch
with nodes 0, 1, 2 is merged with the other patch 0, 3, 4. Their
constraint set contains one shared node 0 and two links

. Since the three nodes 0, 3, 2 are collinear, there exist mul-
tiple ambiguities during patch merging. However, there exist
three ambiguities (marked by gray, red, and blue colors) rather
than two. For enumeration, we first reduce the constraint set to
be determined (i.e., ) by removing a link, e.g.,

. Then, the first ambiguity can be obtained (e.g., with the
gray color) together with the two illustrated flip axes and .
The red ambiguity is obtained by flipping the gray ambiguity
across axis . The blue ambiguity is obtained by flipping the
gray ambiguity firstly across then across .

D. Localization Percentage in Sparse Networks

In this experiment, we verify that our IIBM algorithm
can achieve high localization percentage in sparse networks
with sparse anchor distribution and low network degree.
We also show that, with the unified body merging condition

, we can localize more nodes than CALL [13].
Fig. 15(a) depicts the relation between network degree and

anchor percentage. It shows that both our algorithm and CALL
can achieve close to 100% localization percentage when the net-
work degree is larger than 4.5. When the network degree is re-
duced between 3.7 and 4.5, our IIBM algorithm can outperform
CALL by roughly two times. This is because CALL does not
consider ambiguous cases (c) and (d) in Fig. 8 for body merging,

which would reduce the chance for local bodies to expand. In
contrast, IIBM algorithm can apply all the ambiguous merging
cases (a)–(e) equally to the merging of two local bodies and the
merging of global body with a local body.
Fig. 15(b) depicts the relation between anchor percentage and

localization percentage. It shows that IIBM algorithm strongly
outperforms CALL when the anchor percentage is between 5%
and 8%. This is because IIBM algorithm gives local bodies
greater chance to expand, and a larger local body has better
chance to be localized in GCF.

E. Performance in Convex and Concave Networks

This experiment is an integration test of our IIBM algorithm
to localize a whole network, which can be of different densi-
ties and deployed in concave or convex regions. As shown in
Fig. 16, we have tested both squared region and O-shaped re-
gion. In either region, the network density can be uniform or
nonuniform. For nonuniform networks, the density of lower
parts is increased by 50%.
In Fig. 16, GCF anchors are drawn as triangles, and sensors

are drawn as dots. If a sensor can be localized uniquely, then a
colored dot is used to show its estimated location, and its color
corresponds to the localization error [see the legend on the left
of Fig. 16(a)]. The nodes that cannot be uniquely localized are
shown as gray dots at their true locations, e.g., nodes 55, 62, 63
in Fig. 16(a) and 0, 1, 8, 16 in Fig. 16(b).
In all the four test cases, the average error of localized nodes

is kept below . This good accuracy is because: 1) we can
provide good body merging accuracy by our body merging op-
timization algorithm; and 2) we can ensure body merging ro-
bustness by enumerating the flip ambiguities. For example, in
Fig. 16(a), nodes 40, 48, 56 cannot be localized uniquely due
to the collinearity of nodes 41, 49, 57. Moreover, for the sparse
networks in Fig. 16, the localization percentage is kept above
80%, which is consistent with the results in Fig. 15.

VII. CONCLUSION

This paper focused on fine-grained iterative localization of
wireless sensor networks. We have proposed an optimization
algorithm that can tolerate ranging noise when aligning two
bodies. This algorithm is very generalized and can replace the
traditional multilateration and patch stitching as the new prim-
itive for network localization. We also proposed a flip ambi-
guity enumeration algorithm to improve the robustness of lo-
calization. This algorithm can discover the rough collinearity of
constraints due to the interference of ranging noise. Our other
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contribution is that our body merging condition
can achieve higher localization percentage than state-of-the-art
SWEEPS and CALL. Our final demonstration shows that our
IIBM localization algorithm canworkwell, even in concave net-
works with nonuniform network density.
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