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Abstract— RFID technology has been widely adopted for
real-world applications, such as warehouse management, logistic
control, and object tracking. This paper focuses on a new angle
of applying RFID technology—monitoring the temporal change
of a tag set in a certain region, which is called churn estimation.
This problem is to provide quick estimations on the number of
new tags that have entered a monitored region, and the number
of pre-existing tags that have departed from the region, within a
predefined time interval. The traditional cardinality estimator for
a single tag set cannot be applied here, and the conventional tag
identification protocol that collects all tag IDs takes too much
time, especially when the churn estimation needs to perform
frequently to support real-time monitoring. This paper will take
a new solution path, in which a reader periodically scans the tag
set in a region to collect their compressed aggregate information
in the form of empty/singleton/collision time slots. This protocol
can reduce the time cost of attaining pre-set accuracy by at
least 35%, when comparing with a previous work that uses only
the information of idle/busy slots. Such a dramatic improvement
is due to our awareness of collision slot state and the full
utilization of slot state changes. Our proposed churn estimator,
as shown by the extensive analysis and simulation studies, can
be configured to meet any pre-set accuracy requirement with a
statistical error bound that can be made arbitrarily small.

Index Terms— RFID, cardinality estimation, churn estimation,
departed tags, new tags, random hashing.

I. INTRODUCTION

RFID (radio frequency identification) technology has a
wide range of applications in real-world business opera-

Manuscript received December 27, 2014; revised November 12, 2015
and March 31, 2016; accepted June 6, 2016; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor A. X. Liu. Date of publication
August 15, 2016; date of current version February 14, 2017. This work
was supported in part by the Hong Kong Polytechnic University under
Grant 4-BCB9, in part by the U.S. National Science Foundation under Grant
CNS-1115548, and Grant CNS-1409797, in part by the China National Natural
Science Foundation under Grant CNSF-61472385, Grant 61222305, Grant
61502098, Grant 61532013, and Grant 61320106007, in part by the National
Program for Special Support of Top-Notch Young Professionals, in part by
the Jiangsu Provincial Natural Science Foundation of China under Grant
BK20150629, and in part by the Key Laboratory of Computer Network
and Information Integration of Ministry of Education of China under Grant
93K-9. The preliminary version of this paper titled “Differential Estimation
in Dynamic RFID Systems” was published in proceedings of the IEEE
INFOCOM Miniconference, pp. 295–299, April 14–19, 2013.

Q. Xiao is with the Key Laboratory of Computer Network and Information
Integration, Education Ministry, Southeast University of China,
Nanjing 211189, China (e-mail: csqjxiao@seu.edu.cn).

B. Xiao is with the Department of Computing, The Hong Kong Polytechnic
University, Hong Kong (e-mail: csbxiao@comp.polyu.edu.hk).

S. Chen is with the Department of Computer and Information Science
and Engineering, University of Florida, Gainesville, FL 32611 USA (e-mail:
sgchen@cise.ufl.edu).

J. Chen is with the Department of Control, Zhejiang University,
Hangzhou 310027, China (e-mail: jmchen@iipc.zju.edu.cn).

Digital Object Identifier 10.1109/TNET.2016.2586308

tions [1]–[4], such as warehouse management, logistic control,
asset tracking and automatic payment. RFID tags, each of
which carries a unique ID, are attached to medical devices,
retail products, library books, or car plates, allowing an RFID
reader to remotely access the information of each individ-
ual tag, or collect the aggregate statistical information of a
group of tags. When comparing with other wireless identifi-
cation or sensing devices, RFID tags have the advantage of
removing the need for batteries, whose recharge, replacement
and recycling prove to be troublesome in practice [5], [6].
RFID tags can operate using only the small amount of energy
harvested from the continuous radio waves emitted by nearby
RFID readers.

A common basic functionality of RFID systems is cardi-
nality estimation, whose aim is to estimate the number of
tagged objects in a particular physical region as efficiently
as possible [1], [2], [7]–[14]. This basic functionality can be
used to monitor the inventory level of a warehouse, the sales
in a retail store, and the popularity of attractions in a park [1].
In addition to its direct utility, RFID cardinality estimation
can work as a pre-processing step to optimize the parameter of
ID collection protocol from a group of tags [15]–[18]. Besides
the high efficiency, another key advantage of cardinality esti-
mation is that it avoids to identify any tags, and hence it will
not raise privacy concerns, particularly in sensitive scenarios
where the party performing the operation (such as warehouse
or port authority) does not own the tagged items.

Most existing solutions (as referenced above) are designed
to count the number of tags in a single static tag set. However,
many RFID systems are inevitably dynamic, since as time
passes, tagged items may enter or leave the surveillance region,
e.g., a warehouse or a metro station. It is practically useful to
estimate the number of tagged objects that are moved into
the monitored region and the number of tagged objects that
are moved out, within a certain time interval. This problem is
called churn estimation, which has many applications, such as
monitoring how the inventory level in a warehouse changes
over time, and how the number of passengers carried by
a subway train fluctuates after passing through each stop.
Churn estimation is a different problem from continuous
scanning, which is to identify the IDs of new tags or departed
tags [19], [20]. Estimating the numbers of such tags is an
operation that can be made much more efficient than identi-
fying their IDs.

Can the traditional cardinality estimators do this job?
We may use them to estimate the number of tags in the system
at pre-set times. For example, a cardinality estimator may tell
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us that there are 5,000 tags in the system at time 1, and 7,500
tags at time 2. We know the difference is 2,500. However, this
does not tell us how many new tags are moved into the system
between time 1 and time 2, and nor does it inform us how
many existing ones are moved out within the time interval.

For the churn estimation problem, another possible solution
is to use a tag identification protocol [15]–[18] to collect all
the tag IDs at time 1 and then at time 2. By comparing
the two tag sets, we can easily identify the new tags that
appear only at time 2, and the departed tags that exist at
time 1 but no longer at time 2. However, each tag ID must
be 96 bits long to ensure the global uniqueness [21]. The
time cost of collecting each 96-bit ID from a tag set is far
more expensive than estimating their number [1], [2], [7]–[14].
It is desirable to avoid ID collection for saving protocol
time cost, since long execution time of RFID system has
many negative impacts, e.g., may disrupt workers’ normal
warehouse inventory operations. Moreover, collecting tag IDs
could raise privacy concerns in certain applications. Imagine
a subway system: If a passenger carries his electronic ticket
everywhere and his surrounding RFID system collects the
ticket ID frequently, then his whereabout can be tracked with
fine details.

For the churn estimation problem, we design solutions based
on the following intuition. Suppose an RFID reader uses
framed ALOHA protocol to query a set of tags, and each
tag responds by selecting a slot at random in the time frame.
The reader will record the state of each time slot: emptiness
(no tag transmitting), singleton (one tag transmitting), or
collision (more than one tag transmitting). The combined state
of all slots is referred to as the aggregate information of the
tag set, which is collected periodically after each pre-set time
interval. When the tag set is unchanged, its aggregate informa-
tion will stay the same: Empty (singleton, or collision) slots
will remain to be empty (singleton, or collision). When the tag
set changes, it will cause some slots to have different states.
By measuring the numbers of changed slots in the aggregate
information, we can derive the numbers of new/departed tags.

Our preliminary work in [2] considers only two slot states:
empty (no tag transmitting) and busy (one or more tags
transmitting). In this paper, we also exploit the ability of
RFID readers to detect radio collision among tags. According
to the EPCglobal RFID standard [21]–[23], the function of
collision detection will increase per-slot time cost roughly
by 27%. Based on our analysis, thanks to the additional
information contributed from tag collisions, our new solution
with three states (empty/singleton/collision) can reduce the
needed number of time slots by about half. Overall, we can
reduce the protocol execution time by about 36.5%.

The contributions of this paper are summarized below.
• We define a problem called churn estimation for

monitoring dynamic RFID tag sets, which has practical
values.

• We propose three different kinds of churn estimators,
each of which is designed based on a unique set of state
changes in the collected aggregate information.

• The accuracy and time cost of the proposed churn esti-
mators is analyzed based on Cramér-Rao lower bound.

• We use simulations to study the impact of various system
parameters (e.g., frame load factor, observed slot number,
and ratio of departed/new tags) on estimation accuracy.

The rest of this paper is organized as follows: Section II
introduces the related work, and section III defines the problem
of churn estimation. Section IV describes the raw input data of
the problem. Section V defines the probability functions for a
time slot to stay in empty/singleton/collision state. Sections VI,
VII and VIII present three churn estimators which use different
sets of slot pair observations. Section IX analyzes the mean
and variance of proposed estimators, based on which section X
compares them theoretically. Section XI uses simulations
to verify the theoretical results, and section XII concludes
the paper.

II. RELATED WORK

Much existing RFID work focuses on how to efficiently
read the IDs of a group of tags, which is called tag identifi-
cation problem. Since the communications between tags and
a reader is by wireless, collisions will happen when multi-
ple tags respond simultaneously. Collision arbitration proto-
cols fall into two categories: tree-based protocols [16], [17],
and frame slotted ALOHA protocols [15], [18], [21]. The
de-facto EPCglobal C1G2 standard falls in the category
of ALOHA protocol [21].

