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Privacy-Preserving Transportation
Traffic Measurement in Intelligent
Cyber-physical Road Systems
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Shigang Chen, Senior Member, IEEE, and Yafeng Yin

Abstract—Traffic measurement is a critical function in trans-
portation engineering. We consider privacy-preserving point-to-
point traffic measurement in this paper. We measure the number
of vehicles traveling from one geographical location to another by
taking advantage of capabilities provided by the intelligent cyber-
physical road systems (CPRSs) that enable automatic collection of
traffic data. The challenge is to allow the collection of aggregate
point-to-point data while preserving the privacy of individual ve-
hicles. We propose a novel measurement scheme, which utilizes bit
arrays to collect “masked” data and adopts maximum-likelihood
estimation (MLE) to obtain the measurement result. Both math-
ematical proof and simulation demonstrate the practicality and
scalability of our scheme.

Index Terms—Cyber-physical systems, maximume-likelihood es-
timation (MLE), privacy, transportation traffic measurement.

I. INTRODUCTION

N EW technologies in vehicular communications and net-
working [1]-[6] have greatly advanced the design of
intelligent cyber-physical road systems (CPRSs). To fully re-
alize the potential of such systems and improve the capacity
of existing infrastructures, traffic measurement is a critical
function in transportation engineering [7]. There are two cat-
egories of traffic statistics, i.e., “point” statistics and “point-to-
point” statistics. Point statistics describe the number of vehicles
traversing a specific point (location). Various prediction models
have been proposed to estimate them [8]-[11]. Point-to-point
statistics describe the number of vehicles traveling between
two points (locations). They are essential inputs to a variety of
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studies, including estimation of traffic link flow distribution as
part of investment plan and calculation of road exposure rates
as part of safety analysis, etc. Although some point-to-point
statistics may be inferred from point data [12], the practicality
is limited by either high computation overhead or degraded
measurement accuracy. As for direct measurement of “point-
to-point” traffic, little work has been done particularly when
drivers’ location privacy is concerned.

This paper considers the important problem of privacy-
preserving point-to-point transportation traffic measurement.
The set of vehicles traveling from one geographical location
to another is modeled as a traffic flow, and the flow size is the
number of vehicles in the set. To enable automatic collection of
traffic flow data, we take advantage of intelligent CPRSs, which
integrate the latest technologies in wireless communications
and on-board computer processing into transportation systems
[13], [14]. In particular, IntelliDrive [15] from the U.S. De-
partment of Transportation [16] envisions a nationwide system
where vehicles communicate with roadside equipments (RSEs)
in real time via dedicated short-range communications (DSRC).
In CPRSs, vehicles may report their IDs to RSEs when they
pass by, and this information can be used by the authority to
measure traffic flows. However, if a vehicle keeps transmitting
its unique identifier to RSEs, the information will enable others
to track its entire moving history. As increasingly more people
are concerned about their location privacy, the degree of privacy
that a traffic measurement scheme preserves will directly affect
its applicability.

To address the concerns of privacy, there are many issues that
we need to consider. First of all, we need a criterion to tell what
is good privacy and what is not. In this paper, we capture the
essence of privacy in traffic flow measurement and quantify
it as a probability that a potential tracker cannot identify any
trace of any vehicle. Second, given this criterion, how can we
preserve the optimal privacy? Apparently, the better the privacy,
the more applicable the measurement scheme. Furthermore,
to protect the privacy of vehicles, only randomized and de-
identified information is collected. How can we achieve sound
measurement accuracy based on information that looks totally
random?

In this paper, we propose a novel scheme for privacy-
preserving traffic flow measurement. It utilizes bit arrays to
encode “masked” data sent from vehicles to RSEs and adopts
maximum-likelihood estimation (MLE) to obtain measurement
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Fig. 1. Intelligent CPRS model.

results. The measurement accuracy and preserved privacy are
analyzed through both mathematical proof and simulations,
which demonstrate the applicability of our scheme.

The remainder of this paper is organized as follows. Section II
gives the preliminaries. Section III presents our scheme and
its analysis. Section IV shows simulation results. Section V
summarizes related work. Section VI draws the conclusion.

II. PRELIMINARIES
A. System Model

We consider an intelligent CPRS model, as shown in Fig. 1,
which involves three types of entities, namely, vehicles, RSEs,
and a central server. Each vehicle has a unique ID, i.e., its
vehicle identification number. Each RSE also has its unique
ID. Both vehicles and RSEs are equipped with computing and
communication capabilities, e.g., on-board computer chips and
communication modules. Vehicles communicate with RSEs in
real time via DSRC [16]. RSEs are connected to the central
server through wired or wireless means. They collect infor-
mation from vehicles and transfer it to the central server on a
periodical basis.