Instead of collecting the IDs of individual tags, another
branch of RFID research studies how to efficiently estimate
the number of tags in a tag set. For reducing the time
overhead of this counting process, a plethora of protocols
have been developed, including unified probabilistic estima-
tor (UPE) [7], which is based on ALOHA frames, lottery
frame protocol (LoF) [9], first busy slot based estimation [10],
probabilistic estimating tree (PET) [11], average run based tag
estimation [13], and zero-one estimator [14]. The best known
protocol is called two-phase simple RFID counting (SRC).
It argues that, because a tag set can be scanned easily for
multiple rounds, it is better to adopt a two-phase protocol
design: The first phase makes a rough estimation quickly
(e.g., by LoF or PET protocol), while the second phase
generates estimation with finer accuracy by UPE [7].

Most of the estimation work also considers the case of
counting the tags in a large region that needs multiple readers
to cover [1], [9], [12], [24]. Essentially, their work estimates
the union of multiple tag sets, each covered by one reader.

There is extensive work on the detection and identification
of missing tags (which can be considered as unexpectedly
departed tags, for example, due to theft). Missing-tag detec-
tion is to detect the event of missing tags [25]. Missing-tag
identification is to collect the IDs of missing tags [26]–[28].
In the missing-tag line of research, we are not aware of
work specifically for estimating the number of missing tags.
Missing-tag identification will certainly give the number of
missing tags, but it is well known that individual tag iden-
tification is unnecessary (and costly) for count estimation.
Moreover, many approaches designed for missing tags assume
that there are no new tags entering the system. For example,
in [27], the reader maps (assigns) the set of tags under
surveillance to a frame of time slots based on the hash values
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Fig. 1. A dynamic set of tags monitored by an RFID reader.

of the tag IDs. Now if the tags transmit in their assigned slots
and the reader finds that a slot that should be busy turns out
to be empty, then it knows that the tags assigned to the slot
must be missing. However, if there are new tags entering the
system, this approach will fail. Therefore, the approaches that
are designed for missing-tag detection/identification may not
work in an environment where there are both missing and
new tags.

A similar argument can be made for the work that
detects/identifies unknown (new) tags [6]. There also exists
work that continuously identifies both the new tags enter-
ing the system and the pre-existing tags departing from the
system [19], [20]. Again, identifying the IDs of individual
tags is more costly than estimating the number of such tags.

The first work specifically designed for estimating the
number of departed, remaining, and new tags is our
2013 INFOCOM mini-conference paper [2], which only uses
empty slots. It is more general than the past missing-tag
(or unknown-tag) work that assumes no new (existing) tags
will enter (depart from) the system and more efficient than
the past work that identifies missing (or new) tags. There is a
follow-up work by other researchers in 2014 INFOCOM [20],
which also uses only the information of empty/busy channel
(for estimating the Jaccard similarity of two tag sets). This
journal submission should be considered as a major extension
to [2] by exploiting all types of slots: empty, singleton and
collision.

We acknowledge that much related work on classical car-
dinality estimation can exploit the collision information [7],
[29], [30]. The first paper by Kodialam and Nandagopal [7],
which started this line of research exploiting tag collisions,
uses such information to estimate the cardinality of a single tag
set. In contrast, we use collision slots to estimate the difference
of two tag sets.

III. PROBLEM FORMULATION

In this section, we define the problem of churn estimation.

A. System Model

Consider an RFID system where a reader covers a region
containing a large number of tags. As tags enter or leave
this region, the set of tags that can be scanned by the reader
changes over time. Such a dynamic tag set can be modeled
as a series of tag sets T1, T2, . . ., Tt, . . . distributing over
time domain, where Tt denotes the tag set interrogated by the
reader at time t. The time series is illustrated in Fig. 1, where
each ellipse represents a tag set at one particular time point.

We study how to monitor the change that a dynamic tag set
experiences between two arbitrary time points. Let t and t+Δt
be the two time points assigned by users. The tag sets that are
scanned by reader at these two time points are denoted by Tt

and Tt+Δt, where Tt is called the “previous set” and Tt+Δt

is called the “current set”. As shown in Fig. 1, Tt is drawn
as a dashed ellipse and Tt+Δt is depicted as a solid ellipse.
We divide their union set Tt∪Tt+Δt into three disjoint subsets
of tags, which are explained as follows.

• Departed tags are the tags found in the previous set but
no longer in the current set. In Fig. 1, they are denoted
by Tt \ Tt+Δt and depicted as a dotted shadow region.

• Remaining tags are the tags found in both the previous
set and the current set. They are denoted by Tt ∩ Tt+Δt

and illustrated as a blank region in the figure.
• New tags are the tags that are not found in the previous set

but exist in the current set. They are denoted by Tt+Δt\Tt

and are depicted as a grid shadow region.
We want to measure the number of departed/remaining/new

tags. Let n1 be the number of departed tags, n2 be the number
of remaining tags, and n3 be the number of new tags. Then,

n1 = |Tt \ Tt+Δt| n2 = |Tt ∩ Tt+Δt| n3 = |Tt+Δt \ Tt|.
Further, we denote the cardinality of the union of the two sets
by nu = |Tt∪Tt+Δt|, and hence we have nu = n1 +n2 +n3.

B. Churn Estimation Problem
In many applications, we do not need the exact values of the

numbers of departed/remaining/new tags. Their approximately
estimated values with bounded error can already satisfy users’
need. Let n̂1, n̂2, and n̂3 be the estimated values of churn
numbers n1, n2, and n3, respectively. We define their relative
estimation error as the normalized differences between esti-
mated values and ground truths: n̂1−n1

n1
, n̂2−n2

n2
, and n̂3−n3

n3
.

For the number of departed tags n1, we would like to bound
its relative error within threshold ±ε at a probability of at least
α, i.e., Prob{−ε < n̂1−n1

n1
< ε} ≥ α. By simple conversion,

Prob{(1 − ε)n < n̂1 < (1 + ε)n1} ≥ α. (1)

It states that the confidence interval of departed tag estimation
n̂1 is

(
(1 − ε)n1, (1 + ε)n1

)
, and the confidence level should

be at least α. Typically, we fix α to be 95% or 97.5%.
Then, the smaller the ε value (ε ∈ (0, 1)) is predefined, the
better the accuracy we have to implement for departed tag
estimation.

Similarly, for the remaining tag estimation n̂2 and the new
tag estimation n̂3, we can define their confidence intervals as(
(1−ε)n2, (1+ε)n2

)
and

(
(1−ε)n3, (1+ε)n3

)
, respectively.

Prob{(1 − ε)n2 < n̂2 < (1 + ε)n2} ≥ α (2)

Prob{(1 − ε)n3 < n̂3 < (1 + ε)n3} ≥ α (3)

The problem of churn estimation is to design efficient
protocol that can satisfy the above constraints on estima-
tion accuracy of departed/remaining/new tags, and meanwhile
minimize the protocol execution time to attain the accu-
racy requirement.

Later, we will show that the relative estimation errors of n1,
n2 and n3 are affected by the ratios of departed/remaining/new
tags in the union set Tt∪Tt+Δt, which are denoted as γ1 = n1

nu
,

γ2 = n2
nu

, and γ3 = n3
nu

, respectively. Since the sum of the three
ratios is equal to one, we can use two of them, e.g., γ1 and γ3,
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to specify the relation between previous tag set and current tag
set. For instance, when γ1 = 0.15 and γ3 = 0.2, there are 15%
departed tags, 65% remaining tags, and 20% new tags.

IV. SYSTEM MODEL AND INPUT DATA

In this section, we introduce the underlying communication
protocol that allows a reader to collect aggregate compressed
information from the set of tags in its radio range. The aggre-
gate information is the raw input data for churn estimation.

A. ALOHA-Based Communication Protocol

An RFID reader uses the following framed slotted ALOHA
protocol to communicate with its surrounding tags. It is a
popular anti-collision MAC (medium access control) protocol
used by many previous studies [1], [2], [7], [9], [12], [24].
It is partially compliant with EPCglobal C1G2 standard [21].

• Firstly, the reader starts an ALOHA frame consisting
of f time slots by broadcasting a Query command with
two parameters 〈f, r〉, where r is a random seed shared
by all tags in the frame. After hearing the command, each
tag selects a time slot randomly to respond, using the hash
function h(ID⊕r) mod f , where ID is the tag identifier,
r is the random seed, ⊕ is the bitwise XOR operator that
mixes ID and r, and h is a pseudorandom hash function
which is typically 16 bits long.

• Secondly, the reader divides the frame into f time slots,
by broadcasting a QueryRep command at the boundary
of each two neighboring slots (in order to terminate
the current slot and initiate the next). As the reader
broadcasts more QueryRep commands, the index of time
slot increases. The tags whose generated hash values are
consistent with the current slot will send their responses.

By executing this slotted ALOHA protocol, the responses of
tags are distributed uniformly in a ALOHA frame, which can
be treated as the aggregate information about the tag set at the
time of reader scanning.