B. Problem Statement

We define a traffic flow between one RSE-equipped location
and another RSE-equipped location as the set of vehicles trav-
eling between the two locations during a measurement period.
The size of the traffic flow is the number of vehicles in this
set. Our problem is to measure the sizes of traffic flows in
a road system between all pairs of locations where RSEs are
installed while protecting vehicles’ privacy. To achieve the
privacy-preserving end, we need a solution in which a vehicle
never transmits any fixed identifier. Ideally, the information
transmitted by the vehicles to the RSEs looks totally random,
out of which neither the identity nor the trajectory of any
vehicle can be pried with high probability.

We also assume that a special medium access control (MAC)
protocol is applied to support privacy preservation such that the
MAC address of a vehicle is not fixed. Vehicles may pick a
MAC address randomly from a large space for one-time use
when needed.
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C. Threat Model

We assume a semi-honest model for the RSEs. On the one
hand, all RSEs are from trustworthy authorities, which can be
enforced by authentication based on PKI. The vehicles can use
the public key certificate broadcasted by RSEs, which they ob-
tained from trusted third parties, to verify the RSEs. On the other
hand, the authorities may exploit the information collected by
RSE:s to track individual vehicles when they need to do so. For
instance, if a vehicle transmits any fixed identifier upon each
query, that identifier can be used for tracking purposes.

Note that there are other ways to track a vehicle, for example,
tailgating the vehicle or setting cameras near RSEs to take
photos and using image processing to recognize it. These
methods are beyond the scope of this paper. In this paper, we
focus on preventing automatical tracking caused by the traffic
flow measurement scheme itself.

D. Performance Metrics

In this paper, we consider three performance metrics to eval-
uate a traffic flow measurement scheme, namely, measurement
accuracy, computation overhead, and preserved privacy. They
are defined in the following.

1) Measurement Accuracy: Let n. be the real size of a traffic
flow between a pair of locations and 7. be the corresponding
measurement result. We specify the measurement accuracy
through a parameter (5 such that the probability for n. to fall
into the interval [7i. - (1 — 8), e - (1 + B)] must be at least
where « is a predetermined parameter in the range of [0, 1]. For
a given probability «, a smaller value of 8 means better mea-
surement results. For example, when oo = 95%, a solution with
8 = 0.05 is more accurate than a solution with 8 = 0.1 because
the former ensures that the measured traffic flow size has a prob-
ability of 95% to be within £5% deviation from the real value,
whereas the latter only ensures the measured result to be within
+10% deviation from the real value under the same probability.

2) Computation Overhead: We consider the computation
overhead for vehicles, RSEs, and the central server. For vehi-
cles, we measure the computation overhead for each vehicle per
RSE en route. For RSEs, we measure the computation overhead
for each RSE per passing vehicle. For the central server, we
measure the computation overhead for it to measure the traffic
flow size for a pair of RSEs.

3) Preserved Privacy: We capture the essence of privacy
preservation in point-to-point transportation traffic measure-
ment, which is allowing the tracker only a limited chance
of identifying partially or fully any trajectory of any vehicle.
Accordingly, we quantify the privacy of a scheme through a
parameter p, which satisfies the following requirement: The
probability for any “trace” of any vehicle to not be identified
must be at least p, where a trace of a vehicle is a pair of RSEs
it has passed by. A larger value of p means better privacy.
Intuitively, a scheme with p = 0.9 is better than a scheme
with p = 0.5 in terms of privacy because the latter gives the
tracker a better chance to link traces of a vehicle to obtain its
trajectory since it allows the traces to be identified with a higher
probability, i.e., 1 — p.
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III. PRIVACY-PRESERVING POINT-TO-POINT
TRANSPORTATION TRAFFIC MEASUREMENT

Here, we present our novel scheme for privacy-preserving
point-to-point transportation traffic measurement. There are
two phases for each measurement period, namely, online coding
and offline decoding. Online coding is an interaction between
vehicles and RSEs to securely collect information for traffic
flow measurement. Later in the offline decoding phase, the
central server will use this information to compute traffic flow
sizes. We first show the two measurement phases, and then
evaluate our scheme with respect to the three performance
metrics described in Section II-D.

A. Online Coding Phase

As presented in our previous work [17], in our scheme, each
RSE R, maintains a counter n,, which keeps track of the total
number of vehicles passing by during the current measurement
period. R, also maintains a bit array B, with a fixed length
m to mask vehicle identities. At the beginning of each mea-
surement period, n, and all the bits in B, are set to zeros.
In addition, each vehicle v has a logical bit array LB,,, which
consists of s (1 < s < m) bits randomly selected from B,. The
indices of these bits in B, are H(v ® K, ® X[0]),...,H(v®
K, ® X[s—1]), where @ is the bitwise XOR, H(...) is a
hash function whose range is [0,m), X is an integer array of
randomly chosen constants whose purpose is to arbitrarily alter
the hash result, and K, is the private key of v to protect the
privacy of its logical bit array.

The online coding phase is quite simple. RSEs broadcast
queries in preset intervals (e.g., once a second), ensuring that
each passing vehicle receives at least one query and meanwhile
giving enough time for the vehicle to reply. Collisions can be
resolved through well-established carrier sense multiple-access
or time-division multiple-access protocols, which are not the
focus of this paper. Every query that an RSE sends out includes
the RSE’s registered application provider identifier (RID) and
its public key certificate. Suppose that a vehicle, whose ID is
v, receives a query from an RSE, whose ID is R,. The vehicle
first verifies the certificate and then uses the RSE’s public key
to authenticate the RSE. After verifying that R, is from a trust-
worthy authority, the vehicle v randomly selects a bit from its
logical bit array L B,, by computing an index b = H(v ® K, ®
X[H(R;) mod s]). The vehicle v then sends the resulting
index b to the RSE R,.. Upon receiving the index b, R, will first
increase its counter 7, by 1 and then set the bth bit in B, to 1

B, [Hw® K, ®X[H(R,) mod s))] =1. (1)

Note that the same vehicle may transmit different bit indices
at two RSEs. The probability for this to happen is 1 — (1/s),
which is larger when the size of LB, is larger. Different vehi-
cles may send the same index because their logical bit arrays
share bits from B,. As any vehicle does not have to transmit
any fixed number, we improve privacy protection. This is true
even when there is a single vehicle passing through two RSEs.
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B. Offline Decoding Phase

At the end of each measurement period, all RSEs will send
their counters and bit arrays to the central server, which then
performs the offline measurement. We employ the MLE [18] to
measure the sizes of traffic flows based on the counters and bit
arrays.

Suppose that the set of vehicles that pass RSE R, (R,)
is denoted as S (.S,) with cardinality |S,| = n,(|Sy| = ny).
Clearly, the set of vehicles that pass both RSEs R, and R,
is Sz N Sy. Denote its cardinality as n., which is the value
that we want to measure. Furthermore, denote by S the subset
of vehicles in S; N S, that happen to set the same bit in B,
and B,, where B, and B, are the bit arrays at I?, and R,
respectively. Let n, be the cardinality of S, i.e., n, =|S|.
Clearly, S € S, NSy and 0 < n, < n.. For any vehicle, it
has the same probability 1/s to set any bit in its s-bit logical
bit array. As a result, the probability for an arbitrary vehicle
v from S, NSy to select the same bit in both B, and B,
is s x (1/s) x (1/s) = 1/s. Therefore, the number of such
vehicles n, is binomially distributed according to B(n., 1/s).
Accordingly, the probability for n, = z(0 < z < n..) is

=) (Y

Given the counters n, and n, and bit arrays B, and B,, we
measure n. as follows: First, take a bitwise AND of B, and B,
and denote the resulting bit array as B.. Namely

B.[i] = Bgli] A Bylil, Vie[0o,m—1]. 3)

We can easily find out the number of 0’s in B., denoted
by U.. In the following, we will analyze the probability for
an arbitrary bit in B, to remain “0” after the online coding
phase and use it to establish the likelihood function for us to
observe U, “0” bits in B.. Maximizing the likelihood function
with respect to n, will give the MLE estimate of n..

Clearly, the event for an arbitrary bit b in B, to remain
“0” after online coding is equivalent to the combination of the
following two events.

1) Event I1: None of the vehicles in S has chosen b at R,
and R,. If a vehicle v € S chooses b, then bit b in B,
and B, are both set to “1” by v (hence, bit b in B, is also
“17). Since each vehicle has probability 1/m to set bit b
to “17, the probability for the vehicle not to choose bit b
is 1 — (1/m). There are n,, vehicles in S. Therefore, the
probability for the first event to happen is the following:

1\"
ql_<1‘a> . @)

2) Event 2: Either none of the vehicles in S, — S has chosen
b at R, or none of the vehicles in S, — S has chosen b
at R,. Otherwise, bit b in both B, and B, will be “1”
(hence, bit b in B, is “1”). The probability for bit b not
chosen by any vehicle in S, — S is (1 — (1/m))"=""e,
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and the probability for bit b not chosen by any vehicle in
Sy —Sis (1 — (1/m))™ ™. Therefore, the probability
for the second event to happen is