A sampling mechanism can be incorporated into the above
ALOHA protocol, due to which only p (0 < p ≤ 1) fraction of
tags respond in the frame and the rest of them keep silent. The
following is an implementation of sampling mechanism which
does not need tags with simple circuits to manipulate float
numbers. Each tag has already generated a random number
for slot selection after receipt of the Query command, i.e.,
h(ID ⊕ r) mod f . The reader treats the tag as sampled if
its random number is smaller than a sampling threshold f ′,
i.e., h(ID ⊕ r) mod f < f ′. It is not difficult to find that,
when f ′ is set to the integer 
p f�, the sampling probability is

p f�/f , which is close to p when f is no small. Due to this
sampling mechanism, the reader only needs to complete the
transmission of the leading f ′ time slots in an ALOHA frame
of size f , 0 < f ′ ≤ f . We call it a “truncated frame”, which
reduces the protocol execution time to the leading f ′ slots.

B. Empty/Singleton/Collision Slots and Their Time Expenses

In an ALOHA frame, the RFID reader monitors the state of
each time slot transmitted. A time slot is said to be empty if
there are no tag responses in that slot, or busy if it contains at
least one tag responses. A busy slot can be further classified

as a singleton slot if it contains exactly one tag response,
and a collision slot if it contains two or more tag responses.
An empty or singleton slot is called a non-collision slot.

If a reader only wants to distinguish busy slots from empty
ones, then each tag reply needs to be just one bit long
to indicate a busy channel. If the reader wants to further
distinguish whether a busy slot is in singleton or collision state,
each tag response needs be extended to 16 bits as defined by
EPCglobal standard [21], such that the probability for two tags
(among 10,000 tags) to reply with exactly the same content is
less than 0.1%. The difference in tag reply contents can help
the reader to detect the radio collision of multiple tags from
their overlapped waveform.

Much previous work assumes that each tag reply con-
tains only one bit for differentiating empty and busy
slots [2], [19], [27]. Suppose the time cost for a tag to send
each bit is 4μs.1 It is natural to think that, since each tag
response must be increased to 16 bits long for implementing
collision detection, the time cost of a tag reply will grow by
16 times to 64μs. If the function of collision detection truly
leads to the increase of per-slot time cost by 16 times, then it
should not be considered.

However, as specified by the EPCglobal RFID standard [21],
no matter how many bits are included in a tag response, there
is considerable overhead for initiating a time slot, which is
approximately 152μs.2 The key reason is that the starting and
terminating of a time slot is not controlled by the synchronized
clock of tags, but by the reader’s QueryRep command, which
forces the current slot to finish and the next slot to start.
The motivation of such a design is to simplify the circuit
of passive tags and reduce the time cost of transmitting an
empty slot [22], [31]. Therefore, the time cost of an empty
slot is 113μs3 for transmitting the QueryRep command.

The time cost of a busy slot should be calculated as follows,
depending on whether we need to detect collisions. If each tag
responds with one bit to indicate a busy channel, then the time
cost of a busy slot is 152μs + 4μs × 1 = 156μs. If each tag
responds with sixteen bits to facilitate the collision detection at
the reader side, then the time cost is 152μs+4μs×16 = 216μs.

Also considering that the time slots of an ALOHA frame
often have one third to be empty (when the number of tags
and the number of slots are roughly equal as shown in Fig. 2),

• if each tag responds with only one bit, then the per-slot
time cost is roughly 113 · 1/3 + 156 · 2/3 ≈ 142.7μs;

• if the function of collision detection is enabled, then the
per-slot time cost is approximately 113 ·1/3+216 ·2/3 ≈
181.7μs, which increases only by 27%.

1Suppose the tag-to-reader data rate is 256kbps as in [23], which lists
typical settings of the parameters of UHF EPCglobal protocol, such as reader-
to-tag data rate, FM0 encoding with TRext configured to zero, and so on.
Then, the time cost for the tag to transmit each bit is about 4μs.

2The overhead of a busy slot consists of at least three parts: the transmission
of QueryRep command (about 74μs, since QueryRep has 4 bits and reader-
to-tag data rate is 54.23kbps), the waiting time from reader transmission to
tag response T1 (about 39μs), and the waiting time vice verse T2 (39μs)
[22], [23]. The Frame-Sync before QueryRep command is ignored for
simplicity.

3The time expense of an empty slot is the transmission time of QueryRep
command plus the waiting time T1, i.e., 74+39 = 113μs, if assuming T3 is
zero (the time a reader waits, after T1, before it issues another command) [21].
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Fig. 2. Probabilities for 0, 1 or at least 2 tags to respond in a slot (n = 3000).

The low cost of detecting collisions in time slots has inspired
us to study further how to exploit such information to improve
the churn estimation accuracy.

Afterwards, we use 0, 1 and 2 to denote the empty, singleton
and collision states of a time slot, respectively. By executing
the slotted ALOHA protocol, an RFID reader can compress a
tag set into an array of integers, where each integer represents
the state of a corresponding time slot in the frame.

C. Input Data Collected From Two Frames

A system user may specify two arbitrary time points t and
t + Δt for estimating the number of departed/remaining/new
tags within the period. In this subsection, we define the
input data collected by the reader to accomplish this churn
estimation task. An RFID reader can use the previously
described ALOHA protocol to scan the tag set in its radio
zone periodically.

The ALOHA frame at time t is called the previous frame,
and the frame at t + Δt is called the current frame. We make
pairwise comparison between their time slots, and we define a
slot pair as a slot in previous frame and its corresponding slot
in current frame. We use the symbol x (or y) to denote the
state of the ith slot in previous (or current) frame. Then, the
state of a slot pair can be represented by a tuple 〈x, y〉. This
tuple has nine possible states, because both x and y have three
possible states {0, 1, 2}. We use symbol X

(i)
x,y, 0 ≤ i < f , to

denote the event that the ith slot pair is in the 〈x, y〉 state.
The reader counts the number of slot pairs that stay in 〈x, y〉

state, which is denoted by Nx,y. Let 1
X

(i)
x,y

be the indicator

function of event X
(i)
x,y , which equals one when the event

happens and equals zero otherwise. Then, we have

Nx,y =
∑

i=0,1,...,f ′−1
1

X
(i)
x,y

, (4)

where f ′ is the number of leading slots in the truncated frame
both at time t and t + Δt. There are totally nine slot pair
numbers Nx,y with 0 ≤ x, y ≤ 2. Our problem of churn
estimation is to use these input data to generate the estimations
n̂1, n̂2 and n̂3 satisfying the accuracy constraints in (1) and (3).

We define the number of “wildcard” slot pairs N∗,y and
Nx,∗, which will be used later. In particular, N∗,0, N∗,1 and
N∗,2 are the numbers of empty, singleton and collision slots
in the current frame; Nx,∗ can be similarly defined for the
previous frame. Their relation with Nx,y in (4) is as follows.

N∗,y =
∑

x=0,1,2
Nx,y Nx,∗ =

∑

y=0,1,2
Nx,y

V. CARDINALITY ESTIMATION FOR A SINGLE TAG SET

In this section, we introduce the traditional algorithm for
estimating the cardinality of a single tag set, which is scanned
by reader using ALOHA protocol. Although this issue has
been thoroughly investigated by previous work [7], we would
like to give a brief introduction here, because the defined prob-
ability functions will be reused later in subsequent sections.

Let f be the number of time slots in the frame. Focus
on a single slot of the frame. The probability for a tag to
select the slot is 1/f . Then, among n tags, the number of
tags that will pick the slot follows a binomial distribution:
Binom(n, 1

f ). Let P0, P1, and P2 be the probabilities for
this slot to hold 0, 1 and at least 2 tags, respectively, which
correspond to the empty, singleton and collision states of a
slot. Then, we have

P0(n) = (1 − 1
f

)n

P1(n) = n
1
f

(1 − 1
f

)n−1

P2(n) = 1 − P0(n) − P1(n). (5)

By applying the approximation (1− 1
f )n ≈ e−

n
f that works

for a large f value, the above probability functions can be
simplified as P̃0(ρ) ≈ e−

n
f = e−ρ, P̃1(ρ) ≈ n

f e−
n−1

f ≈
ρ e−ρ, and P̃2(ρ) = 1 − P̃0(ρ) − P̃1(ρ). These probability
functions have only one parameter ρ = n

f , which is called the
load factor (or tag density) of the frame. Here, the upper tilde
above symbol P indicates that the function parameter has been
changed from n to the load factor ρ.

We plot the probability functions P̃0, P̃1 and P̃2 against the
load factor ρ in Fig. 2. It shows that P̃0 and P̃2 are monotonic
functions of the load factor ρ = n/f . Since the frame length
f is always known by the RFID reader, P0 and P2 can also
be regarded as monotonic functions of the number of tags n.

We mentioned before that in an ALOHA frame, only the
leading f ′ time slots with f ′ = 
pf� are transmitted, to realize
the sampling of tags with probability p. Let z be the fraction of
empty slots in this truncated frame with leading f ′ slots. When
f ′ is large enough, z can be regarded as a good approximation
for the probability of a slot to be empty, i.e., z ≈ P0(n).
Since function P0 is monotonic, we can use its inverse function
P−1

0 (z) to generate an estimation of the tag number n.

n̂ = P−1
0 (z) = log1− 1

f
(z) ≈ −f log(z) (6)

Let c be the fraction of collision slots in the truncated frame
constituted by the preceding f ′ slots. Given the observation
of c, we have c ≈ P2(n). Since the function P2 is also
monotonic, we can use the inverse function P−1

2 (c) to estimate
the number of tags n. However, there is no closed-form
formula to directly calculate P−1

2 . This inverse function has to
be approximated by some numerical methods, e.g., bisection
root finding.