1\ e 1\ "y e
p=1-(1-(1-— x[1-(1-=
m m
1\ e 1\ "y e 1 Ng+ny—2n,
—<1——) +<1——> —<1——> ,
m m m

®)

Combining this analysis, the conditional probability for bit b
in B, to remain “0” given n, = 2z is g1 X ¢o, i.€.,

q(nelno = 2) =q1 X q2
1 Ny 1 Ny 1 Ng+ny—z
(T
m m m
(6)

Given g(n.|n, = z) and the distribution of n,, the overall
probability ¢(n.) for an arbitrary bit b in B,. to remain “0” is

Ne

q(nc) = ;q(nclno =2) x P(no = )
() (-2
) )2 e

(N

Ne

= Z qg(ne|n, = 2z) x
z=0

where C is a value determined by s and m only

1 1 1
C=(1-- - X .
( s>+s -1

m

®)

Knowing that each bit in B, has a probability g(n..) to remain
“0”, we can establish the likelihood function for us to observe
U. “0” bits in B, (hence, m — U, “1” bits in B,.)

L = (q(ne))”s x (1 —q(n)™ .

The MLE estimate of n. is the optimal value of n. that
maximizes the likelihood function in (9)

©))

1. = argmax{L}. (10)
Ne

To find 7., we take a logarithm on both sides of (9)

InL=U,xIlng(n.)+(m—-U:) xIn(l —q(ne)). (A1)
Take the first-order derivative of (11), we have
dln L UC m — Uc ’
= — X ¢ (ne (12)
dn, (q(nc) 1 - q(ﬂo)) 7ne)
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where ¢'(n.) can be computed from (7) as follows:

/ dg(ne
1 Ny +Ny
= — (1 — —) x C™ x InC. (13)
m

To compute 12, we set the right side of (12) to 0
< Uso m-U
q(ne) 1- Q(nc)

Observe from (13) that ¢/(n.) cannot be 0 when m > 1 and
s > 1. Therefore, we have

) x ¢ (n.) = 0. (14)

U, _ m- U,
q(ne) 1 —q(nc)

=0. (15)

Substituting (7) into (15), we obtain the MLE estimator 7, of
the desired traffic flow size n. as follows:

grsnl
e = —(n —|—n)1n(1
S TS A

s 1-1L
m

(2

C. Measurement Accuracy

In the subsequent sections, we discuss the performance of our
scheme with respect to the three performance metrics described
in Section II-D. We start with analyzing the measurement accu-
racy. The standard theory of MLE [19] says that when m, n,
and n,, are large enough, the MLE estimator 77, approximately
follows the normal distribution

ne ~ Norm (nc, (17

)
Z(fe)
where Z(7.) is the Fisher information on £, which is defined as
d*In ﬁ}

2
dn?

I(h) = —E [ (18)

We compute the second-order derivative of In £ from (12)

d’In L (Ve q (n.)
dn? g*(nc)

_(m—UC)-q/(nc) d(n
)

+< U = m-U
q(ne)  1—q(ne)

where C is given in (8), and ¢'(n.) is given in (13).

For an arbitrary bit b in B., it has the probability ¢(n.) to
remain “0”. U, is the number of “0”s in B,.. Therefore, U.
follows a binomial distribution B(m, g(n.)). Accordingly

) ¢ (ne)-InC  (19)

E(U:) =m- q(ne). (20)



ZHOU et al.: PRIVACY-PRESERVING TRANSPORTATION TRAFFIC MEASUREMENT IN INTELLIGENT CPRSs

Substituting (19) and (20) to compute (18), we have

Ly m-q'(n:) m-q(ne) '(n,
IW‘( 2n.) +1—q<n0>>xq< °)

__mdme)” 1)

a(ne) (1 = g(ne))
According to (17), the variance of 7. is

Var(n.) = I(;LC) _ q(ne) (1 —

a(n.)
gy

Therefore, the confidence interval of our measurement is

ﬁciZaX\/M

m (¢ (nc))”

(23)

where « is the confidence level, and Z,, is the o percentile for
the standard Gaussian distribution [20]. For example, when o« =
95%, Z, = 1.6.

D. Preserved Privacy

Next, we evaluate the preserved privacy of our measurement
scheme. Note that, in our scheme, the only information that a
vehicle v ever transmits to an RSE en route is an index of a bit b
randomly selected from its s-bit logical bit array L B,,. From the
tracker’s point of view, it can only identify the trace of a vehicle
passing by two RSEs R, and R, through the observation of the
bits that are set to “1” in both B, and B,; these bits will be
“1” in B,. Therefore, the preserved privacy of our scheme is
actually a conditional probability, which tells to what degree an
observed “1” in B, does not represent a common vehicle pass-
ing by both Iz, and I?,,. We derive this conditional probability
in the following.

First, consider the probability for the tracker to observe an
arbitrary bit b to be set to “1” in both its B, and B, (event A),
i.e., P(A). Obviously, the probability P(A) is equal to 1 minus
q(n.) given our analysis in Section III-B

1 Na 1 Ty 1 Mg +Ny
PA)=1-(1-—) —(1-=) +(1-= X O
m m m

(24)

where C'is given in (8).

Second, consider the conditional probability for such a bit
b to not represent a common vehicle passing both R, and R,
(event E), i.e., P(E|A). This is the privacy p that we want to
derive. Note that event F happens if and only if bit b in B,
is set only by vehicles passing only RSE R, (i.e., in set S; —
Sy) and bit b in B, is set only by vehicles passing only RSE
R, (i.e., in set Sy — S;). Denote these two events as F, and
E,, respectively. There are n, (n,) vehicles passing R, (Ry),
and n, vehicles among them pass both R, and R,. Since each
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Fig. 2. ny =ny =n =150000, and n. = 5000. (Left plot) Probability
P(A) when m varies from 0.1n to 20n, controlled by different s =
2, 5, and 10. (Right plot) Zoom-in of the left plot when m varies from 5n
to 20n.

vehicle has a probability 1/m to set bit b to “1,” the probability
for E, (E,) to happen is

(l (1- %)) (-5 e
P(E,) = <1 — (1 — %)nn> X (1 — %)n (26)

Combining this analysis, we have the formula for the pre-
served privacy of our scheme, i.e.,

P(E,) x P(E,)
P(A)

(=) = (=)< (= 5)™

- P(A)

= P(E|A) =

—(-3)")

27)

where P(A) is given in (24).

Observe that there are two parameters, i.e., s and m, that
determine the value of P(E|A). Among them, s only appears
in the denominator P(A), and it influences P(E|A) through
varying the value of P(A). m influences both the denominator
and the numerator. In the following, we first examine the
influence of s on P(A) (hence, on P(E|A)) and then analyze
how m affects the value of P(E|A).

1) Influence of s on P(A): To examine how s affects P(A),
we take partial derivative of (24) with respect to s

OP(A) 1\ -
Frenke <1 m) xi( .y C (28)

where C'is given in (8). Clearly, (0P(A)/ds) < 0. Therefore,
with the increment of s, the value of P(A) decreases, and in
turn, the value of P(E|A) increases. In other words, privacy
will be better with a larger value of s. The numerical results
are shown in Fig. 2 where n, = n, = n = 50000; n., = 5000;
and s =2, 5, and 10, corresponding to three curves in each
plot. Clearly, as s increases, the probability P(A) decreases.
Another observation from the numerical results is that, when
s > 5, the difference in probability P(A) under different s
becomes quite small. For instance, with m € [5n, 20n], the dif-
ference in P(A) when s = 5 and s = 10 is smaller than 0.0005
(see the two lower curves in the right plot in Fig. 2). When
n > 10, this difference becomes negligible. Therefore, when
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we analyze the effect of m on P(F|A) in the following section
and later when we set up the parameters for our simulations,
we will only consider the cases of s =2, 5, and 10, with an
established understanding that larger values of s will only make
negligible difference.

2) Influence of m on P(E|A): To examine the effect of m
on P(E|A), we take the partial derivative of (27) with respect
to m and obtain the following:

oP(E|A) 258« p(4) - 254 « p(B) 2
om P(A)? 29)
where P(E) = P(E,) x P(E,). P(E;) and P(E,) are given

in (25) and (26), respectively. Therefore, the partial derivative
of P(E) with respect to m is

1 Mg +Ny 1 2n.
0 (nx—l—ny)(l—a) +2n, (I_E)

1 Net+ng 1 Netny
— (ne +ny) (1—E> —(ne+ny) (1—E) ] .
(30)

OP(E) 1
om

m(m

In addition, from (24), we can compute the derivative of P(A)
with respect to m

+(1 _%)”w’“%—?.cnc. ((nx—i—ny) (1 —%> —Sn—c)] .