VI. EMPTY-SLOT CHURN ESTIMATOR

In this section, we present our first estimator for the numbers
of departed/new tags, called empty-slot churn estimator (ECE).
It utilizes the observations about the numbers of slot pairs with
at least one empty slot, i.e., N0,∗, N∗,0 and N0,0.
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From the number of empty slots N∗,0 in the current frame,
we can estimate the number of tags in the current frame as

n̂2 + n3 = P−1
0 (N∗,0/f ′). (7)

We briefly explain this equation as follows. In the preceding f ′

slots of the current frame, the expected fraction of empty slots
is E(N∗,0/f ′) = P0(n2+n3). According to (4), N∗,0/f ′ is the
arithmetic mean of a large number of independent variables.
By applying central limit theorem, it approximates a Gaussian
distribution whose variance is proportional to 1/f ′. When f ′

is large enough, we have N∗,0/f ′ ≈ P0(n2 + n3). Since
P0 has an inverse function in (6), we estimate n2 + n3 as
in (7).

Similarly, n1 + n2 is the number of tags in the previous

frame, and we can use N0,∗ to estimate it as n̂1 + n2 =
P−1

0 (N0,∗/f ′). Here, we have substituted the expected value
of Nx,y/f ′ by its instance value to generate an estimator.
We will prove the unbiasedness of the generated estimator
later.

In order to give estimations of n1, n2 and n3, we need to
know one more tag number. We will estimate the number of
tags nu = n1 + n2 + n3 in the union of two sets, from the
number of 〈empty, empty〉 slot pairs N0,0.

Since the previous frame and the current frame use the
same frame size f , each remaining tag in n2 will select
the same time slot in the two frames to respond (see the
hash function for slot selection in Section IV-A). Hence, the
probability for a slot pair to stay in the 〈empty, empty〉 state
is (1 − 1

f )n1(1 − 1
f )n2(1 − 1

f )n3 = (1 − 1
f )n1+n2+n3 =

P0(nu). This probability is approximately equal to N0,0/f ′,
i.e., the proportion of slot pairs that are 〈empty, empty〉 in
the preceding f ′ slot pairs. Therefore, we estimate the union
cardinality as n̂u = P−1

0 (N0,0/f ′).
Finally, the number of departed tag can be estimated as

n̂1 = n̂u − n̂2 +n3 = P−1
0 (N0,0/f ′) − P−1

0 (N∗,0/f ′).

Since P−1
0 is given in (6), we have n̂1 = −f log(N0,0/N∗,0).

Similarly, we can derive the estimators for the number of
remaining tags n2 and the number of new tags n3, which have
been presented in Definition 1. We will analyze the mean and
variance of ECE estimators later in Section IX.

Definition 1 (Empty-Slot Churn Estimator): By observing
the three slot pair numbers N0,0, N0,∗ and N∗,0, the RFID
reader can estimate the tag numbers n1, n2 and n3 as follows.

n̂1 = P−1
0 (N0,0/f ′) − P−1

0 (N∗,0/f ′) ≈ −f log(N0,0/N∗,0)
n̂2 = P−1

0 (N0,0/f ′)n̂1 − n̂3

≈ −f log
(
N0,∗ N∗,0/(f ′N0,0)

)

n̂3 = P−1
0 (N0,0/f ′) − P−1

0 (N0,∗/f ′) ≈ −f log(N0,0/N0,∗)

This ECE estimators were proposed in the preliminary
conference version [2], which assumes RFID readers are able
to differentiate empty slots from busy ones. Its shortcoming
is that, when a frame receives too many tag responses, very
few slots in the frames will remain empty, and the estimation
accuracy of ECE severely degrades. Meanwhile, as specified
by EPCglobal standard [21], RFID reader is capable of differ-
entiating between singleton and collision states. We need to

take benefit of the collision detection capacity, to improve the
accuracy of churn estimation when dealing with dense frames.

VII. COLLISION-SLOT CHURN ESTIMATOR

In this section, we present the collision-slot churn estima-
tor (CCE), which utilizes the numbers of slot pairs with at
least one collision slots, i.e., N∗,2, N2,∗, and N2,2.

For the fraction of collision slots in previous frame N2,∗/f ′

and for the fraction of collision slots in current frame N∗,2/f ′,
their expected values are as follows.

E(N2,∗/f ′) = P2(n1 + n2) E(N∗,2/f ′) = P2(n2 + n3)
(8)

Here, P2 is the collision probability of a slot defined in (5), and
it is a monotonic function as depicted in Fig. 2. Hence, we can
solve the above equations and obtain the following estimators.

n̂1 + n2 = P2
−1(N2,∗/f ′) n̂2 + n3 = P2

−1(N∗,2/f ′)

To estimate churns, we still need to know one more tag num-
ber. We will estimate the number of remaining tags n2 from
the number of slot pairs N2,2 that are collision in both frames.
How to implement the estimation is not straightforward. As to
the tags that are contained by a slot pair in 〈collision, collision〉
state, there are three possible combinations, listed as follows:

1) at least two remaining tags,
2) one remaining tag, one or more departed tags, and one

or more new tags,
3) no remaining tags, two or more departed tags, and two

or more new tags.
The probability of the first case is the chance for a slot pair to
contain at least two remaining tags, which is P2(n2), where P2

have been defined in (5). The probability of the second case is(
1−P0(n1)

)
P1(n2)

(
1−P0(n3)

)
. The probability of the third

case is P2(n1)P0(n2)P2(n3). Therefore, the expected value of
the fraction of 〈collision, collision〉 slot pairs N2,2/f ′ is

E(N2,2/f ′) = P2(n2) + P2(n1)P0(n2)P2(n3)
+

(
1 − P0(n1)

)
P1(n2)

(
1 − P0(n3)

)
. (9)

Since (9) has three unknown parameters n1, n2 and n3,
we cannot use (9) alone to estimate the number of remaining
tags n2. We must jointly consider the three equations in (8)
and (9), which essentially constitute an equation set that puts
three constraints over the three unknown parameters n1, n2

and n3. A difficulty of solving this equation set is that the
inverse function P2

−1 has no closed-form formula. We have
to resort to numerical iterative optimization method that fine
tunes the churn estimations n̂1, n̂2 and n̂3 to minimize the
error of the three equations in (8) and (9). We present the
numerical optimization procedure in Algorithm 1.

VIII. ALL-SLOT PAIR CHURN ESTIMATOR

The aforementioned ECE and CCE algorithms share an
inadequacy that they partially utilize the numbers of slot pairs.
ECE relies on the observation of N∗,0, N0,∗ and N0,0, and
CCE utilizes the observation of N∗,2, N2,∗ and N2,2. In this
section, we will present our best estimator, called the all-slot
pair churn estimator (ACE), which exploits the observations of
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Algorithm 1 Collision-Slot Churn Estimator
input : Slot number observations N2,∗, N∗,2 and N2,2

output: Churn estimates n̂1, n̂2 and n̂3

1 Initialize the guesses of n̂1, n̂2 and n̂3 to zero.
2 Derive the current estimates of N202 and N �01�0:

N̂202 = f ′P2(n̂1)P0(n̂2)P2(n̂3) and
N̂ �01�0 = f ′(1 − P0(n̂1)

)
P1(n̂2)

(
1 − P0(n̂3)

)
,

where N̂202 is the estimated number of slot pairs (i.e.,
case 3) and N̂ �01�0 is the estimated number of slot pairs
(i.e., case 2).

3 Revise the remaining tag estimate n̂2 by

n̂2 = P−1
2

(N2,2−N̂202−N̂ �01�0
f ′

)
,

where N2,2 − N̂202 − N̂ �01�0 is the estimated number of
slot pairs with at least two remaining tags, i.e., case 1

4 Revise the estimates of departed tags n̂1 and new tags n̂3:
n̂1 = P−1

2 (N2,∗
f ′ ) − n̂2 and n̂3 = P−1

2 (N∗,2
f ′ ) − n̂2.

5 Go to step 2, if the revisions (to n̂1, n̂2 and n̂3) by
steps 3 and 4 are larger than a threshold. Otherwise,
program terminates

all the nine kinds of slot pairs Nx,y, 0 ≤ x, y ≤ 2. Benefiting
from the increase of available information, this new estimator
can potentially achieve higher accuracy than ECE and CCE.

A. Maximum Likelihood Estimation (MLE)

We analyze the probability for a single slot pair to contain
z1 departed tags, z2 remaining tags, and z3 new tags, with
0 ≤ z1, z2, z3 ≤ 2. When z1, z2 or z3 equals to 2, we mean
at least two tags. Assuming there are totally n1 departed tags,
n2 remaining tags, and n3 new tags, the probability can be
modelled as Pz1(n1)Pz2(n2)Pz3(n3), where P0, P1 and P2

are defined in (5). Note that the probability does not need to
be Pz1(n1)

(
Pz2(n2)

)2
Pz3(n3), since a remaining tag always

selects the same slot to reply in two frames by using the same
hash function and one term Pz2(n2) can be omitted.