€1V

We have proved that (OP(A)/Om) < 0, which means that
P(A) will decrease with the increment of m. In addition,
(OP(E)/0m) will be also negative when m exceeds a certain
value, which means that P(E) will also decrease with the
increment of m afterward. Intuitively, increasing m gives each
vehicle a smaller chance 1/m to set an arbitrary bit b. Hence,
P(FE) and P(A) also drop. The effect that m has on P(E|A)
is twofold: On one hand, the increment of m decreases the
denominator P(A), which improves the privacy; on the other
hand, the increment of m decreases the numerator P(E), which
reduces the privacy. With the combination of the two effects, the
partial derivative of P(E|A) with respect to m can be positive,
negative, or 0, according to (29). Therefore, given a value of s,
we can choose an optimal m to achieve the best privacy. The
optimal m is obtained by setting the right side of (29) to 0.

Fig. 3 shows the numerical results for the probability P(FE)
and the preserved privacy p = P(E|A) under different m when
Ng = ny = n = 50000; n. =5000; and s =2, 5, and 10.
From the left plot, one can see that the three different values
of s yield the same curve of P(E) (or the three curves of
P(E) corresponding to s = 2, 5, and 10 overlap completely).
In other words, the value of s is irrelevant to the probability
P(E), which is consistent with our previous analysis. The
value of m, on the other hand, has a clear impact on the
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Fig. 3. nz = ny =n = 50000, and n. = 5000. (Left) Probability P(E)
when m varies from 0.1n to 20n under different s =2, 5, or 10. (Right)
Probability P(E|A) when m varies from 0.1n to 20n under s = 2, 5, or 10.

value of P(FE). Specifically, there exists an optimal point where
m* produces a maximum value of P(E). When m < m*, the
value of P(E) dramatically increases with the increment of m.
When m > m*, the value of P(F) decreases with a slower and
slower pace. In the figure, m* = 0.39n results in an optimal
value of P(F) = 0.4856. Recall from Fig. 2 that the value of
P(A) always decreases with the increment of m. Combining
these results, we learn that, as m exceeds a certain value m*,
probabilities P(E) and P(A) will both drop if we further
increase m, which is also consistent to our theoretic analysis.
Finally, the right plot in Fig. 3 gives the combined effect of
s and m on P(E|A), the privacy of our scheme. The smallest
value of s = 2 yields the bottom curve that represents the least
privacy, whereas the largest value of s = 10 yields the top curve
that represents the best privacy, which agrees with our previous
analysis that a larger value of s brings better privacy. Clearly,
in each curve, P(FE|A) first quickly increases and then slowly
decreases with respect to m. There is an optimal value of m
that gives the optimal privacy. For instance, m = 3.6n gives
the optimal privacy 0.7661 when s = 10. Another observation
is that, when s is large (5 or 10), there always exists a smooth
interval of m near its optimal point that can achieve near-
optimal privacy. For example, when s = 10, the values of m
in the interval [3.6n, 11.2n] achieve privacy that is within 5%
drop of the optimal privacy 0.7661. In practice, this smooth
interval allows us to adjust the value of m to achieve better
measurement results while preserving near-optimal privacy.

E. Computation Overhead

We conclude the discussion about the performance of our
measurement scheme by a quick remark on the computation
overhead incurred to each group of entities involved in the
system. In our scheme, when a vehicle v passes an RSE R,,
the vehicle v only needs to compute two hashes to obtain an
index of a random bit in its logical bit array LB,,, and the RSE
R, only needs to set one bit in its bit array B,, as described
in Section III-A. Therefore, the computation overhead for each
vehicle per RSE and that for each RSE per vehicle are both
O(1). As for the central server, to compute the traffic flow size
between a pair of locations, it only needs to perform a bitwise
AND operation over two m-bit arrays, count the number of
“0”s in the resulting bit array, and use formula (16) to compute
the MLE estimator. Therefore, the computation overhead for
the central server is O(m).
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TABLE 1
VALUES FOR m TO ACHIEVE OPTIMAL p UNDER DIFFERENT s
S 2 5 10
optimal m 1.7n 2.6n 3.6n
optimal p 0.7258 0.7513 0.7661

IV. SIMULATION

Here, we evaluate the performance of our scheme through
simulations. The simulation platform is a PC featured with an
Intel Core i7-3770 CPU and 8-GB RAM. The simulations are
performed under five system parameters, i.e., 1z, 1y, N, S, and
m. For a pair of RSEs, R, and Ry, n, (n,) is the number of
vehicles passing by R, (R,). There are n. vehicles passing
both I,; and R,, which means that the real traffic flow size is
nc. s is the number of bits in each vehicle’s logical bit array, and
m is the number of bits in each RSE’s bit array. Our simulations
consist of two parts. For each part, we first describe the settings
of the system parameters and then report the simulation results
and the analysis.

A. Measured Traffic Flow 1.

We first measure traffic flows and observe how different pa-
rameters influence the gap between the measured flow sizes and
the real sizes when the optimal privacy is preserved. We choose
the five parameters as follows: n; =n, =n=>50 000, 100000,
or 500000, and n. varies from 1%n to 50%n, with a step size
of 0.1%n; s =2, 5, and 10, and m is chosen to achieve the
optimal privacy, as determined in Section III-D. Table I lists the
values of the bit array size m to achieve the optimal privacy p
under different values of s.

Figs. 4-6 show our simulation results when n = 50000,
100000, and 500000, respectively. For each figure, there are
three plots, corresponding to the results of three sets of sim-
ulations controlled by parameter s, where s =2, 5, and 10.
Each plot shows the measured traffic flow sizes 71, (y-axis) with
respect to different real traffic flow sizes n. (x-axis) under a
given setting of n, s, and m, where m is chosen as described
in Table I so that the optimal privacy is achieved. We also draw
the equality line y = z in each plot for reference. Clearly, the
closer a point is to the equality line, the more accurate the
measurement result.

From the three figures, one can see that our scheme is quite
accurate because most of the points in all plots of the three
figures lie closely to the equality line. In particular, given other
parameters, our scheme produces almost perfect results when
s = 2 (see the first plot in Figs. 4-6). When s becomes larger,
there are slightly more points deviating from the equality line
(see the third plot in Figs. 4-6), which indicates that larger
values of s yield less accurate measurement results.

Recall that a larger value of s brings better privacy (see
Table I). For example, the optimal privacy is 0.7661 when
s = 10, better than the optimal privacy of 0.7258 when s = 2.
This implies a tradeoff between the privacy and the accuracy.
From Section III-D, we know when s is large, there always
exists a smooth interval of m near its extreme point that can
achieve comparable privacy as the optimal. For example, when
Ng = Ny = n = 50000, n, = 5000, and s = 10, the values of
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m within the interval [3.6n, 11.2n] achieve privacy that is
within just 5% drop of the optimal privacy 0.7661. In reality,
one can choose a relatively large value for s (e.g., 5 or 10)
and adjust the value of m to achieve better measurement results
while still preserving comparable privacy as the optimal.

Finally, the measurement results are more accurate with
larger values of n. There are fewer points deviating from the
equality line 77, = n. in the three plots in Fig. 6 than those in
Fig. 4. This is also a natural phenomenon given that the result
is measured through a statistical MLE estimator.

B. Measurement Bias and Relative Standard Error

Next, we study the measurement accuracy of the MLE esti-
mator 77, in terms of bias and relative standard error. Similar
to the previous part, there are three sets of simulations, cor-
responding to n, = ny = n = 50000, 100000, and 500 000.
For each set, there are three simulations controlled by different
values of s, where s = 2, 5, and 10. m is still chosen to achieve
the optimal privacy p under each fixed s, as listed in Table I. We
conduct 5000 independent runs for each simulation to observe
statistical effects. For each run, we randomly choose a value
for n. from the range of [0, 0.5n] and apply our scheme to
obtain the corresponding value for 7i.. Now, we try to figure out
the measurement bias E(ri, — n.) and relative standard error
V' Var(n.)/n. of our MLE estimator from the result of the
5000 independent runs of each simulation.

To better illustrate the simulation results, we divide the
range of n., [0, 0.5n], into 50 measurement scales, each of
width 1%n; group the values of n. and corresponding 7i,
from different runs into these 50 scales; and then numerically
evaluate the measurement bias and relative standard error of
1. with respect to each scale of n.. The simulation results
are presented in Figs. 7-12, where the first three figures (see
Figs. 7-9) show the measurement bias and the remaining three
figures (see Figs. 10—12) show the relative standard error.

Figs. 7-9 show the measurement bias of 7. with respect
to each scale of n. under different values of n, where n =
50000, 100000, and 500000. Each figure consists of three
plots, each corresponding to a fixed value of s, where s =
2, 5, and 10. For each plot, the y-axis represents the mea-
surement bias E(ri, — n.), and the x-axis represents the mean
value of n. in each scale. The y-coordinate is within 2.5%
of n, i.e., ranging from —2.5%n to 2.5%n. Note that the
optimal privacy is always guaranteed for all simulations by
setting m in accordance with s. In the figures, one can see that
the measurement bias fluctuates around the zero-bias line for
different scales of n.. In addition, as observed from the three
plots of each figure, under a fixed n, the measurement bias tends
to fluctuate more often with higher amplitudes for larger values
of s (e.g., compare the first plot in Figs. 7-9 with the third
plot of the same figures), which implies that larger values of s
will result in more 77, deviating from n, and, in turn, yield less
accurate measurement results. This observation agrees with our
simulation results from the previous part. Furthermore, if we
compare the plots from different figures (e.g., first plot of each
figure), it is clear that, under the same value of s, increasing the
value of n will reduce the fluctuation amplitudes of 7., which
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means that our scheme will produce more stable and accurate
measurement results for larger scale systems.