Then, we analyze Px,y(n1, n2, n3) — the probability for a
slot pair to be in the state of 〈x, y〉, when there are totally
n1 departed tags, n2 remaining tags, and n3 new tags.

P0,0 = P0(n1)P0(n2)P0(n3)
P0,1 = P0(n1)P0(n2)P1(n3)
P0,2 = P0(n1)P0(n2)P2(n3)
P1,0 = P1(n1)P0(n2)P0(n3)
P1,1 = P1(n1)P0(n2)P1(n3) + P0(n1)P1(n2)P0(n3)
P1,2 = P1(n1)P0(n2)P2(n3) + P0(n1)P1(n2)

(
1 − P0(n3)

)

P2,0 = P2(n1)P0(n2)P0(n3)
P2,1 = P2(n1)P0(n2)P1(n3) +

(
1 − P0(n1)

)
P1(n2)P0(n3)

P2,2 = P2(n2) +
(
1 − P0(n1)

)
P1(n2)

(
1 − P0(n3)

)

+ P2(n1)P0(n2)P2(n3) (10)

The definition of P2,2 has been proved before in (9), which is
the sum of the probabilities of three cases. We explain how to
obtain the probability P2,1. There are two cases for a slot pair
to stay in the state 〈collision, singleton〉. It contains either (1)

exactly one remaining tag, at least one departed tags and
no new tag, or (2) no remaining tag, at least two departed
tags and only one new tag. The probability of the first case
is

(
1 − P0(n1)

)
P1(n2)P0(n3) and the probability of the

other case is P2(n1)P0(n2)P1(n3). By summing up the two
probabilities, we can obtain P2,1 in (10). The other seven
probabilities P0,0, P0,1, . . ., P1,1 and P2,0 in (10) can be
derived similarly.

The RFID reader, after scanning the preceding f ′ slots in the
two frames, obtain the number of slot pairs Nx,y that stay in
the state 〈x, y〉, 0≤x, y≤ 2, which was previously formulated
into equation (4). The probability for the reader to make such
observation, under the precondition of totally n1 departed tags,
n2 remaining tags and n3 new tags, is

Prob{Nx,y|n1, n2, n3} =
∏

0≤x,y≤2

[
Px,y(n1, n2, n3)

]Nx,y
.

We explain it as follows. Given the probability Px,y in (10) for
a slot pair to stay in 〈x, y〉 state, the probability for Nx,y slot
pairs to stay in 〈x, y〉 state is [Px,y(n1, n2, n3)]Nx,y , because
these slot pairs can be treated as approximately independent.
By jointly considering all the nine kinds of slot pairs 〈x, y〉,
0≤x, y≤ 2, we derive the probability of observing Nx,y slot
pairs for each state by multiplication rule of probability.

The above probability equation is also known as the likeli-
hood function of the unknown churn numbers n1, n2 and n3.

L(n1, n2, n3 | Nx,y) =
∏

0≤x,y≤2

[
Px,y(n1, n2, n3)

]Nx,y

(11)

We obtain the optimized churn estimations n̂1, n̂2 and n̂3, by
maximizing log-likelihood function logL(n1, n2, n3|Nx,y).

n̂1, n̂2, n̂3 = arg max
n1,n2,n3

logL(n1, n2, n3 | Nx,y) (12)

Since this equation exploits all the nine slot pair states
〈x, y〉, 0 ≤ x, y ≤ 2, we call it all-slot pair churn estima-
tor (ACE). Later in Section X, we will analyze how much
accuracy improvement ACE can achieve, as compared with
ECE and CCE. To our best knowledge, it is the first work that
improves the churn estimation accuracy by taking full advan-
tage of RFID reader’s function in detecting radio collisions.

B. Numerical Solution for MLE

For the likelihood maximization problem in (12), there is
no closed-form solution, and instead we adopt a numerical
iterative method, which is introduced as follows.

Firstly, we generate initial guesses about the churn numbers,
using a hybrid estimator combining ECE and CCE (i.e., we
apply ECE first to obtain churn number estimations n̂1, n̂2, n̂3,
and if the estimated union load factor (n̂1 + n̂2 + n̂3)/f is
smaller than one, we use the estimated results by ECE directly,
and otherwise, we apply CCE instead to obtain another set of
churn estimations), which will be explained in Section X-B.

Secondly, starting from the initial guesses, we search for
the optimal churn estimations to minimize the log-likelihood
function as in (12). The search is guided by the first-
order derivative of the log-likelihood function 〈∂ logL

∂n1
, ∂ logL

∂n2
,

∂ logL
∂n3

〉, where n1, n2, n3 represent the current estimation of
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the number of departed/remaining/new tags. We terminate the
iterative optimization process, if the magnitude of the gradient
vector becomes smaller than a given threshold.

The expression of the partial derivative ∂ logL
∂ni

is as follows.

∂ logL(n1, n2, n3|Nx,y)
∂ni

=
1

L(. . .)
∂

∂ni

∏

0≤x,y≤2
Px,y(n1, n2, n3)Nx,y

=
∑

0≤x,y≤2

Nx,y

Px,y(n1, n2, n3)
∂Px,y(n1, n2, n3)

∂ni

In some boundary situations, the probability Px,y(n1, n2, n3)
may unfortunately become close to zero, which will drive the
partial derivative ∂ logL

∂ni
to infinity. If that happens, we will

terminate the iterative optimization process instantly.
The above equation needs the partial derivative ∂Px,y

∂ni
,

which is complicated and has twenty-seven cases, due to
the existence of nine slot pair states 〈x, y〉 and three tag
numbers ni. We show three cases of partial derivative ∂Px,y

∂ni

as follows.

∂P2,2

∂n1
= −∂P0(n1)

∂n1
P1(n2)

(
1 − P0(n3)

)

+
∂P2(n1)

∂n1
P0(n2)P2(n3)

∂P2,2

∂n2
=

P2(n2)
∂n2

+
(
1 − P0(n1)

)∂P1(n2)
∂n2

(
1 − P0(n3)

)

+ P2(n1)
∂P0(n2)

∂n2
P2(n3)

∂P2,2

∂n3
= −(

1 − P0(n1)
)
P1(n2)

∂P0(n3)
∂n3

+ P2(n1)P0(n2)
∂P2(n3)

∂n3
(13)

For simplicity, the other twenty-four cases of ∂Px,y

∂ni
are omit-

ted, which can be easily inferred from Px,y in (10).
The above equations need the probability Px(n), 0 ≤ x ≤ 2,

which can be found in (5). The above equations also require
the first-order derivatives ∂Px(n)

∂n , which are given as follows.

∂P0(n)
∂n

= (1 − 1
f

)n log(1 − 1
f

)

∂P1(n)
∂n

=
1
f

(1 − 1
f

)n−1 + n
1
f

(1 − 1
f

)n−1 log(1 − 1
f

)

∂P2(n)
∂n

= −∂P0(n)
∂n

− ∂P1(n)
∂n

(14)

Note that both (5) and (14) require the input number of tags n
to be non-negative for generating valid results. Hence, if any
of the current churn estimations n̂1, n̂2 and n̂3 is negative
during the iterative optimization, it should be rounded to zero.

IX. ANALYSIS OF PROPOSED ESTIMATORS

In this section, we analyze the expected values and variances
of the proposed three churn estimators, which paves the road
for theoretical comparison of their accuracy and time cost.

A. Bias Analysis

We prove as follows that our ECE, CCE and ACE estimators
are asymptotically unbiased. It is well-known that a maximum
likelihood estimator (MLE) is asymptotically unbiased, if the
independent and identically distributed experiments it observes
has a sufficiently large number [32]. The ACE estimator is
based on MLE, and it treats each slot pair as an independent
experiment, whose number f ′ is often large enough. Therefore,
ACE is asymptotically unbiased.

The ECE and CCE estimators are also asymptotically unbi-
ased, since they are based on the well-known estimators P−1

0

and P−1
2 , which are able to derive the number of tags involved

in an ALOHA frame in an asymptotically unbiased fashion.
Take ECE estimator as an example. When it handles the
number of departed tags, it uses P−1

0 (N0,0
f ′ ) to estimate the size

of union set nu, and P−1
0 (N∗,0

f ′ ) to estimate the number tags in
current frame n2+n3. Since both estimates are asymptotically
unbiased, their difference is also asymptotically unbiased when
it is used as an estimation of the departed tag number.

B. Variance Analysis

We will analyze the variances of proposed estimators in
a generic theoretical framework called Cramér-Rao lower
bound (CRLB) [32]. CRLB expresses a lower bound on the
variance of estimators (or covariance matrix in multivariate
scenario). It states that the variance of any unbiased estimator
is at least as high as the inverse of the Fisher information.
Meanwhile, for an unbiased maximum likelihood estimator,
it will achieve the CRLB when the number of independent
experiments it observes tends to infinity. Therefore, for an
unbiased maximum likelihood estimator with a large number
of independent observations, CRLB is often used to approxi-
mate its variance.

Fisher Information Matrix. The Fisher information matrix
is a generic statistical tool to measure the amount of informa-
tion that observable random variables carry about unknown
parameters. In our churn estimation problem, the unknown
system parameters are the numbers of departed/remaining/new
tags n1, n2, n3, and the observable random variables are the
states of the leading f ′ slot pairs. Each of the three churn
estimators concerns with a different set of states of these
slot pairs.

• The ACE estimator uses all the nine kinds of slot pair
states 〈x, y〉 with 0 ≤ x, y ≤ 2, and it observes the
number of slot pairs staying in each 〈x, y〉 state, which
is denoted by Nx,y.

• The ECE estimator exploits the numbers of slot state
transitions between empty and busy, i.e., N0,0, N0, �0,
N �0,0, N �0, �0, which are equivalent to the numbers of state
changes N0,0, N0,∗, N∗,0, for N0,∗ = N0,0 + N0, �0
and N∗,0 = N0,0 + N �0,0.

• The CCE estimator exploits the number of state
transitions between collision and non-collision:
N2,2, N2, �2, N �2,2, N �2, �2.

The Fisher information matrix F can be calculated as follows.
Theorem 1 (Fisher Information Matrix): For a churn esti-

mator that depends on the observation of slot pair numbers
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Nx,y, its Fisher information matrix F is

Fij ≈ f ′2 ·
( ∑

〈x1,y1〉, 〈x2,y2〉
∂Px1,y1

∂ni

∂Px2,y2

∂nj

)
, (15)

where Fij is the element of Fisher information matrix F at the
ith row and the jth column (1 ≤ i, j ≤ 3), f ′ is the number of
leading slots in a truncated frame that are observed, and Px,y

is the probability for a slot pair to stay in the 〈x, y〉 state.
Proof: Please check the appendix for proof.

In (15), the
∑

operator applies summation over all the
combinations of slot pair state 〈x1, y1〉 and another slot pair
state 〈x2, y2〉. Since each churn estimator has its own set of
observations, the number of terms of the summation

∑
differs.

• For the ACE estimator, there are eighty-one terms,
because both 〈x1, y1〉 and 〈x2, y2〉 have nine possible slot
pair states, with x and y picked from empty, singleton and
collision.

• For the ECE estimator, there are sixteen terms for
the summation, because it concerns with four slot pair
states 〈x, y〉, with x and y picked from empty and busy.

• The CCE estimator also has sixteen terms for the summa-
tion, because it concerns with four slot pair states 〈x, y〉,
with x and y picked from collision and non-collision.

Equation (15) needs the partial derivative ∂Px,y

∂ni
, which are

described as follows for each churn estimator.
• For the ACE estimator, it observes the nine numbers of

slot pairs Nx,y, 0 ≤ x, y ≤ 2, and there are twenty-seven
cases for the partial derivative ∂Px,y

∂ni
, which are shown

in (13).
• The ECE estimator cares about four numbers of slot

pairs: N0,0, N0, �0, N �0,0, N �0, �0. The probabilities of the four
slot pair states are P0,0, P�0,0, P0, �0, P�0, �0, which can be
easily derived from Px,y (0 ≤ x, y ≤ 2) in (10), using
P�0,0 = P1,0 +P2,0, P0, �0 = P0,1 +P0,2 and P�0, �0 = P1,1 +
P1,2 +P2,1 +P2,2. Hence, for ECE, the partial derivative
∂Px,y

∂ni
has twelve cases: ∂P0,0

∂ni
, ∂P�0,0

∂ni
, ∂P0,�0

∂ni
, ∂P�0,�0

∂ni
with

0 ≤ i ≤ 2, which can be derived from ∂Px,y

∂ni
of the

ACE estimator.

∂P0, �0
∂ni

=
∂P0,1

∂ni
+

∂P0,2

∂ni

∂P�0,0

∂ni
=

∂P1,0

∂ni
+

∂P2,0

∂ni

∂P�0, �0
∂ni

=
∂P1,1

∂ni
+

∂P1,2

∂ni
+

∂P2,1

∂ni
+

∂P2,2

∂ni

• For the CCE estimator, its observations are the four
numbers of slot pairs: N2,2, N2, �2, N �2,2, N �2, �2. We can
derive the probabilities of the four slot pairs P2,2, P2, �2,
P�2,2, P�2, �2, using Px,y (0 ≤ x, y ≤ 2) in (10). The partial
derivative ∂Px,y

∂ni
has twelve cases: ∂P2,2

∂ni
, ∂P�2,2

∂ni
, ∂P2,�2

∂ni
,

∂P�2,�2
∂ni

(0 ≤ i ≤ 2). Their formula can be derived from
∂Px,y

∂ni
of the ACE estimator.

∂P2, �2
∂ni

=
∂P2,0

∂ni
+

∂P2,1

∂ni

∂P�2,2

∂ni
=

∂P0,2

∂ni
+

∂P1,2

∂ni

∂P�2, �2
∂ni

=
∂P0,0

∂ni
+

∂P0,1

∂ni
+

∂P1,0

∂ni
+

∂P1,1

∂ni

Due to the high complexity of ∂Px,y

∂ni
, the equation (15)

that produces the element Fij of Fisher information matrix

is complicated. Although we have implemented the whole
equation in MATLAB, we have to omit it in this paper
to save space.

Cramér-Rao Lower Bound. According to CRLB in multi-
variate scenario, the covariance matrix of an unbiased estima-
tor is at least the inverse of Fisher information matrix. Hence,
the covariance matrix of n̂1, n̂2 and n̂3 satisfies the following
inequality, no matter which churn estimator we adopt here:

Cov(n̂1, n̂2, n̂3) ≥ F−1(n1, n2, n3 |Nx,y), (16)

where F is the Fisher information that measures the amount
information carried by observations Nx,y about the unknown
parameters n1, n2, n3. Due to the three churn estimations, the
Fisher information takes the form of 3× 3 matrix.

As can be derived from (16), the variance of churn estima-
tion V ar(n̂i) is at least the corresponding diagonal element
[F−1]ii in the inverse of Fisher information matrix F−1.

V ar(n̂i) ≥
[
F−1(n1, n2, n3 |Nx,y)

]
ii

It is well known that, for an arbitrary maximum likelihood
estimator, if its observed number of independent experiments
tends to infinity, its variance becomes close to or even achieves
CRLB [32]. For our churn estimation problem, our inde-
pendent observations are the slot pairs whose number f ′ is
counted by hundreds or thousands. Hence, we can approximate
the variances of churn estimators by their CRLB.

V ar(n̂i) ≈
[
F−1(n1, n2, n3 |Nx,y)

]
ii

(17)

For example, the estimation variance of departed tag number
V ar(n̂1) can be approximated by the element [F−1]11 at the
left-top corner of the inverse of Fisher information matrix.

C. Transformation of Accuracy Constraints

Our churn estimators have been proved asymptotically unbi-
ased, and they approximate Gaussian distributions, when the
number of leading slot pairs f ′ observed is sufficiently large.
Hence, the accuracy requirement in (1)-(3) can be rewritten as

Zα

√
V ar(n̂i) / ni ≤ ε, V ar(n̂i) ≤ (εni/Zα)2, (18)

where Zα is the 1+α
2 percentile of standard Gaussian

distribution, and for instance, Z95% = 1.96. For any accu-
racy constraint specified by confidence interval ε and con-
fidence level α, (18) tells us to reduce V ar(n̂i) smaller
than (εni/Zα)2.

After obtaining the information matrix F by (15), we can
derive the variance of each churn estimator by (17). We denote
the variance of ACE estimator by V arA(n̂i), and the variance
of ECE by V arE(n̂i), and the variance of CCE by V arC(n̂i).
For each churn estimator, we should substitute V ar in (18) by
its own variance V arA, V arE or V arC .

X. THEORETICAL COMPARISON OF CHURN ESTIMATORS

In this section, we will compare the performance of the three
proposed churn estimators. We will show that, when they are
given the same protocol execution time, ACE provides the best
accuracy among them, and when they are configured to attain
the same accuracy, ACE requires the lowest protocol time cost.
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Fig. 3. Comparison of relative standard error, when the sampling probability
f ′/f is fixed to one, and the number of tags in the union nu set to 3000.
(a) Departed tag estimation, with departed tag ratio γ1 = 0.15. (b) Remaining
tag estimation, with remaining tag ratio γ2 = 0.65.

A. Performance Metrics and Protocol Parameters

The number of tags in the union set is fixed to 3000. The
fractions of departed/remaining/new tags in the union set are
configured to γ1 = 15%, γ2 = 65% and γ3 = 20%, by default.
We will adopt other combinations of tag fractions as well.

Performance Metrics. The performance of a churn esti-
mator is evaluated by two metrics: churn estimation accuracy,
and protocol time overhead required for encoding a tag set.
Since the reader transmits only the leading f ′ slots of a frame
(to record the numbers of slot pairs Nx,y in 〈x, y〉 state), we
can use f ′ to measure protocol execution time. For simplicity,
we ignore the difference of empty/busy slots in per-slot time
cost. The larger the tag ratio is, the smaller the relative error
we will receive.