Figs. 10-12 show the relative standard error of 71, with
respect to each scale of n. under different values of n, where
n = 50000, 100000, and 500 000. There are also three plots
in each figure, each corresponding to a fixed value of s, where
s =72, 5, and 10. For each plot, the y-axis represents the
relative standard error of 7., \/Var(ri.)/n., and the z-axis
represents the mean value of n. in each scale. Still, optimal
privacy is guaranteed through setting appropriate m. The major
observation is that, given n, when s becomes larger, the relative
standard error of 7, with respect to each scale of n. also
becomes larger. For instance, when n = 50000, the relative
standard error of 1, is about 0.017 for the scale of n. ranging
from [8500, 9000] when s = 2, whereas its value reaches to
about 0.13 when s = 10, almost eight times higher than the
former value. Since the relative standard error for each scale
of n. becomes larger, the variance of 7. also becomes larger,
which means that the measured traffic flow sizes will be more
spread out from the real flow sizes. This observation also agrees
with our previous simulation results, where there are relatively
more points not close to the equality line for larger values of s
under fixed n. Similarly, the variance becomes smaller when we
increase the number 7 of vehicles. One can see that the relative
standard errors are closer to 0 in Fig. 12 than those in Fig. 10,
assuming that the same value of s is applied.

V. RELATED WORK

A. Transportation Traffic Measurement

In the area of transportation traffic measurement, various
prediction models have been proposed to measure “point” traf-
fic statistics using data recorded by automatic traffic recorders
installed at road sections, for example, the multiple linear
regression model in [8], artificial neural network in [9], spatial
statistical method in [10], and support vector regression in
[11]. These solutions, although elegant, are not appropriate for
“point-to-point” transportation traffic measurement. As stated
in the introduction, “point-to-point” traffic measurement is also
critical in traffic engineering. However, few research efforts
exist in literature that focus on this problem while preserving
the location privacy of individual vehicles in the meantime.
The recent work in [12] tries to infer “point-to-point” statistics
from “point” data, but the high computation overhead limits its
practicability. Our previous work [21] utilizes an encryption

method to preserve vehicles’ location privacy and measures
point-to-point traffic based on the encrypted vehicle IDs. The
computation efficiency is improved to O(nzn,) for each pair
of RSEs, where n, and n, denote the number of vehicles
passing them, respectively. This overhead is still too high for
today’s large-scale road networks. Although Google recently
announced to provide real-time traffic data service in Google
Maps [22], their approach cannot assure vehicle’s privacy since
it uses GPS and Wi-Fi in phones to track locations [23].

B. Network Traffic Measurement

Another branch of research that relates to (but is also sig-
nificantly different from) ours is network traffic measurement,
where researchers have proposed various methods for traffic
flow measurement in the network environment, i.e., to measure
the network traffic between two network routers. The solutions
can be summarized into two categories. One is indirect esti-
mation based on link load and network routing by employing
statistical techniques [24], [25]. These methods cannot achieve
high accuracy since their estimations are based on unknown
traffic volume. The other is direct measurement by different
counting methods [26], [27]. In particular, in [27], a bitmap-
based counting method was developed for traffic flow mea-
surement, which is most related to our work. However, all
these solutions are not appropriate for our problem because
they measure traffic in the network environment where the
privacy of packets is not a concern, and counting can be done
directly based on the packet IDs. In our problem, the privacy
of vehicles is the major concern. Therefore, the solutions must
incorporate randomization and de-identification techniques to
protect vehicles’ privacy and do counting based on information
that looks totally random.

VI. CONCLUSION

In this paper, we have focused on privacy-preserving “point-
to-point” transportation traffic monitoring in intelligent CPRSs.
We formalize “point-to-point” traffic as traffic flows and quan-
tify privacy as a probability. We propose a novel scheme
that allows the collection of aggregate traffic flow data while
preserving the privacy of individual vehicles. The proposed
scheme utilizes bit arrays to collect “masked” data and adopts
MLE to obtain the measurement result. Its feasibility and
scalability are shown by mathematical proofs and simulations.
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