The estimation accuracy of churn number ni, 1 ≤ i ≤ 3, if
performing simulation studies, can be quantified by the relative
estimation error |n̂i − ni|/ni. But for the theoretical analysis
in this section, the accuracy must be measured by the expected
relative error

√
V ar(n̂i)/ni, which is supposed to be smaller

than ε/Zα to satisfy accuracy constraint as shown in (18).
Protocol Parameters. There are two system parameters that

affect the churn estimation accuracy, i.e., the union load factor
ρu = nu/f , and the tag sampling probability p = f ′/f . The
union load factor ρu is the load factor of the bitwise OR of
previous frame and current frame. Once ρu is known, the load
factor of previous frame is (1− γ3) · ρu and the load factor of
current frame is (1− γ1) · ρu, where γ3 is the fraction of new
tags in union tag set, and γ1 is the fraction of departed tags.

B. Varied Protocol Execution Time f ′

In this subsection, we ignore any constraint on the protocol
time cost f ′, and configure f ′ equal to the frame size f , which
implies that the sampling probability p = f ′/f is fixed to one.

Accuracy of Churn Estimators. In Fig. 3, we plot the
relative estimation error

√
V ar(n̂i)/ni against the union load

factor ρu = nu/f (note: if the three estimators are config-
ured with the same ρu, it means they are given the same
execution time f ). Subfigure (a) depicts the estimation error of
departed tags, while subfigure (b) shows the estimation error
of remaining tag. The result of new tag estimation is omitted
here, which is similar to departed tags. It is easy to find that
the estimation error of remaining tags is smaller than that of
departed tags. This is because the ratio of the remaining tags
γ2 = 0.65 is higher than the ratio of departed tags γ1 = 0.15.

Fig. 4. Compare protocol time cost when sampling probability f ′/f = 1.
(a) Departed tag estimation, with departed tag ratio γ1 = 0.15. (b) Remaining
tag estimation, with remaining tag ratio γ2 = 0.65.

The larger the tag ratio is, the smaller the relative error we
will receive. We will evaluate the impact of tag ratios later
in Section XI.

Figure 3(a) shows that, when the union load factor is smaller
than one, ECE is much more accurate than CCE, but when
the union load factor is larger than two, the accuracy of
CCE becomes better. This is because the two estimators are
complementary to each other: ECE uses the empty/busy slots,
while CCE depends on the collision/non-collision slots. Since
ECE and CCE use different information and they perform
better in their respective ranges, we can easily combine them
and build a hybrid estimator: We firstly apply ECE to obtain
the churn number estimations n̂1, n̂2, n̂3, and if the estimated
union load factor (n̂1 + n̂2 + n̂3)/f is smaller than one, we
use the estimated results by ECE directly; otherwise, we apply
CCE instead to obtain another set of churn estimations.

However, this hybrid estimator combining ECE and CCE is
not the best way to exploit the abundant information buried
in radio collision detection. As compared with both ECE and
CCE, our proposed ACE estimator exploits the information of
empty, singleton and collision slots simultaneously, and hence
it greatly improves the estimation accuracy, which can be
appreciated from Fig. 3. More precisely, ACE wisely exploits
all the nine kinds of slot pair states 〈x, y〉, with x and y coming
from empty/singleton/collision, and it is based on a solid math
tool — maximum likelihood estimation.

It may appear that we can totally abandon ECE and CCE,
and only depend on ACE to generate high-quality estimations.
However, this is not the case. ECE and CCE, although less
accurate than ACE, have the advantage of simplicity. ECE
uses closed-form equations based on P−1

0 for generating churn
estimations (see Definition 1), and CCE only invokes the
function P−1

2 for ten or twenty rounds (see Algorithm 1).
By contrast, ACE is based on the maximum likelihood com-
puting, which is implemented by numerical iterative optimiza-
tion. If the optimization algorithm wants fast convergence,
it needs good initial guesses about churn numbers, which
can be generated using the hybrid algorithm that combines
ECE and CCE. How to implement the maximum likeli-
hood calculation of ACE has been described previously in
Section VIII-B.

Compare Protocol Time Cost. Considering that ACE is
more accurate than other two estimators when given the same
number of slots, our next experiment is to investigate how
much protocol execution time can be saved by using ACE, if
all the estimators are to achieve the same accuracy. Since the
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Fig. 5. Comparison of estimation error with fixed time cost f ′ = 2000.
If f reduces to be smaller than 2000, then we set f ′ = f . (a) Departed tag
estimation, with departed tag ratio γ1 = 0.15. (b) Remaining tag estimation,
with remaining tag ratio γ2 = 0.65.

time cost f ′ is configured equal to the frame size f in this
subsection, we can divide f by the union tag set nu to obtain
the average number of slots per tag. We plot f/nu against
the relative estimation error in Fig. 4, which shows that ACE
reduces the number of slots by at least half when it is compared
with ECE. In Fig. 4(a), to reduce the estimation error to 6%,
ECE needs about 2 time slots per tag. In contrast, ACE can use
only 0.9 slots per tag to attain the same accuracy, which saves
the number of slots by at least half. A similar phenomenon
can be observed for remaining tag estimation in Fig. 4(b).

C. Fixed Protocol Execution Time f ′

In this subsection, we acknowledge that there exists a
constraint on the protocol time cost, and configure the number
of transmitted slots f ′ to a predefined value. When f ′ is fixed,
as the frame size f reduces, both the tag sampling probability
p = f ′/f and the union load factor ρu = nu/f will increase.

Impact of Load Factor ρu. We evaluate the impact of union
load factor ρu on the relative standard error in Fig. 5, where
the protocol time cost f ′ is fixed to 2000. The remaining tags
in subfigure (b) exhibit a similar trend with the departed tags
in (a): When f ′ is fixed, the curves of estimation error are
no longer monotonic in Fig. 3, and there is an optimal value
of union load factor that minimizes the estimation error. For
ACE, the optimal value is ρu = 1.6 in (a), and ρu = 2.5 in (b).

We explain this new trend of relative estimation error as
follows. When ρu is greater than the optimal value and
increases, the estimation accuracy degrades rapidly as shown
in Fig. 5, since the ALOHA frames becomes overly dense
with too much slot pairs containing at least two remaining
tags and staying in 〈collision, collision〉 state, which can not
reflect the existence of departed/new tags. When ρu = nu/f
is smaller than the optimal value and continues to reduce, the
estimation accuracy degrades, because it causes the decreas-
ing of sampling probability p = f ′/f , which brings larger
sampling error.

XI. SIMULATION RESULTS

In this section, we use simulations to study the perfor-
mance of the proposed churn estimators. We will compare our
churn estimators with a recent work named ACOS (Adaptive
COntinuous Scanning) scheme [20], which encodes a set of
tags by their k-smallest hash values. We will evaluate how
much improvement of estimation accuracy can be achieved,
if we encode each tag set into a slotted ALOHA frame and
exploit the information buried in collision slots.

Simulation Settings. The settings are largely the same with
those in Section X-A. We just explain how to measure the
protocol time cost for a churn estimator. ECE, CCE and ACE
encode a tag set into an ALOHA frame with f time slots, and
only the leading f ′ slots are actually transmitted. Hence, their
time cost can be quantified by f ′. In contrast, ACOS [20]
encodes each tag set by the k minimum hash values, and
thus its time cost is proportional to k. Later in Section XI-
D, we will explain that the time cost of ACOS is roughly 18k
rounds of communication between the reader and its nearby
tags, which is equivalent to a frame with f ′ = 18k time slots.

A. Impact of Union Load Factor When f ′ = f

In this subsection, we configure the number of observed
slots f ′ equal to the frame size f , and thus the sampling prob-
ability always equals one. The only protocol parameter that
influences the estimation accuracy is the union load factor ρu.
We evaluate its impact, and plot the simulation results in
Fig. 6(a)(b)(c) for departed/remaining/new tags, respectively.

Figures 6(a)(b)(c) show that basic trends for the three
kinds of tags are the same. The major difference is that
the accuracy of estimating remaining tags is better than the
accuracy of departed tags or new tags. This is because the ratio
of remaining tags (i.e., γ2 = 0.65) is higher than the ratios of
the other two kinds of tags (i.e., γ1 = 0.15 and γ3 = 0.2).
The larger the tag ratio is, the smaller the relative error we
will receive.

Figure 6(a) shows that, when the union load factor ρu is
smaller than 1 roughly, ECE estimator is more accurate than
CCE estimator. When ρu exceeds this bound, both ECE and
CCE estimators degrade in accuracy. But the degradation speed
of CCE estimator is more graceful than ECE estimator. This
is consistent with our analysis result in Fig. 3.

Figure 6(a) also shows that ACE provides the best accuracy
among the three estimators. Its advantage is particularly promi-
nent when the load factor is smaller than 2. The reason, as
stated before, is that ACE estimator exploits the observations
of all the nine numbers of slot pairs Nx,y, 0 ≤ x, y ≤ 2. More
information brings about higher estimation accuracy.

Different from plots (a)(b)(c), Fig. 6(d) depicts both the
average value and the deviation of estimation error. It shows
that both the average and deviation of ACE estimation error
reduces, as the union load factor decreases. For example, when
the load factor is as large as 4, the estimation error deviates
between 4.9% and 18%, which shows that the estimation error
is quite unstable. When the load factor is reduced to 0.3, the
estimation error deviates between 0.4% and 1.5%.

B. Impact of Union Load Factor When f ′ Is Fixed

In this subsection, we fix the number of observed slots f ′

to 2000, and investigate the impact of union load factor on
estimation accuracy. We plot the simulation results in Fig. 7,
with subfigure (a) is for departed tags and (b) for new tags.
The figure shows that, when the number of observed slots f ′

is fixed, the estimation error of ECE is no longer a monotonic
function of union load factor ρu, and the best ρu value
for accurate estimation is close to one. In either plot, there
is a crossing point of ECE and CCE estimators, exceeding
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Fig. 6. Impact of union load factor ρu on estimation error, when the sampling probability f ′/f equals one, and assuming γ1 = 15%, γ2 = 65%, γ3 = 20%.
(a) Departed tag estimation. (b) Remaining tag estimation. (c) New tag estimation. (d) New tag estimation (errorbars).

Fig. 7. Impact of union load factor ρu, when the number of observed time
slots f ′ is fixed to 2000, and assuming γ1 = 15%, γ2 = 65%, γ3 = 20%.
(a) Departed tag estimation. (b) New tag estimation.

which CCE performs better than ECE. These simulation results
are consistent with our theoretical analysis result in Fig. 5.
From Fig. 7, it is quite clear that ACE estimator provides
the best accuracy among the three protocols. By comparing
subfigures (a) and (b), the estimation accuracy of new tags is
slightly better than the accuracy of departed tags, since the
ratio of departed tags 20% is larger than the ratio of new
tags 15%.

C. Impact of Tag Sampling Probability p

In this subsection, we keep the union load factor ρu fixed,
and vary the protocol time cost f ′ (or the sampling probability
p = f ′/f ), to evaluate the impact of p on estimation accuracy.

Firstly, we theoretically analyze the impact of the sampling
probability p. By (15), each element in the Fisher information
matrix F is proportional to f ′2. Hence, the square root
of inverse Fisher information

√
[F−1]ii, which determines√

V ar(n̂i) (see Eq. (17)), is proportional to 1/f ′. Therefore,
we can know that the standard relative error

√
V ar(n̂i)/ni is

inversely proportional to f ′, and to the sampling probability p.
Secondly, we plot the simulation results in Fig. 8, where

subfigure (a) is for new tag estimation when ρu = 1 and
subfigure (b) is for new tag estimation when ρu = 2. Figure 8
shows that, for all the estimators, their error decreases linearly
as the growth of sampling probability p = f ′/f . This is
consistent with the analysis result about the impact of p.

Thirdly, Fig. 8(a) also shows that the time cost of ACE
is much lower than the other two estimators. If the same
accuracy (depicted by a horizontal line) is to be attained,
ACE needs the sampling probability to be about 0.5, while
the ECE and CCE estimators need the sampling probability
to be 0.8 and 1, respectively. The same phenomenon can be
witnessed in Fig. 8(b), where the union load factor increases
two and CCE becomes more accurate than ECE. To achieve

Fig. 8. Impact of sampling ratio f ′/f with fixed union load factor ρu.
(a) New tag estimation with ρu = 1. (b) New tag estimation with ρu = 2.

the estimation accuracy depicted as a horizontal line, ACE
only needs the sampling probability to be 0.5, while ECE
and CCE requires the sampling probability to be 1 and 0.67,
respectively.

In summary, the number of slots needed by ECE is roughly
two times larger than ACE to attain the same accuracy, which
is consistent with our analysis result in Figures 4.

D. Accuracy Comparison of ECE, ACE and ACOS
This subsection compares the estimation accuracy of ECE

and ACE with a recently proposed protocol named ACOS [20],
when all of them are given the same protocol execution time.

We explain the protocol time cost of ACOS as follows.
To encode a tag set, ACOS broadcasts a command asking
each tag to generate a 24-bit hash value,4 and then attempts
to collect the k smallest ones. The entire hash space can be
organized as a sorted binary tree, whose depth is 24. In such a
tree structure, identifying the smallest hash value is equivalent
to finding a path starting from the tree root to the leftmost
leaf node. The time cost of reaching the leftmost leaf node is
24 · (0.5 + 2 · 0.5) = 36 rounds of communication, assuming
there is always half of chance for the leaf to hide on the left
branch (need one round of communication) and another half
of chance on the right (need two rounds of communication).
Since the collection of the k smallest hash values is performed
one by one, the overall time cost can be approximated by 36k.

ACOS also proposes an optimization to reduce the time cost,
utilizing the prior knowledge of union set size, e.g., nu falls in
the range (2048, 4096]. Then, by dividing the hash space with
224 possible values equally into 2�log2(nu)	 = 212 intervals,
there is a good chance for each interval to contain one tag’s
hash value, due to the uniform distribution of hash values of

4ACOS [20] assumes that any two tags in the union set have negligibly
small probability to experience hash collision. Since the union set has been
configured to have 3000 tags, according to the birthday paradox, each hash
value must be at least �log2(3000×3000)� = 24 bits long to avoid collision.
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Fig. 9. Accuracy comparison of ECE, ACE and ACOS, when given the same
protocol execution time, and assuming γ1 = 30%, γ2 = 55%, γ3 = 15%.
(a) Compare ACE and ACOS on the estimation accuracy of departed tags.
(b) Compare ECE and ACOS on the estimation accuracy of departed tags.

all tags. Each interval can construct an aforementioned binary
tree, whose depth reduces to 24 − 12 = 12. To retrieve the
k minimum hash values, ACOS only applies the tree-based
binary search to the smallest k intervals, and the expected
time cost decreases to k · 12 · (0.5 + 2 · 0.5) = 18k time slots.

In Fig. 9, we plot the estimation error against the number
of time slots per union tag, i.e., 18k/nu for ACOS, or
f ′/nu for ECE and ACE. The subfigure (a) shows that ACE
is much more accurate than ACOS, no matter whether the
union load factor ρu is configured to 0.5, 1 or 2 for ACE.
This is because we encode each tag set efficiently into a
slotted ALOHA frame, rather than by k smallest hash values.
Similarly, the subfigure (b) shows that ECE is better than
ACOS. By comparing (a) and (b), it is clear that ACE is more
accurate than ECE, since ACE exploits the information buried
in collision slots.

E. Discrete Event Simulations
For a group of tags, we simulate a series of tag

arrival/departure events. We begin with 3000 tags and produce
events of new tag arrivals and existing tag departures with a
Poisson process. We collect the aggregate information of the
tag set after each time interval. The rate of tag arrival/departure
events is configured to 300 per interval. Hence, after the
elapse of each time interval, 10% of existing tags will depart
and a similar number of new tags will arrive. We estimate the
numbers of new/remaining/departed tags from the beginning
to the end of the first/second/third/... time interval. Namely,
the measurement period is one/two/three/... time intervals
long. Note that the tag ratios (as defined in Section III-B)
will change after more time intervals elapse. As shown in
Fig. 10(a), after one time interval, the departed/new tag
ratios are 10%, but after 12 time intervals, the departed/new
tag ratios increase to 42.5%, while the ratio of remaining
tags drops from 80% to 15%. Because the departed/new tag
ratios are always equal, the size of the tag population in
the system stays the same as its initial value. However, the
number of all tags involved during the process, including the
new/remaining/departed tags, increases gradually from 3000
to 4275 (i.e., 3000 current tags added by 1275 = 3000×42.5%
departed tags) during the 12 time intervals. The length of the
ALOHA frame used in the simulation is set to 20000.

In Fig. 10(b), we present the churn estimation errors with
respect to the measurement period in number of time inter-
vals. Let’s first focus on the performance of ACE. The plot
shows that the estimation error of departed/new tags increases

Fig. 10. Estimation accuracy against the number of time intervals elapsed.
(a) Change of tag ratio. (b) Change of estimation error.

from 2% to 15% as we increase the measurement period from
one time interval to 12 time intervals. In the meantime, the
estimation error of remaining tags increases significantly from
1% to 36%. This is because the remaining tag ratio is reduced
from 80% to 15% according to subfigure (a). The smaller the
tag ratio is, the greater the difficulty we will encounter in pro-
viding high estimation accuracy. These simulation results show
that estimation errors increase with the measurement period,
which in turn means that the measurement period should be
limited in practice if there exist specific accuracy requirements.

In Fig. 10(b), we also compare the churn estimation accu-
racies of ECE and ACE. The plot shows that the estimation
error of ACE is much smaller than that of ECE, especially for
departed/new tags, since ACE can take full advantage of tag
collision information.

XII. CONCLUSION

This paper studies a problem called RFID churn estimation,
which is to count the numbers of departed/remaining/new tags
between two arbitrary time points, without the time-consuming
collection of tag IDs. We have proposed three solutions for this
problem: ECE estimator that observes the slot state transitions
between empty and busy, CCE estimator that observes the slot
state transitions between collision and non-collision, and ACE
estimator that exploits the information buried in all possible
state transitions between empty, singleton and collision. For
the proposed churn estimators, we have investigated their
bias and variance, by both simulation studies and theoretical
analysis based on Cramér-Rao lower bound. We show that
ACE can achieve the best accuracy among all estimators,
and it can save protocol execution time by 35% as compared
with ECE if they are to attain the same accuracy. Meanwhile,
we discover that, although ECE and CCE are less accurate
than ACE, they own the advantage of simplicity and can be
combined to generate the good-quality initial guesses of churn
numbers, which are required by the iterative optimization
procedure of ACE.
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